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Abstract Hydrological yearbooks, especially in
developing countries, are full of gaps in flow data
series. Filling missing records is needed to make
feasibility studies, potential assessment, and real-
time decision making. In this research project, it
was tried to predict the missing data of gauging
stations using data from neighboring sites and a
relevant architecture of artificial neural networks
(ANN) as well as adaptive neuro-fuzzy inference
system (ANFIS). To be able to evaluate the re-
sults produced by these new techniques, two tradi-
tionally used methods including the normal ratio
method and the correlation method were also
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employed. According to the results, although in
some cases all four methods presented accept-
able predictions, the ANFIS technique presented
a superior ability to predict missing flow data
especially in arid land stations with variable and
heterogeneous data. Comparing the results, ANN
was also found as an efficient method to predict
the missing data in comparison to the traditional
approaches.
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Introduction

Data acquisition systems are often characterized
by short breaks in their records. This may be
attributed to various reasons such as absence of
the observer, instrumental failures, power failure,
or communication line breakdown. This problem
is more serious in developing countries, and in
these countries, for most of the areas, hydrological
data series are full of gaps in flow data series. If
such data are to be utilized in real-time decision
support and control systems, serious disasters may
occur. Control actions become crippled due to in-
complete real-time data (Abebe et al. 2000). One
such data set used widely in water-based decision
support system is flow time series. Planning and
management as well as design and construction of
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any hydraulic structure across or along rivers are
dependent on these data. Filling missing records
is needed to make feasibility studies, potential
assessment, and real-time decision making. There-
fore, to be able to use these data more efficiently,
the gaps need to be filled or, in some cases, short
period of data to be prolonged (extrapolation)
using relevant and efficient methods. There are
some existing methods used for rainfall as well
as flow data gap filling. Some of these methods
are relevant only to rainfall data gap filling, and
some of them can be used for both rainfall and
flow missing data estimation (Linsley et al. 1988).
Two well-known methods which are commonly
used for filling flow data gaps are the normal ra-
tio method (NRM) and especially the correlation
method (CM) between the gauging stations.

In the last few decades, many types of data-
driven techniques and models have been devel-
oped and they reflect the inherently stochastic
nature of hydrologic processes and this has led to
an increasing interest in artificial neural network
(ANN) and fuzzy logic techniques. ANN, adaptive
neuro-fuzzy inference system (ANFIS), and fuzzy
logic techniques that consider the nonlinearity in
the rainfall-runoff process and the utilization of
soft computing techniques such as support vector
machines, expert systems, and genetic algorithms
are grouped under the general description “artifi-
cial intelligence.”

These new machine learning techniques, espe-
cially ANN and neuro-fuzzy methods, have been
used to solve different hydrology and water re-
sources problems during the last decades and, in
most of the cases, presented very good results. The
technique of ANN is widely used as an efficient
tool in different areas of water-related research
activities. Bhattacharya and Solomatine (2000)
used this technique to evaluate stage–discharge
relationship; Dawson and Wilby (1998a) applied
ANN for rainfall-runoff modeling; Dawson and
Wilby (1998b) also compared the application of
different types of ANN for river flow forecast-
ing; Hsu et al. (1995) evaluated the application
of ANN for rainfall-runoff process; Karunanithi
et al. (1994) predicted river flow using adaptive
ANN; Luk et al. (1998) tried to forecast rainfall

events using ANN; Minns and Hall (1996), and
Tokar and Johnson (1999) employed this method
as a tool of rainfall-runoff modeling; Dastorani
and Wright (2004) employed ANN to optimize
the results of a hydrodynamic approach for river
flow prediction; Dastorani and Wright (2003)
completed a research project on flow estimation
for ungauged catchments using a neural network
method; and Dastorani and Wright (2002) used
ANN for real-time river flow prediction in a mul-
tistation catchment.

This research was designed to investigate the
capabilities of new data-driven techniques to fill
the gaps of hydrological data series measured in
some gauging stations located in various climate
conditions in Iran. This study deals with the re-
construction of missing flow records from observa-
tional data obtained from adjacent stations using
new machine learning techniques including adap-
tive ANN as well as ANFIS models. The results
are then compared with those obtained from tra-
ditional methods. According to the application of
the new techniques (ANN and ANFIS) reported
from studies completed in other aspects of hydrol-
ogy and water resources, the main hypothesis of
this research was created. The main hypothesis of
this study is: “preference of the new data-driven
techniques over traditional methods on missing
flow data reconstruction.” This hypothesis would
be accepted or rejected according to the final
results.

Methods and materials

Study area characteristics

In this research project, after the selection of
ten gauging stations located in different parts of
Iran, they were organized in four groups due to
geographical proximity. In each group, one of the
stations was selected as subject station, and it was
tried to predict the missing data of the selected
station using data from other stations of the same
group, and a relevant architecture of the ANN
model and also adaptive neuro-fuzzy technique.
Figure 1 presents a schematic plan of the study
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Fig. 1 A schematic plan of the study area showing the location of river paths and the related gauging stations

area showing the location of river paths and the
related gauging stations. These four subject gaug-
ing stations in which their monthly flow data was
reconstructed in this research are as follows:

– Kardeh station located across the Kardeh
River in Khorasan province, a semiarid
region.

– Babol station located across the Babol River
in the north of Iran, a humid and semihumid
region.

– Behbahan station located across the Maroon
River in Khozestan province, an arid region.

– Aliabad station located across the Gharah
Aghaj River in the central west of Iran, an arid
area.

Table 1 shows the details and characteristics of
the stations and data used in this research. As it is
seen from the table, groups 1 and 2 include three
flow gauging stations, while groups 3 and 4 contain
only two stations. In each of groups 1, 3, and 4 are
all related stations located along the same river,
but in group 2, stations Kooshk and Jong mea-
sure flow in two different tributaries and Kardeh
station measures flow downstream after conjunc-
tion of the tributaries. The table also shows that



424 Environ Monit Assess (2010) 166:421–434

Table 1 Details and characteristics of stations and data used in this research

Group Stations River Area above Elevation Subject station Length of data
station (km2) (m above sea level) to fill data gap used for training

(calibration), years

1 Babol Babolrood 1,430 0 Babol 6
Pasha Kola 152 212
Ghoran-Talar 403 150

2 Kooshk Kardeh 93 980 Kardeh 7
Jong 95 1,680
Kardeh 432 980

3 Idnak Maroon 2,746 560 Behbahan 27
Behbahan 3,740 280

4 Bande-Bahman Aliabad 2,410 1,700 Aliabad 17
Aliabad 3,570 1,340

data record length available to use for training
of the models in this research was different for
the groups (from 6 years in group 1 to 27 years
in group 3). To be able to compare the results
produced by these models, the NRM as well as
the CM was also employed to predict missing data.
Then, the values of the root mean square error
(RMSE) and coefficient of determination (R2)

were determined for the predicted values of each
method and the corresponding measurements
to evaluate applicability of the used methods.
Figure 1 presents a schematic plan of the study
area showing the location of river paths and the
related gauging stations. It needs to be added that,
for the testing phase of modeling, independent
data sets (not used in training or calibration) were
used. The length of monthly flow data used for
testing was 1 year for groups 1, 2, and 3 and
2 years for group 4. As the four methods used
to reconstruct data in this research are compared
in each station separately and independent from
other stations, differences in number of stations
and data length in the groups can be a positive
point to evaluate the ability of the methods in
different conditions.

Artificial neural networks

An ANN is an interconnected group of artifi-
cial neurons that uses a mathematical model for
information processing based on a connection-
ist approach to computation. In most cases, an
ANN is an adaptive system that changes its struc-
ture based on external or internal information
that flows through the network. In more practical

terms, neural networks are nonlinear statistical
data-modeling tools. They can be used to model
complex relationships between inputs and outputs
or to find patterns in data (Lucio et al. 2007). In
many applications, modeling tools have provided
better results when used in hydrological time
series analysis (Elshorbagy et al. 2002). Neural
networks must be trained with a set of typical
input/output pairs of data called the training set.
The final weight vector of a successfully trained
neural network represents its knowledge about
the problem. As different types of neural network
deal with the problems in different ways, their
ability varies depending on the nature of the prob-
lem in hand. Therefore, three types of ANN were
used in this study: multilayer perceptron (MLP),
which is a static architecture of neural networks,
as well as recurrent and time-lagged recurrent
neural networks, which are dynamic networks.

Multilayer perceptron neural network

In this network, a connection is allowed from a
node in layer i only to nodes in layer i + 1 and
not vice versa (Fig. 2). An advantage of MLP in
terms of mapping abilities is its capability of ap-
proximating arbitrary functions. This is an impor-
tant point in the study of nonlinear dynamics and
other function mapping problems. In this study,
different types of transfer and output functions
for hidden and output layers as well as different
numbers of hidden layers were used to find the
best structure of MLP for this application. From
these trials, it was found that the tangent hyper-
bolic function was the most compatible one for the
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Fig. 2 A typical
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hidden layer. However, for the output layer, the
sigmoid function was the most suitable one. In this
study, only one hidden layer was the most suited
number of this type of layers for the ANN model.

Recurrent neural networks

This type of network can be divided into fully
and partially recurrent. Having a memory ele-
ment distinguishes this network from the previ-
ous one. Although recurrent networks are more
powerful than feed forward networks, they are
more difficult to train and their properties are not
as well understood. The training of a recurrent
network is much more sensitive to divergence
(NeuroDimension 2001). To construct the best
architecture for this study, many structures were
tested and the results were considered. The num-
ber of hidden layers, number of processing el-
ements in hidden layers, type of transfer and
output functions, and type of learning rule and
its parameters have been considered and evalu-
ated. After using different types of transfer and
output functions for hidden and output layers
and comparison of the results, it was found that
a tangent hyperbolic function is the most suit-
able one for the hidden layer. However, for the
output layer, the sigmoid function is a more
compatible function. It needs to be mentioned
that the Neurosolution software package (from
NeuroDimention) was used to create and run
ANN models in this research. Between the dy-
namic processing elements of gamma, Laguarre,
and time delay, the Laguarre and time delay gave

better results. For this research, the partially re-
current network showed better adaptation than
the fully recurrent one, and the best results were
produced when only one hidden layer was used in
the model.

Time-lagged recurrent neural networks

This type of network contains locally recurrent
layers with a single adaptable weight. As opposed
to the recurrent networks, stability in time-lagged
recurrent networks is guaranteed. It usually suits
temporal problems with short temporal depen-
dency; however, it does not seem appropriate for
more difficult temporal problems. For this type
of neural network, it was found that the tangent
hyperbolic function and, in few cases, the sigmoid
function was the best one for the hidden layer.
However, for the output layer, the sigmoid func-
tion suited better. Between the dynamic process-
ing elements of gamma, Laguarre and time delay,
gamma was found to be the most compatible.
Networks with only one hidden layer presented
the best performance.

Between the above-mentioned three ANN ar-
chitectures, overall, the MLP network presented
better performance for the reconstruction of flow
data in comparison to the other two networks.

Adaptive neuro-fuzzy inference system

ANFIS is a new improved tool and a data-driven
modeling approach for determining the behavior
of imprecisely defined complex dynamical systems
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(Kim and Kasabov 1999). The ANFIS model has
human-like expertise within a specific domain—
it adapt itself and learns to do better in changing
environments (Kurian et al. 2006). An ANFIS
aims at systematically generating unknown fuzzy
rules from a given input/output data set (Abraham
et al. 2004). Figure 3 represents a typical ANFIS
architecture that is based on:

Layer 1 Every node in this layer is an adaptive
node with a node function that may be a general-
ized bell membership function (Eq. 1), a Gaussian
membership function (Eq. 2), or any membership
functions:

μAi (x) = 1

1 +
∣
∣
∣

x−ci
ai

∣
∣
∣

2bi
, (1)

μAi (x) = exp

[

−
(

x − ci

ai

)2
]

(2)

where ai, bi, and ci are premise parameters. Also,
x is the input to node i and Ai is the linguistic
label (for example, low and high) associated with
this node function. Premise parameters change
the shape of the membership function.

Layer 2 Every node in this layer is a fixed node
labeled �, representing the firing strength of each

rule, and is calculated by the fuzzy AND connec-
tive of “product” of the incoming signals by using
Eq. 3:

wi = μAi (x) × μBi (x)

i = 1, 2
(3)

where μAi (x) and μBi (x) are the membership
grades of fuzzy sets A and B and also wi is the
firing strength of each rule.

Layer 3 Every node in this layer is a fixed
node labeled N, representing the normalized firing
strength of each rule. The ith node calculates the
ratio of the ith rule’s firing strength to the sum of
the two rules’ firing strengths by using Eq. 4:

wi = wi

w1 + w2
i = 1, 2

(4)

where wi is the normalized firing strength that is
the ratio of the ith rule’s firing strength (wi) to the
sum of the first and second rules’ firing strengths
(w1, w2).

Layer 4 Every node in this layer is an adaptive
node with a node function (Eq. 5), indicating the
contribution of ith rule toward the overall output:

wizi = wi (pix + qi y + ri) (5)

where zi is equal to (pix + qi y + ri) and also pi, qi,
and ri are consequent parameters.
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Fig. 3 A typical ANFIS architecture (Jang 1993). In this
figure, x and y are the inputs and z is the final output, A1,
A2, B1, and B2 are the linguistic label (small, large, etc.)
associated with this node function, wi is the normalized fir-

ing strength that is the ratio of the ith rule’s firing strength
(wi) to the sum of the first and second rules’ firing strengths
(w1 and w2), and � is the node label
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Layer 5 The single node in this layer is a fixed
node labeled �, indicating the overall output as
the summation of all incoming signals calculated
by Eq. 6:

Z =
∑

i

wizi =
∑

i wizi
∑

i wi
(6)

where Z is the summation of all incoming signals.
What is important when inspecting the above

layers is principally three different types of com-
ponents that can be adapted as follows (Lughofer
2003):

1. Premise parameters as nonlinear parameters
that appear in the input membership func-
tions.

2. Consequent parameters as linear parameters
that appear in the rules consequents (output
weights).

3. Rule structure that needs to be optimized to
achieve a better linguistic interpretability.

In this study, three Gaussian membership func-
tions were used for the input variable. There are
a wide variety of algorithms available for train-
ing a network and adjusting its weights. In this
study, an adaptive technique called “momentum
Levenberg–Marquardt” based on the “general-
ized delta rule” was adapted (Rumelhart et al.
1986). In this scheme, the adaptive learning rates
were used for adapting the increasing convergence
velocity throughout all ANFIS simulations.

The normal ratio method

This traditional statistical pattern recognition
method uses normal flow of the station under
consideration and the adjacent stations over a cer-
tain period of time to forecast or estimate missing
records that exist in the station under considera-
tion (Linsley et al. 1988). In this method, some
stations are selected around the subject station
called “ index stations” where measured data are
available for the related time period.

The data recorded at the index stations are
weighted by the ratios of the normal annual flow

values. Thus, the flow data FX at station x (subject
station or station under consideration) is:

FX =
(

1

2

) (

FX

FA
FA + FX

FB
FB

)

(7)

where X is the subject station and A and B are
the index stations (adjacent stations), FX is the
missing data in subject station to be predicted,
FX is the normal flow (mean of index period) in
the subject station, FA is the normal flow (mean
of index period) in index station A, and FB is
the normal flow (mean of index period) in index
station B.

In this research, the same set of training data
(used for ANN and ANFIS) was used to calculate
the normal flow (mean flow) of the three stations
(in each group). The rest of the data are then used
in Eq. 7 to verify the method.

The correlation method

In this traditional common method, the correla-
tion between data of the subject station and each
of the preselected stations is evaluated using fol-
lowing equation (Eq. 8):

r =
∑

xy −
∑

x
∑

y
n

√
[
∑

x2 − (
∑

x)
2

n

] [
∑

y2 − (
∑

y)
2

n

]
(8)

where y is the existing data series of subject site, x
is the existing data series of the index site, and n is
the existing number of measurements.

It must be mentioned that the amount of cor-
relation coefficient (r) between the data of the
subject site and index site must be in an accept-
able level according to the Fisher table. As in
this method, only one index station is used to
reconstruct missing data of the subject site. There-
fore, in this study, for each group of stations, the
correlation coefficient (r) between the data of the
subject site and the other two stations in the same
group was separately calculated and the station
having higher correlation with the subject site was
chosen as index station. Missing data of subject
station was then predicted using Eq. 9:

Y = a + b X (9)
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where Y is the missing observation to be predicted
and X is the observation of the index site corre-
sponding to the missing data of the subject site
(Y). The values of a and b can be calculated using
Eqs. 10 and 11, respectively:

a = ȳ − b x̄, (10)

b =
∑

xy −
∑

x
∑

y
n

∑
x2 − (

∑
x)

2

n

(11)

where ȳ and x̄ are the mean values of the existing
data series, respectively, in the subject and the
index stations.

Performance criteria

In this study, two performance criteria are used:
RMSE and R2. RMSE is calculated by Eq. 12:

RMSE =
√
√
√
√

1

N

N
∑

i=1

(Oi − Pi)
2 (12)

where N is the number of data points, Oi is the
observed value, and Pi is the predicted value.

R2 assesses the goodness of fit by indicating the
deviation of the estimated values from the line of
the best fit or the regression line. The R2 value
is between zero and unity. A value close to unity
indicates a satisfactory result, while a low value or
close to zero implies an inadequate result. R2 is
calculated by Eq. 13:

R2 = 1 −

n∑

i=1
(Oi − Pi)

n∑

i=1

(

Oi = O
) (13)

where Oi and Pi are the observed and predicted
values at data point i, respectively, O is the mean
of the observed values, and n is the number of data
points.

Results and discussion

Reliability of a decision support system or the
quality of the results obtained from a model

depends on the quality of the input data and, most
critically, on the presence of data itself. It is likely
that a decision support system may fail if there
is no sufficient data to deal with. This may be
overcome either by knowing what to do with the
available data or by generating the missing data
using some mechanism. The former approach is
tedious since the system should have alternative
way-outs for every missing data that could cripple
the decision making. The latter involves some
mechanism to reconstruct the missing data based
on some rules. Such rules may come from insights
from the nature of the physical system and the
particular data to be reproduced. As mentioned
earlier, this study evaluated the suitability of four
different methods to fill the gaps of flow data
records. The quality of the results produced by
these methods varies, and as Figs. 4, 5, 6, and
7 as well as Table 2 show, in all cases, ANFIS
presented the most accurate results in compari-
son to the other applied methods. According to
the results, it can also be said that ANN is an
efficient method to predict the missing data. In
all of the cases in this research, the accuracy of
the results produced by ANN is quite acceptable
and higher than those produced by two traditional
approaches (NRM and CM). However, in Kardeh
station, the outputs of NRM is quite near to those
of ANN (slightly lower in accuracy), and also in
Babol station, the accuracy of the ANN results
is slightly higher than those of CM. In all four
stations, the accuracy of the ANN outputs are
lower than those produced by ANFIS. MLP was
the most relevant architecture of ANN for this
application, although in few cases, the outputs
of the recurrent network were almost similar to
the results presented by the MLP network. The
results shown in Figs. 4 to 7 are summarized in
Table 2. The statistical criteria including RMSE
and R2 for comparing the models under consid-
eration are given in this table.

The four methods mentioned are applied to
the same problem under similar conditions and
compared with the same performance indices. Re-
ferring to the relative performance of the four
methods (Figs. 4 to 7 and Table 2), it can be
observed that the highest R2 as well as the low-
est RMSE between the observed and simulated
results in all of the stations is observed from using
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Fig. 4 Measured data and the predictions produced by different methods for Kardeh gauging station. NRM (a), CM (b),
ANN (c), and ANFIS (d)

the ANFIS method. In fact, these results indicate
that the ANFIS is superior for the estimation
of missing observations. Such superiority may be
problem-related and need extensive applications
on various data sets to be generalized. However,
one can say that the superiority of this technique

might be attributed to its ability to capture the
nonlinear dynamics of the data.

Table 2 and also Figs. 4 to 7 clearly show
that the behavior of the used models varies in
dealing with data in different gauging stations of
this study. For the prediction of monthly missing
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Fig. 5 Measured data and the predictions produced by different methods for Babol gauging station. NRM (a), CM (b),
ANN (c) and ANFIS (d)

flow data in Kardeh station, NRM and ANN
performance is quite acceptable, while ANFIS
performed well with the highest accuracy of the
predictions, and CM could not present acceptable
results. For the Babol station, all four methods
showed relatively good performance, although
the level of accuracy is different and ANFIS

presented the highest accuracy. For this station,
the accuracy of outputs decreases gradually from
ANN to CM and CM to NRM, respectively.
For the Aliabad station, again, the best results
were produced by the ANFIS model; the ANN
presented quite acceptable results with accuracy
higher than NRM and CM and lower than those of
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Fig. 6 Measured data and the predictions produced by different methods for Aliabad gauging station. NRM (a), CM (b),
ANN (c) and ANFIS (d)

ANFIS. The results of NRM and CM methods are
almost similar to each other in this station. For Be-
hbahan station, NRM and CM methods could not
present acceptable results, while the performance
of ANN is quite acceptable and ANFIS showed
superior ability to predict monthly missing flow
data for this station.

Among the four stations, Babol station is lo-
cated in humid and semihumid regions of north-
ern Iran with the lowest coefficient of variation
on stream flow data and where all four applied
methods are able to reconstruct missing data with
an acceptable level of accuracy. The other three
stations are located in arid and semiarid regions
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Fig. 7 Measured data and the predictions produced by different methods for Behbahan gauging station. NRM (a), CM (b),
ANN (c) and ANFIS (d)

with more variable flow regime and higher rates of
coefficient of variation. As the figures and tables
of the results show, in all of these three stations,
traditional methods (NRM and CM) more or less
have had problems presenting acceptable results,

while the results of new machine learning tech-
niques (ANN and ANFIS) and especially ANFIS
show high levels of accuracy. This clearly indicates
that the new techniques have good ability to deal
with variable and heterogeneous data and can be
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Table 2 The statistical criteria of RMSE and R2 used for performance evaluation of the used methods

Gauging station RMSE R2

NRM CM ANN ANFIS NRM CM ANN ANFIS

Kardeh 0.225 0.365 0.140 0.069 0.902 0.302 0.914 0.961
Babol 5.806 7.189 3.487 0.696 0.908 0.926 0.957 0.996
Aliabad 4.012 3.159 1.337 0.325 0.824 0.824 0.949 0.997
Behbahan 45.138 45.372 14.957 7.570 0.444 0.675 0.958 0.993

good solutions for hydrological problems of arid
and semiarid regions where most of the modeling
tools cannot perform well.

It should be noted that some recent studies
have indicated that the noise that exists in hy-
drologic data may limit the performance of many
modeling techniques. Some methods have been
proposed to reduce the level of noise in the data
set, which may lead to improvement in the accu-
racy of the estimation of missing data. However,
new machine learning techniques such as ANN
and ANFIS have better ability to deal with the
problem of noise in data.

Conclusions

This research was designed to evaluate the ap-
plicability of new machine learning techniques in-
cluding ANN and ANFIS for the reconstruction of
hydrological data under different climatic regions.
It would be interesting to compare the data-driven
models with traditional methods. According to
the results, the ANFIS model shows superiority
in the accuracy of estimating the missing data.
The results produced by ANN also show a good
level of accuracy. In all the cases used in this
study, the accuracy of the results produced by
these techniques (especially ANFIS) was higher
than those produced by the other two methods
(NRM and CM). The present study confirms the
very high potential of the ANFIS model to be used
for reconstructing missing flow data. It must be
added that the performance of ANN is also quite
acceptable to deal with this problem in compari-
son to the traditionally used approaches.

In accuracy of predicting missing flow data, it
seems that the techniques employed in this article

can perform quite well especially with variable,
heterogeneous, and noisy data in arid and semi-
arid regions and can be used as a powerful tool
over existing methods for filling hydrological time
series gaps.

Due to lack of appropriate performance of tra-
ditional and statistical formulae used in hydrol-
ogy, the interest of applying data-driven models
like ANN and ANFIS to hydrological simulations
has to be further accelerated. One of the major
limitations of ANN is their lack of explanatory
power, also referred to as their “black box prob-
lem.” Neuro-fuzzy techniques remove some of the
shortcomings of ANN. They merge neural net-
works and fuzzy logic into an integrated system.
ANFIS is one of the neuro-fuzzy systems with
abilities such as learning potential and autoextrac-
tion of easily interpretable IF–THEN rules.

The obtained results confirmed the main hy-
pothesis of the research (preference of the new
data-driven techniques over traditional methods
on missing flow data reconstruction). However,
it can be seen that, although a large number of
studies have been carried out and reported on the
applications of ANN and ANFIS in hydrology,
quite a few of them are related to the reconstruc-
tion of missing data of stream flow. Therefore,
more investigations need to be completed on the
application of the mentioned techniques in spe-
cific field to have a concrete statement.
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