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plates, is discussed. We consider the analytic regularization by employ-
ing the Riemann zeta function as well as the zeta functions introduced
by Epstein. The forces, in this case, come out automatically finite, 1.
e., no subtractions are needed. We show that the analytic continuation,
in the number of imaginary time dimensions, corresponds to introducing
generalized zeta functions for the zero point energy.
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1 INTRODUCTION

Casimir!*2 has studied the effect of the zero point energy of the elec-
tromagnetic field on two parallel conducting plates. His calculation pre-
sents infinities, and in order to obtain a finite result, one subtracts
from the energy density the corresponding contribution from the whole

space (the plates being separated by an infinite distance).
The same procedure has been extended by Lukosz ® to rectangular systems.

The purpose of this paper is to study how to obtain regularized quanti-
ties by a procedure similar to the one presented by Gelfand and Shilov
in their book". Such methods of analytic regularization were extended

to quantum field theory by Bollini, Giambiagi and Gonzales Dominguezs.

We make the remark that the exponential cut-offs used in Refs.1,2,3 can
be interpreted as analytic regulators. In the case of a one-dimensional
box, we also introduce in this paper an analytic parameter which allows
one to calculate the Casimir forces in terms of the Riemann zeta func-
tion. For rectangular boxes of higher dimensions we also consider, after
discussing the results with the help of exponential regulators, the ana-
lytic regularization by means of generalized zeta functions first intro-

duced by Epstein’.

In these rectangular syctems, with the help of these zeta functions, the
guantities which measure the Casimir forces are automatically finite,
that is, no subtractions are needed (in general, the infinities are

due to pole terms).

in Section 2, we describe the Casimir effect in a one-dimensional box,
and in Section 3 for the system of two parallel conducting plates. We
discuss the regularization by means of exponential regulators, which exi-
bit poles, and which in analogy to what happens in other situations of
quantum field teory, have to be subtracted®. W also consider a regula-
ting parameter which naturally gives rise to the Riemann zeta function,
and which when continued analitically to the physical region produces

automatically finite results for the forces.
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In Sections 4 and 5, we consider in a similar way boxes in two- and
three-dimensions. In these cases, generalizations of zeta functions,

first considered by Epstein’

, do appear.

In Section 6, we study the connection of our approach with the analytic
regularization of the Green function. In particular, as we have given
boundary conditions in space, we make the analytic continuation in the
number of imaginary time dimensions. in this way, the zero point energy

is naturally expressed in terms of generalized zeta functions.

In the Appendices, we discuss some properties, known in the mathematical
literature, and which might be useful to the eventual reader. So, in
Appendix A we show that Riemann's zeta function z{s), for Re <1, isa
finite part (in the sense of Hadamard) of an integral, and that it satis-
fies the correct functional relation; therefore, this finite part is the
right analytical continuation for Re s<1. In Appendix B, we give a de-
rivation of the functional equation of the zeta function introduced by

Epstein7, and which allows one to perform the analytical continuation.

In order to make this article rather self-contained,much of the arguments
found in other papers, especially of Ref.3, are reproduced here for the

convenience of the prospective reader.

In the examples treated in this paper, that is, the Casimir effect in
rectangular systems, there is no difficulty in obtaining the finiteparts
by using the exponential regulator and separating the poles, or by in-
troducing a parameter which allows one to consider generalized zeta func~
tions. In these examples, there is no special advantageinusingthe ana-
lytical regularization with the zeta function technique instead of the
exponential one. But there are problems, like the Casimir effect in a
sp'herical conducting shell, where the final result is not mathematical |y
well settled’’!® when the exponential regulator is used. The reason is
that, for this problem, the separation of the poles {(or other type of
singularities) is not very clean. In this case, the analytical regula-

rization via the zeta function technique can be useful.
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2. ONE-DIMENSIONAL BOX

Let us consider the simple case of a massless scalar field in a one-
dimensional box of length L. With the boundary condition that the field

is zero at the ends, the eigenfrequencies are given by
W =—=n, n=1,2,.,., (1)
where ¢ is the wave velocity. The zero point energy is

_ 1 whe
% =77

1 n

n o, (2)
1

1
EO =7h

N ~8
W ~18

n

which is infinite. In order to obtain meaningful results, people have

introduced a frequency cut-off. We can, for instance, consider?:

©o oo
] . -0y, o, 3 ~0Uy,
E==4 lim ] w e =-% lim = ) e 3)
° 2 a+0. n=l Z o0 aan=l (
+ +
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% 3 T -omen/L AL B0 e
E’0=--71|m -a—d- z e =]|m{‘?1'T—c———2-"KL—B2+0(a)} (‘*)
o0 n=\ o0 o
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where use was made of the formula
© B
- ) A (5)
- '
1 V=0 v!

. . . = --l =
the B\) being Bernoulli numbers: Bo 1, Bx" 2,B T etc.

Ve see in Eq. (3) that the first term gives a divergent contribution for
E. Dividing this term by L, we see that it gives a contribution to the
energy density which is independent of L, and therefore represents the

energy density of an infinite box. The usual prescription is to subtract
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this infinite contribution, and what remains is the physical zero point

energy in the box of dimension L, i.e.,
R nlic
EO = - -EZ,— B2 . (6)

Other kinds of frequency cut-off have been used®, with identical pres-
criptions, in order to eliminate infinities, the same final finite re-

sults being obtained.
Using

t(1-2n) = - =, (7

E‘:=l”£ z(-1) . (8)

Let us now remark that the identification given by Eq. (3) corresponds to
an analytic regularization with parameter a>0, and the prescription for
obtaining the finite part of the lefthand side of Eq. (4) is to subtract
the corresponding potes in a. This situation is completely analogous to

those which occur in quantum field theory5.

Instead of using a regularization of the type of Eq.(3), we can also

use

pt b -8 me s -8
I ow,=lim § w°=fz1lin Jn= . (9)
n=1 s+=1n=1 s1 n=1

For Re 8>1, the righthand side of Eq.(9)defines the Riemann reta function
£(s), which can be continued analitically for Re s<1 (Ref.6).  This can
be done for instance by considering the finite part a la Hadamard"® (cf.

Appendix A) .

By this procedure, Eq.(2) writes as Eq.(8), and the zero point energy

of an infinite space (I#»®) is zero in this case. By using this type of
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analitic regularization, we obtain automatically finite results, no sub-

tractions being needed.

3. TWO CONDUCTING PARALLEL PLATES

The zero point energy is given by

with

w(®,n) =/ K24x24 20
Y

where we have put ¢ = 1; d is the distance between the plates.

W have

) w(k,n) = —37 OZ:

T
(R "

e /12,02, N2n2

0

S denoting the surface of the plates. For n=0, the above expression
should be multiplied by 1/2. Since, for n=0, the contribution for E is
independent of d, we can subtract it (because it does not contribute to
the forces) and then restrict the sum in Eq. (10) to n=1,2,... . Intro-
ducing into Eg. (10) the exponential regulator exp{-a(k;'l'k;*'nznz/dz)%},
we shall obtain? a fourth order pole in a which will give an energy den-
sity independent of d. By the same procedure as before, we subtract it.
It also appears a third order pole which is independent of d, and the-
refore it has also to be subtracted since it does not contribute to the

forces. Therefore, we are left with the regularized expression

R
{ ) w(%,n)} =1T§ ']_Bu . (11)
7 !

27

in analogy to Eq.{9), we write
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{ZZ w(z,n)]R = 1im z’in [m(z,n)]—s .

s>-1
WM
W have:

I = Z,Zn E;)(Z,n)] = n§1 rf dkxdky[/k;+k;+n2ﬂ2/d2:l ,

0”0

where again the contribution fromn=0 wasdisregarded, since it is inde-
pendent of d. W remark. that, in this case, this term is proportional to

.!:o p_3+] dp , whose analytic regularization vanishes (cf.Ref.4, p.70).

It is easy to show that

Now,

{oe]
J dyly+1) 72 = 801, -0,
0
which is valid for Re s>2, B{p,q) being the Euler beta function. The-
refore,
© -s+2
_ 5 s _ ni
I, = 7 B0, 3 -1) } [H'} .

n=1

The righthand side of this expression is convergent for Re 8>3, and de-

fines the function

TTJ—s+2

s
Is = %7 (g B(1,Z - 1) t(s-2)

This expression can be continued analitically for Re §<3. |In particu-
lar, for s=-1, we have:

m 5
I=-T FC("3)7

-1
which is exactly Eq.(11) after use of Eq.(7).
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4. TWO DIMENSIONAL RECTANGULAR BOX

Let us consider a scalar field in a two-dimensional rectangular box with

the boundary condition that the field is zero at the walls.

The solutions are then of the type

™ MRy

sin

L L
1 2

¢{x,y) = A sin

with n; 1,2,... (£-=1,2). The eigenfrequencie¢ are

/2
wn1n2 =‘n'l':(nl/['l)2 + (nZ/LZ)Z] ?

with ¢ = 1. The zero point energy is

% w =2 3 [ny/0) 240,/ 212 (12)

E (L,L,) =

Let us now go to the exponential regularization:

n1,§2=1 U ;ig\+ %a nlifn2=1 eXP('Oﬂwnlnz) (13)
Now we have:

nl,zﬁ expl-alny /L)) *+(n,/1,) 7] V/* )

= E' exP{-a[(nl/Ll)2+(n2/L2)2] 13- of '=’f><P{-0L(nl/Ll)}'ozo expto(n, /L, )}
n sn =0 L i



= .l'.; ) exp{-a[(nl/Ll)2+(n2/L2)z]1/2}
n. ,m ==
1"

--;- ) expl-aln /L )} --‘2- ) exp{-a(n,/L )} "1]; )
n1=] n2=]

where the prime means thatthe case where n

~Maclaurin sum formula gives

) exp(-ani/Li) = F exp(-ouz/Li) de - -;— + ]a + 0(a?),
0 2L

n.=1 ,
7 7
while with the Poisson summation formula one has
o0
¥ exp{-a[(n,/L,)%+(n,/1,)?] Z
N n, ==
1272
<« [eo]
= ) fr exp{-OL[_(ac/Ll)2+(y/L2.)2]1/2 + 2mi (mywbm,y) } de dy
fnl,mz— w0 T

= JJ exp{-aE(x/Ll)2+(y/L2)2:| 1/2y dedy +

”_w exp{-OL[:(ac/Ll)2+(y/132)2]l’l2 + 272 (m jabmy) Ydxdy

(14)

1=n2=0 is excluded. The Euler-

(15)

2r _ ¢ o ¢ 27
= r[ e ratde + Z r f exp{-at+2miftcosd}t dt 48 , (16)

0°0 MysMa==%® 7q 79

where in the very last sum the terrn m;=m,=0 is excluded. Note that we have

T 3
made use of the vectors t = (x/L , y/L,) and = (m Ly, myLy).
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Eq.(16) can be written as

oo [2
Y expl-al(n /L. +(n,/0,) 2] 2 } = 2nL I e tdt 4
no,m, == 12,
® 2mol, L,
) (17)
o 2 202y3/2
m ym,= (0 + b4w2e?)
Introducing Eqs.(15) and (17) into Eq.{14), it then follows that
) exp{-a[(nl/L1)2+(n2/L2)2]1/2 =
77 =1
7 I.L, f te ™ gt —% (z,+1,) f e at +7‘+- -
0 0
a1 w s 1
(——+-—)+—G,L ——-——-—-——-—+0((!2). (]8)
25 L, L, 2 L - 3:7:_00 (a2+ kb 1222) 3/2

The first two terms give pole terms of order two and one, respectively.
Introducing Eq.(18) into Eq.{(13) and subtracting the pole terms in a ,

we obtain the following regularized expression:

R
R CRE AL N

-3/2

L,L, =,
al [L+_L} . I 2+ mi) (19)
1M =7

16w2 m

Let us now make the difference between the energy densities of a box,
area LlLZ,and another of area L1'L2' with Ll',L?' + o . W have then, from
Eq.(12),
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Au(Ll,Lz) =

T i & ] exploallny/5,) % (n,5,) 1YY -

m
2L1L2 0 l 2=]

JI * exp{—a[(x/L1)2+(y/L2)21 1/2y dedy

where the asterisk means that terms with x = 0 and y = 0 must be exclu-
ded. That is:

oo* .

JJ exp{-a[(x/L,) 2+ (y/L,) %] Ve gudy =

” exP{-a[(x/Ll)2+(y/L2)2]1/2} 0-6(x) - 8(y)ldedy ,
0

which gives exactly the result given by Eq.(19) multiplied by'JTTi/ZL1 L, .

Let us consider the identity

nl’n2=—m

which for Re s>1 can be substituted by

of H”_l]z N [ﬁ]j_s = z]; AL, L,528) - —2'-(Lfs+Lfs) z(2s),

Ny,n,=1

where A(LI,LZ;ZS) is an Epstein zeta function’ defined in Appendix B.

Using the functional equation (B.4), it follows for s=-1/2 that
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R
[, /1)) 2+, /8,) ]2 | =
Ny, =1

L.L ®©
i [] l} 172 d 272 2,2y-3/2
7 -t - (m*L? + m*L?) s

which is exactly Eq.{19).

5. THREE-DIMENSIONAL BOX

Let us now consider a scalar field in a three-dimensional box of volume
L1 L, L, with the boundary condition that the field vanishes at the

walls.

The solutions are of the form:

( ) ™Mz Ty ™32
¢(z,y,2) = A sin sin sin

’ L, L, Ly
with 7. = 1,2,3 (i =1,2,3). The eigenfrequencie¢ are

- 2 2 271/2
O 1y s w[(nI/Ll) + n /L)% + (n3/L3)] .

Taking the exponential regularization, i.e.,

) ((n,/0,)%+ (n,/5,)2 + (ns/L.:,)z:I‘/2
"1’"2-’”3=]

.3 T A
- o - 2 2 271/2 20
oe-:'(‘; - ) exp{ a[(nllLl) + (n /L)% + (nlea)] 3, (20)

+ n n ,n_ =1

1 2 3

we have:
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) exp{-a[(n,/L,)? + (nz/Lz)Z + (":/I’a)z] 1/2)

=—é— ) ’ exp{-'OL[;-(;';"/1',1)2 + (nz/I’z)z + (ng/La)zjl/z}

I expl-a[(n,/0,)% + (n,/5,)2]"/2)

-3 I explromy/z, J- 4 I exolamy/] - I ewlony/n]
n2= n3=

n1=1

By using again the Poisson sumation formula, we can write

oo

N3Ny Ng==®

s}
0

) ! H«{ expl-a[(a/L,)* + (y/L,)* + (z/La)z]l/z

ml’m2’m3=—m -0

+ 2ni(mx + my + m,z)} dedy dz,

) exp{-a[(n,/0,)% + (n,/L,)? + (nalLa)z'Jl/z}
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= J” exp{-al(2/L))? + (y/0,)% + (z/Lg)ZJI-/Z}dxdydz

@y
+ ]

m ,m ,m_ ==®
1772°7 s

I” expl-a[{x/L)? + (y/L,)2 + (= /0,)%]V/?

+ 2ai (mx + my + m,z) }dxdy da

where in the last am the term m,=m,=m,=0 is excluded. Introducing the
+-

vectors t = (r/ ~y/,, al ~ aQ 7= (m,L,, m,L, msz,a), it follows®

that

i - 2 2 1/2y _
3 . E e expi{ a[(nl/Ll) + (nz/Lz) + (na/La) 1/23 =
12772273
© T 2T
4 J J J e %2 sinp de de dt +
8y h Jo

v Pl T2 o wt+2miltcose
*3 ) FJI e ¥ Y t2s5in0 40 d¢ dt
mlamz.’ma:-m 0 "0°0
(o]
- ) a
= EZK t2e atdt + 7V z —— ?
0 MysMyym, == (0®+hn202) 2

with V = L,L,Lyand1? = (mL,)% + (m,L,)% + (m,L,)% .

After some calculation, we can write

)y exp{-a[(n, /L)% + (n,/L,)? + (ny/0)2]1 2} = %V J 2 ™% g
NysM,,N,=1 : 0
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0

_% (LI, + LDy + L,L,) f te ¥ gt +-,‘; (L, + L, + L) re""t dt
4

oo

? o T T o
+ v 2 e = - I L, X T 1 22372
My My s m == (a2+h4m?02) 2 ¥ M,y 51, =m0 (a2+lnr22‘2)3/2
il OEO ! o T 020, o 1
-Fz —*  -Irg SN E—
13
i m,ym, == (oz2+lm22§)3/2 hozs My m == (u2+lnr2232)3/2 *
P2 e LoD w0, (21)
l"8 Ll L2 L3
with
22 = (mL)? + (myL,)% + (m,Ly)? ,
22 = (mDy)? + (mL,)% , 85 = (mI)? + (mL,)2, 23 = (m,L,)% (m,L )%

The first three terms of Eq.(21) give poles in a and are therefore sub-

tracted. Then the regularized expression for Eq.(20) is:

) ((n, /L)% + (n,/0,)% + (ny/0)%]Y 2 | =
n N n =l
2°"3
-r ogl (m?L? + m2L? + m*L*)?
16 11 272 3’3
T m sM,sm ==
1 o 3/2 1 %y
2,2, 2,2y 2,2 -
*+ 3377 IhEy ) (miL2+ m3L3) + 2 Lr, }  (mLlem’ry)-ve
MMy == 12y~
1 v s/2 1 1 1 ]
+ L,L m2L2 + m2L2)" -gm =+ ) 22
321 273 X (22 373 48 'Ly L, L, (22
m_ym_=-
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If we now make the regularization via the zeta function, by considering

00 \R
7 (n,/0,)2 + (n,/0,)2 + (/5072 | =

nl,nz,n3=1

Tim { %A(LI,LZ,L3;ZS) - %A(LI,LZ;ZS)

S+

2

- A (L,I520) - g A, 52) +q 02+ 12 4+ 1P) ),  (23)

where A(L,,L,,L,32s) is the Epstein zeta function, it follows (cf. Appen-
dix B) that the righthand side of Eq.{23) is exactly the righthand side
of Egq.(22), which corresponds to substracting from the energy density

(in the volume V = L;L,L,) the contribution for V » =,

Finally, let us remark that in the case of the electromagnetic field in

a box:V = L,L,L4, which was considered by Lukosz®

, both the exponential
regularization (where we neglected the pole terms in a), and the analy-
tic continuation via the Epstein zeta functions, give exactly the same

results.

6. CONNECTION WITH GREEN FUNCTIONS; DIMENSIONAL REGULARIZATION

Let us for instance consider a scalar field ¢(x,t) which satisfies

2 2

3

[a_' = ——] ¢(.’l7,t) =0 s
at2 3z

where x = {x,[:}, Z2=12,...,N The eigenfunctions are of the form ¢n(x,t)=

d)n(x)exp(-iwnt), with n = {ni}. Now, ¢n(x), a complete orthonormal set,

and w, are determined by the boundary conditions. For imaginary times t=.

~ZT (c real), the corresponding Green function writes as:

+ o TWT
dw (24)

Clx,2’;7T) =-51T—r »Z ¢;(x')¢n(x) I

n={n.} - 0?4+ ?
1 n
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N I R

]
Gla,x'37) == ‘ = ,
2 n={n_.} n

Tne zero point energy of our system is then defined as

tim 7 &5 | oleotmnde = 1im D o e m (25)
ot-;0+ 302 J > > or~>0+ 2 n=}n} n 5 5

and so the imaginary time T appears as a regulating parameter. As we know,
the righthand side of Eq.(25) has poles for a=0.

W would like to have an expression which has no pole at a=0. For this
purpose, we introduce another parameter, X, in the Green function given

by Eq. (24). Ve can, for instance, consider

L5 ot ene (@ P
G (2, x%31T) = 5= o (Mo (x r dw
A 4 P23 neln.} " n oo whew? *
Z n
which is equal, for 0<A<1, to
1 * e
6 (z,x's1) =% L ¢ (2", () , a=]1
p et 7 "={"i} n n w,

V¢ now extend X to the region of the complex plane which makes the inte-
gral of G>\(ac,x'=x;'r) meaningful. The the zero point energy will be
-wA
2 -
lim A% 3—-2- G, (x,x'=r;t)de = lim A N WXl (26)
0 A A 2 n
o0, a0, n={n}

in order to have an idea about the singularity in a in the righthand side

of Eq.(26), let us consider the Mellin transform of it:

j ap—l[ ) w;)\-l exp[-wzal do=T() J w;z(px+1~2k)

o n={n7:} n={ni}

(we used the fact that wn>0). If, say, w =n (in some units), then the

righthand side of this last equation converges for A>0 and p>2. W see
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therefore that, for A>0, the righthand side of the sum in Eq.(26) has a
singularity at least of second order in a. And, in fact, it is not dif-
ficult to show, for the one-dimensional box with mn=n, that the sum inthe
righthandsideof Eq.{26) isuniformlyconvergent for A>0 and o> 0. it
has, for A=0, a pole in this variable. 1f we multiply that sum by A, we
see that it is uniformly convergent for >0 and A20. For ReA<0, itisal-
so analytic in this variable, even for a=0. Therefore, in this region ,
we can take a=O without getting poles in a , and we obtain the Riemann
zeta function in this region, which afterwards can be continued analyti-
cally to the physical region, yielding a finite result which is just the

regularized one.

We have not been able, for larger configurations, to continue from a re-
gion of the X-plane, which exibits poles (or cuts) ina, to a region
without such singularities. Another possibility is to consider the Green-

-iike function

*
¢ (zNd (x) ro Zwr

oy _ |} n n e

Gz, z"57) = 5= n=§ni} o h f

-0 wZitw?
n n

=0
I o™ gane@e ", a=lt . (27)

=1
7
n-{ni

Therefore, the zero point energy is given by

2 ' )
lim # —?——-J‘ G)\ (z,x'=x;T)dx = lim g w::)‘ e T . (27')
o a2 0, n={n,L-}

For @>0, the righthand side is uniformly convergent for any value of A.
In the case of a box of dimensions D the sum in expression (27" is,
for Re A<-1 - D analytic in the variable X even-if a = 0,. This limit
yields functions of the zeta type, which can be continued analytically
for Re A> -1 =D | these functions giving in many cases, as in those stu-

died in this paper, finite results for the observables.

Let us note that the GA function, Eq. (27), satisfies the differential

equation
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[ a2 + 22 ]G)‘(x,x';'t) = - Gx(x,x')é('r) s

e a2
where, for real ¢, (=),

) ¢, (x')¢n(x)

n={ni} w,

6X (z,z') =

and ;‘lna 6)\(:1:,3:') = 8(x-x'). Here, the regularization procedure amounts
ed

to analytically continuing the ¢n(x) fields, i.e., to consider new fields

¢, (0x) = w:‘,/Z ¢, (=) ;

the extension to complex ¢n(x) is not hard to get.

Finally, let us consider the procedure of dimensional regularization“.

As we have given boundary conditions in space, we will make the analytic
continuation in the number of imaginary time dimensions. That is, instead
of Eq. (24), we will consider

I
20 1Sd.T

@ [,

Q24w?
n

1

G (x,z';7 T, ) = ——
oY AR E A} 20 20
(211’) n={n.}

2 _ 2 2 > _ ;
where @* = Q7 + ... + 2, and Q.7 = Q,t, t..+ Q, 1 . The zero point

energy is defined as

lim ) [i)-z—+...+32 ]JG(x,x'=x;T 2ToseeasT Jdx
atl at 1202 20
T 3T 500e,T_ 0 1 20 -
1’2 20+
___F& ) I do’° g2 _ _ 1% (-0) ) w20
(2m)2° n={ni} 224+ w; - (2m) zo n={"i} n

valid for Re 0<0. In particular, for the one-dimensional box, theabove
expression is convergent for Re o< -% . In this way, we obtain the Rie-
mann zeta function which can be continued analytically for Re o> - %—, up

to the physical point o :%- .
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APPENDIX A — THE RIEMANN ZETA FUNCTION AS FINITE PART OF AN
INTEGRAL

The definition of the Riemann zeta function by means of the integral

© g-]
T(s) zls) =[ x_dr s (A1)
0 &L -1

is valid for Res > 1.

In order to make the analytic continuation for Re s <1, we define the
lefthand side of Eq.(A.1) as the finite part @ Za Hadamard of the inte-
gral in the righthand side. Hadamard's finite part is obtained by sub-

tracting from (e"c--l)'1 as many terms from its Laurent expansion (around
X = O as is necessary to make the integral convergent. For 0<Re s <1,

we have®

ris)zls) =J &7 [x‘ -1 e,
0

which satisfies the functional equation®

s-1 s
Te)zle) = 2— T z(i-s) . (A.2)

cos{ms /2)

For -1<Res< 0, we have®

T(s)gls) = rxs_‘ [ac] ‘%*‘%) dx

) e -1

which also satisfies the functional equation (A.2). For

-1 -2k < Re s<1 - 2k , (A.3)

with K # 0, the procedure goes like:
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T(s)c(s) =J

0

k 2k=1

® g- (-0* I8,,] =

2 m‘ v T 2 da .
-1 * 2 12 (2k)

Using the identity®

1 = l - _]_ + 2.’17 2 .___L._._ .
&1 = 2 n=1 hr’n? + z?
it follows then
0 e R A I G D -0 P
I‘(S)L(S)=2( { - + oo }de
Yooy Wit 2,020 2.(kD) 2.(28)!
flsing:
Bl 7
2.(2k)t n=1 (lmznz)jE
it follows that
(_])k 0 xs+2k
I's)zle) =2 — J dr
iy (mPn®)" bn?n2+x?
or
® s-1 [ s+2k
e =2 § 0F em®t [ g
n=1 0 ]+y

In the strip given by {A.3), the above integral is convergent, and we ob-

tain

s-1
n E)

27V

cos(as/2) n

Pis)z(s) =

11~ 3

which is exactly the functional equation (A.2).
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APPENDIX B — THE EPSTEIN ZETA FUNCTION AND ITS FUNCTIONAL
RELATION

Let us consider the following Epstein zeta function’:

[eo)

. = ¥ 2 2 2y "8

A(a},az,...,aD,Zs) = ) (a1n1+a2n2+. aj D)
Ryallyy e ey Hp==®

D ,.
with the a7->0. It defines an analytic function for Re s>§ (in the sum,

the term nl=n2:. ..=nD:0 has been excluded) .

In order to extend this function for Res < D/2, let us derive a func-
tional equation for it. The procedure to be followed is exactly the same
as used for the Riemann zeta function®. Here, let us consider the gamma

function

I'(s) = r et ts_] dat

0

and make the change of variables

2 2 2
t=ml@n®*+an®+ ... +anx.
(11 2 2 DD

Then, it follows that

=S -s d"(a -t aDng)x s-1
™ I‘(s)(an +an+...+ aDnD) r . x dx.
We have, therefore,

=S ' ! 2 24 S

™7 T(e) ) (ayn] + ani*..+ ap)) =

MystyseensBp== @
—nlani+ .. +anic _
F °Z° e ! 70E 8 g (8.1)

0 =—-00
VLI Myses .,nD
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Using the Poisson surnrnation formula, we can write

2 2 2
o ~mla n® + an” +...+ an)x
y e ( 11 2 2 “p D) =
N3Py enns ==
nZ 712
o T2+ .. + 21
/_______ Df2 z é ’
a\dye.ap @ Popen i e
or
o 2 2 2
ik “mlany +an; 4.+ agip)e ‘ . ‘
= -1 + D/z
MaTlyse e e sip= @ a,...ap®
2 2 2
nyon npo 4
- (— + o004 —) —~
1 1 <, @ p (5.2)
e . .
i va_ a a xD/Z )
1 2°°°7D MysMps e p=n®

The integration in Eq.(B1) is split into two parts: frorn EO,]] and D,ﬂ

In the first interval, we use Eq.(8.2) and we obtain:

1 1
- s-1 1 s=-D/2 dx
nsr(s)A(al,az,...,aD;Z?) =—J x dx+—-—~—————[ x / e
0 Valaz...aD 0
2 o
71 Dy 1
- it )
1 ' 1 D dx +
+ e 'a:—
/alaz...aD 0 B
e enp=®
°° ° ! -mla, s+ ... +a n2)ax e
" e oo x - x° = (8.3)
"1
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In the last but one integral of Eq. (B.3), we make the change of varia-

bles y = 1/2, and obtain:

7 °T(s) A(al,az,...,a ;28) = - 1, ! ! +

s »/alaz. eap (s-D/2)

2 2 2
n n
(e 2as —D)y D
1 ® 3 4G % ) 7°%4
B — J Z e Xy ’:yz
Yaa,..a; ‘1 ng... n ==

® ~tlan?+...+apn?)
+ f °§ ' e 11 i x o @

N Y

W see that Ala,,... ,aD,;Zs) has a simple pole for s = D/2. Interchanging

s <_}J_)Z__ s, a?:4_, dl_( i =1,2,...,D), we obtain the following functional

relation: *

“-(0/2'3) F(D/Z'S) A(_I_.., -l-,..., "]—'; D_ZS) (B.L')
1 % ap

- )
=vYaa...a, T I'(s) A, s@ysenesaps 2s) ,

which allows us to analytically continueA(al,az,...,aD;Zs) for Res< D/2.

For a,=a,=...=ap = 1, it follows that

2s8-D/2
3012 1 (py2-5)

T (s)

A(1,1,...,1328) = 1 a(v,0, ..., 15D-28)

which has been obtained by Zucker!?,
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