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Abstract
In this paper, the application of auto-regressive moving average vector
models to system identification and damage detection is investigated. These
parametric models have already been applied for the analysis of multiple
input–output systems under ambient excitation. Its main advantage consists
in its capability of extracting modal parameters from the recorded time
signals, without the requirement of excitation measurement. The excitation
is supposed to be a stationary Gaussian white noise. The method also allows
the estimation of modal parameter uncertainties. On the basis of these
uncertainties, a statistically based damage detection scheme is performed
and it becomes possible to assess whether changes of modal parameters are
caused by, e.g. some damage or simply by estimation inaccuracies. The
paper reports first an example of identification and damage detection applied
to a simulated system under random excitation. The ‘Steel-Quake’
benchmark proposed in the framework of COST Action F3 ‘Structural
Dynamics’ is also analysed. This structure was defined by the Joint Research
Centre in Ispra (Italy) to test steel building performance during earthquakes.
The proposed method gives an excellent identification of frequencies and
mode shapes, while damping ratios are estimated with less accuracy.

1. Introduction

Auto-regressive moving average vector (ARMAV) models
have already been applied for the analysis of ambient excited
multi-DOF’s systems, such as civil engineering structures
(bridges, buildings, . . .). These models only use time series
obtained from the output signals of the system. It can be shown
that the ARMAV model allows us to describe the dynamics of
a structure subjected to filtered white noise. In other words,
the only restrictions are that the structure behaves linearly,
is time-invariant, and that the unknown input force can be
modelled by a white noise filtered through a linear and time-
invariant shaping filter [1]. In some cases, the application of the
ARMAV identification can be extended to various excitation
models, consisting of white or colored noise, mixed with
harmonics and non-stationary noise [2].

The identification method known as the prediction error
method is accomplished by a nonlinear, iterative procedure

(Gauss–Newton algorithm) [3]. The method also incorporates
model order selection, model validation and structural mode
distinction and extraction. The distinction of structural
from ‘extraneous’ modes is based upon the use of stability
diagrams. Another method in distinguishing physical from
non-physical modes has been developed in [4, 5] and is based
on the dispersion analysis methodology. The ARMAV model
technique is a method which allows not only the extraction
of the modal parameters from a given measured output, but
also the estimation of their uncertainties on the basis of
the covariance matrix of the ARMAV model parameters [6].
The quantification of these uncertainties is very relevant for
structural monitoring based on vibration measurements. In
this way, if the changes of the modal parameters are not
caused by estimation inaccuracies, the uncertainties of the
unbiased estimated modal parameters allow us to establish a
probabilistic confidence in the existence of a damage.
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2. The auto-regressive moving average vector model

Given am-dimensional time seriesy[n] = y(n�t), where�t

is the sampling period, the parametric ARMAV(p, q) model is
described by the following matrix equation [7]

y[n] =
p∑

k=1

aky[n − k] + u[n] +
q∑

k=1

bku[n − k] (1)

whereu[n] is a stationary zero-mean Gaussian white noise
process,ak andbk are (m,m) matrices of AR (auto-regressive)
and MA (moving-average) coefficients. The AR part of order
p describes the system dynamics while the MA part of order
q is related to the external noise as well as to the white noise
excitation, and ensures the stationarity of the system response.

In these linear parametric models, the system outputy[n]
is supposed to be produced by a stationary Gaussian white
noise inputu[n]. By using this approach, one may analyse
linear systems where only the system output is measured, while
the input is unknown but produced by uncorrelated random
signals. These models can also be used directly to analyse
data obtained from the free response of linear systems and have
already demonstrated in this case their capability in reaching
good estimates of the modal parameters [8, 9].

It may be shown that an ARMAV(2s,2s−1) model is the
covariance identical discrete model of anm-variate continuous
system withd degrees of freedom, the number of channelsm

being equal tod/s [8, 10]. If the sampled response is affected
by measurement noise, the adequate model changes in general
to an ARMAV(2s,2s) model [1].

3. Modal parameter estimation

In the state space, the ARMAV model can be expressed by

x[n] = Ax[n − 1] +W [n] y[n] = Cx[n] (2)

wherex[n] is the state vector given by

x[n] = [y[n]T y[n + 1]T . . .y[n + p − 1]T ]T . (3)

C is the observation matrix,A is a (p · m,p · m) matrix
containing the different coefficients of the auto-regressive
part whileW [n] includes the moving-average terms of the
ARMAV model. The matricesC andA are expressed by

C = [ I 0 . . . 0 0 ]

A =




0 I . . . 0 0
· · . . . · ·
0 0 . . . 0 I

ap ap−1 . . . a2 a1


 . (4)

The natural eigenfrequenciesfr and damping ratiosζr can be
extracted from the eigenvaluesτr of the AR matrixA as [7]

fr = | ln(τr)|
2π�t

ζr = −Real(ln(τr))

| ln(τ2)| (5)

with r = 1,2, . . . , m · p. Let us defineL, the matrix
formed with the eigenvectors ofA positioned as columns. The
complex mode shapes stocked in matrixΦ are extracted from
the matrixL as

Φ = CL. (6)

The number of discrete time ARMAV model eigenvalues is in
general larger than or different to the number of eigenvalues
corresponding to the true system. Therefore, only a subset
of the discrete eigenvalues will represent structural modes.
The distinction between the physical and non-physical modes
is performed by use of stability diagrams for increasing AR
model order.

4. Parameter estimation of the ARMAV model

4.1. One-step-ahead prediction

Let us introduceθ, the model parameters to be determined, i.e.

θ = [a1a2 . . .apb1b2 . . . bq ]T . (7)

All systems are in principle stochastic, which means that the
outputy[n] at timetn cannot be determined exactly from data
available at timetn−1. Let us definêy[n|n−1, θ], the one-step-
ahead predicted system response at timetn based on parameter
θ and on the available data fort � tn−1 [3]

ŷ[n|n − 1, θ] =
p∑

k=1

aky[n − k] +
q∑

k=1

bkε[n − k|θ]. (8)

The variableε[n|θ] is the prediction error and is defined as

ε[n|θ] = y[n] − ŷ[n|n − 1, θ]. (9)

The variableε[n|θ] thus represents the part of the outputy[n]
that cannot be predicted from the past data.

The prediction is accomplished by the construction of the
associated Kalman filter. The aim of the Kalman filter is to
produce an optimal prediction̂x[n|n−1, θ] for the state vector
x[n]. The steady-state optimal state predictor, described in
terms of the Kalman filter of the state space system, is given
by [1]

x̂[n + 1|n, θ] = Ax̂[n|n − 1, θ] + Kε[n|θ]

y[n] = Cx̂[n|n − 1, θ] + ε[n|θ] (10)

where K is the Kalman gain matrix, that includes the
description of the disturbance on the system as well as the
Gaussian white noise excitation. The Kalman gain matrix is
defined by

K =




I 0 . . . 0 0
−ap I . . . 0 0

· · . . . · ·
−ap−1 −ap−2 . . . −a1 I




−1 

b1 + a1

b2 + a2

·
bp + ap




(bp = 0 if q = p − 1). (11)

The state space system (10) is known as the innovation state
space system.

4.2. Model parameter estimation

The parameter estimateŝθN based onN samples can be
obtained as the global minimum point of a criterion function
VN(θ)

θ̂N = arg min
θ

VN(θ) (12)
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where ‘arg min’ means ‘the minimizing argument of the
function’. The criterion function in the scalar and multivariable
cases are given by [3]

VN(θ) =




1

N

N∑
n=1

1

2
ε[n|θ]2

(scalar)

det

(
1

N

N∑
n=1

ε[n|θ]ε[n|θ]T
)

(multivariable).

(13)

Thus the model parameterθ is selected so that the prediction
error becomes as small as possible. This way of estimating
θ is called the prediction error identification method (PEM)
[3]. The predictor (8) is nonlinear, since the prediction errors
themselves depend on the parameterθ. So the function
VN(θ) cannot be minimized by analytical methods. In order
to perform the minimization, the iterative numerical Gauss–

Newton method is used. If̂θ
(i)

N represents thev-dimensional
column vector of model parameter estimateθ̂N at iteration (i),
the iterative method is represented by

θ̂
(i+1)
N = θ̂

(i)

N + α
(i)
N f

(i) (14)

with dim(θ̂
(i)

N ) = v = (p + q) · m2 · f (i) is a search
direction based on information aboutVN(θ) acquired at
previous iterations, andα(i)

N is a positive value determined so

thatVN(θ̂
(i+1)
N ) < VN(θ̂

(i)

N ). Thef (i) direction is defined as

f (i) = −[HN(θ̂
(i)

N )]−1V ′
N(θ̂

(i)

N ). (15)

The Hessian matrixHN(θ̂
(i)

N ) and the gradient of the criterion

functionV ′
N(θ̂

(i)

N ) are defined as

HN(θ̂
(i)

N ) = 1

N

[ N∑
n=1

ψ[n, θ̂
(i)

N ]ψ[n, θ̂
(i)

N ]T
]

(16)

V ′
N(θ̂

(i)

N ) = − 1

N

[ N∑
n=1

ψ[n, θ̂
(i)

N ]ε[n, θ̂
(i)

N ]

]
(17)

where

ψ[n, θ̂
(i)

N ] = ∂ŷ[n|n − 1, θ̂
(i)

N ]

∂θ
(18)

is the gradient of the predictor (8), i.e. the derivative of (8) with
respect to each of the ARMAV model parameters.

To start the iterative procedure, a first estimation ofθ̂N
is needed. For this reason, a high-order ARV model is first
applied to the responsey[n]. The prediction errorε[n] of this
model is then used as external input in an ARX (auto-regressive
exogeneous-input) model. The estimated parameters of this
model then become the initial estimate [3]. Due to the possible
occurrence of undesired local minima in the criterion function,
it is worthwhile to spend some effort on producing good initial
values for the iterative search procedure. Also, since the
Gauss–Newton method has good local convergence rates, but
not necessarily fast convergence far from the minimum, these
efforts usually pay off in fewer iterations and shorter computing
time. So, the previous way of computing initial values can be
combined with a multi-stage least-squares method [7] in order
to obtain good initial parameter estimates.

5. Model order determination and model validation

5.1. Model order determination

The best model order is in general not knowna priori, and
several criteria have been proposed to find the best model order.
Two of the most widely used techniques for selecting the order
of a parametric model are the Akaike’s final prediction error
criterion (FPE) and Akaike’s information theoretic criterion
(AIC) [3]. These criteria are based on monitoring the decrease
in the criterion functionVN(θ) as the order (p + q) increases.
According to the principle of FPE and AIC, the order of an
ARMAV model is selected to be the integer which minimizes
one of the following criteria:

FPE= VN(θ)
1 +v/N

1 − v/N
AIC = N log(VN(θ)) + 2v

(19)
whereN is the number of samples andv = [p + q] · m2 is
the total number of estimated parameters. Minimizing AIC
is equivalent to minimizing FPE, provided a largeN and low
model order. These criteria include a penalty for badness of fit
and for too high-order models.

5.2. Model validation

There are many different ways to check the validity of the
ARMAV model. Here, statistical tests of the prediction errors
are examined. If the estimated model contains the true system,
then the prediction errors should be a white noise sequence.
The auto-correlation functions of these errors can be plotted
and the validation can be answered by inspection. Several
formal statistical tests of whiteness of the error sequence have
also been developed. The typical whiteness test is to determine
the covariance estimate

R̂N
e (τ ) = 1

N

N∑
n=1

e(n)e(n + τ) (20)

wheree(n) = ε[n|θ̂N ]i indicates theith component of the
prediction error. Ife(n) is indeed a white noise sequence, then

ηN,M = N

(R̂N
e (0))2

M∑
τ=1

(R̂N
e (τ ))2 (21)

would be asymptoticallyχ2(M) distributed [3]. Independence
between the prediction errorse(n) can thus be tested by
comparingηN,M with the chi-square statistics. It is common to
use the 95% level as a reference point for accepting or refusing
the model.

Another way to validate the model is to compare the
spectral densities obtained from the model and from the fast
Fourier transform (FFT). For am-variate system, the ARMAV
spectral densities of the outputy[n] can be described by a
(m,m) matrixSyy(ω) as [1]

Syy(ω)=(C(I eiω −A)−1K + I)Λ(C(I eiω −A)−1K + I)H

(22)
whereω is an arbitrary angular frequency and the superscriptH

signifies the Hermitian transpose, i.e. transpose and complex
conjugate. The diagonal elements ofSyy(ω) are the auto-
spectral densities, whereas the off-diagonal elements are the
cross-spectral densities which are complex in general.
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Figure 1. Simulated beam with measurement points and
localization of damage.

6. Estimation of modal parameter uncertainties

Estimation of ARMAV models using the PEM method is
known to provide asymptotically unbiased and efficient model
parameter estimates for Gaussian distributed prediction errors.
In this case, the estimation errors of the estimator can be
evaluated by the Cramer–Rao lower bound of variance. This
lower bound is used for the calculation of the model parameter
covariance matrix of the difference between the true parameter
θ0 and estimated parameter θ̂N as N tends to infinity, i.e.
P (θ̂N) = E[(θ0 − θ̂N)(θ0 − θ̂N)

T ]. An estimate of the
covariance matrix associated with the unbiased estimate θ̂N
is given, as in [1, 3], by

P̂ (θ̂N) =
[ N∑

n=1

ψ[n, θ̂N ]Λ−1
N ψ[n, θ̂N ]T

]−1

(23)

where the sampled covariance matrix of the prediction errors
is given by

ΛN = 1

N

N∑
n=1

ε[n|θ̂N ]ε[n|θ̂N ]T . (24)

Then, besides checking whether the prediction errors are white
noise or not, it is also necessary to check whether the prediction
errors are Gaussian or not. This can be performed by the use
of normal distribution plots.

Considering the auto-regressive part of estimated
covariance matrix, i.e. P̂AR(θ̂N), it is possible to determine the
modal parameter uncertainties. The change of parametrization
from a set of auto-regressive parameters to another set of
modal parameters can be performed by a known functional
relation. This functional relation is given by the eigenvalue
problem followed by the calculation of the modal parameters.
This means that the resulting functional relation between the
model and the modal parameters is highly nonlinear. To
obtain a practically applicable approach, the relation is usually
linearized using a first-order generalized Taylor expansion.
This approach combined with the estimation of the covariance
matrix P̂AR(θ̂N) can lead to an estimation of the modal
parameter uncertainties [6].

7. Numerical example

In order to verify the validity of the proposed method, a simply
supported beam simulated with finite elements is excited with
a random signal applied all over the structure. Damage is
simulated by gradually decreasing the bending stiffness of one
element (figure 1).

Table 1. Estimated modal parameters and their uncertainties in the
undamaged state.

fi (Hz) Err (%) ζi (%) Err (%)

2.54 ± 0.01 0.23 1.74 ± 0.70 36.4
10.19 ± 0.02 0.14 0.39 ± 0.15 21.5
22.91 ± 0.02 0.02 0.17 ± 0.06 10.3
40.84 ± 0.02 0.03 0.20 ± 0.05 30.9
64.15 ± 0.03 0.03 0.15 ± 0.04 23.1

7.1. Preprocessing

Four measurement points are considered and noise is added
to the simulated measurements. The sampling frequency is
850 Hz and for each channel, 10 000 data points are captured.
The analysis is concentrated on the five first modes. Therefore,
the data are filtered and then decimated resulting in a new
sampling rate of 170 Hz and 2000 points per channel.

7.2. Identification

The first step of the identification procedure is the selection
of the ARMAV model order. The FPE criterion leads to
an ARMAV(6,6) candidate model (figure 2). This model is
characterized by an over-determination of the number of poles
(the number of poles is higher than the number of structural
poles). The distinction of the physical modes of the structural
system from the non-physical modes is performed by use of
stability diagrams. Figure 3 illustrates the stability plot for
increasing model order in the case of the undamaged structure.
The chosen stabilization criteria are the following:

• the natural eigenfrequencies of a mode of the current and
previous models have an absolute and maximum deviation
of 1%,

• the damping ratios of a mode of the current and previous
models have an absolute and maximum deviation of 5%,

• the mode shape of a mode of a currently estimated model
correlates with a mode shape belonging to the previously
estimated model in such a sense that the MAC (modal
assurance criterion) between these mode shapes are at least
99%.

The sum of the spectra of the four responses is also plotted in
figure 3 to reveal the fact that stable modes are indeed located
on the peaks of the spectra.

The distinction and extraction of structural from
‘extraneous’ modes can also be performed by the dispersion
analysis (DA) methodology, which provides the fraction of
vibration energy associated with each dynamical mode in
each system transfer function [4, 5]. Modes characterized by
negligible dispersion are then considered ‘extraneous’ .

The estimated eigenfrequencies fi and damping ratios ζi
with their uncertainties are listed in table 1 and refer to the
undamaged state. The term Err indicates the errors between
the estimated and theoretical values. The method gives an
excellent estimation of frequencies. The method also gives an
excellent agreement of identified mode shapes (not presented
here) with the theoretical mode shapes. On the other side,
damping ratios are estimated with less accuracy.
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Figure 2. FPE criterion.
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Figure 3. Stability diagram in the undamaged case.

7.3. Model validation

In order to validate the model, the prediction errors are
checked. The prediction errors should be a Gaussian white
noise sequence. In figure 4(a), the auto-correlation function of
the channel-2 prediction error with its 95% confidence interval
is plotted. It indicates that the function remains within the
confidence interval, except at zero lag. Figure 4(b) gives the
whiteness probability of the error and indicates a probability
close to one. Therefore, the prediction error is close to white
noise. In figure 4(c), the theoretical and estimated density
functions are plotted. One can conclude that the prediction

error is close to Gaussian white noise. The same conclusion
has been found for all channels, and therefore the model may
be considered as validated.

7.4. Damage detection

As already seen, the uncertainties on the estimated
eigenfrequencies are very small compared to the uncertainties
on the estimated damping ratios. It is not worthwhile to use the
damping parameters for damage detection and therefore, the
estimates of frequencies are chosen as damage indicators. The
simple statistical approach for damage detection is based on
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Figure 4. Statistical tests on channel-2 prediction error: (a) auto-correlation function with its 95% confidence interval, (b) whiteness
probability, (c) density function.

confidence intervals obtained from the standard deviation of
estimated natural frequencies [1]. It will be assumed that any
damage has been detected if the 99% confidence interval of
the estimated frequency of a mode is non-overlapping with the
99% confidence interval of the frequency of the same mode
in the undamaged state. In order to evaluate changes in the
frequencies, a probability based damage indicator can be also
formulated. If frequencies are assumed to be independent
distributed variables and that a negative change in frequencies
indicates damage caused by structural change, the probability
of negative change Pδfi

in frequency fi is given by [11]

Pδfi
= 1 − +


 fi − fi0√

σ 2
i + σ 2

i0


 (25)

where σ 2
i and σ 2

i0 are the variances of the frequencies fi and
fi0 corresponding to the damaged and undamaged states. + is
the unit normal distribution function.

In this section, the natural eigenfrequency of mode 5 is
used as a damage indicator. Indeed, this frequency presents
the most significant changes in this particular damage and can
be estimated with a high degree of accuracy. The analysis
is performed for three excitation levels per damage case. In
figure 5, the fifth eigenfrequency and the probability damage
indicator are shown as a function of the damage level. The
damage level represents the decrease in the bending stiffness
of the damaged element. The 99% confidence intervals in the
undamaged and damage states, respectively, are represented
by the straight and dotted lines. It can be seen that, at a
damage level of 5%, the confidence interval of the frequency
does not overlap with the undamaged state confidence interval.
Therefore, the damage has been detected with a probability

close to one at a damage level of 5%, which corresponds to a
frequency decrease of only 0.45%.

8. The ‘Steel-Quake’ example

This example illustrates the application of ARMAV technique
in system identification and damage detection. The application
will be illustrated on the ‘Steel-Quake’ structure proposed as
benchmark in the framework of the European COST Action
F3 ‘Structural Dynamics’ . The ‘Steel-Quake’ structure is
used at the Joint Research Centre in Ispra (Italy) to test the
performance of steel buildings during earthquakes [12, 13].
The different tests performed correspond to the baseline
undamaged and damaged states of the building.

8.1. Description and testing of the structure

The structure corresponds to a two-floor frame as depicted in
figure 6. The main dimensions are 8 m × (4 × 2) m × 3 m.
In the background, it can be observed the reaction wall which
supports the four pistons (not present in the picture) used to
deform the structure (on each side, on each stage) and to induce
damage in the x-direction. Note that braces have been added
in the plane parallel to the wall to reduce the risk of collapse
in that direction.

Four excitation points were tested using an impact
hammer. Their locations are shown in figure 7 (points
A(x), A(y), B(−z), C(−z); x, y and z indicating the three
directions). Eight to ten hammer impacts were recorded for
each test. The sensor configuration was the same for all the
four tests (figure 7). The sampling frequency was 128 Hz and
for each channel, 3200 data points were captured.

6
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Figure 5. Frequency of mode 5 and probability damage indicator as a function of the damage level (- - - -: 99% confidence intervals).

Figure 6. View of the ‘Steel-Quake’ structure.

8.2. Structural identification and damage detection

The analysis is concentrated on the frequencies below 25 Hz.
Therefore a filter with a cut-off frequency of 32 Hz was applied

Reaction wall 
A

B

C

x
z 

y 

Figure 7. Sensor and excitation configuration.

and the data were twice decimated resulting in a new sampling
rate of 64 Hz and 1600 points per channel. The ARMAV
identification method incorporates ARMAV model estimation,
model order selection, model validation and structural mode
distinction and extraction.

8.2.1. Model order determination and model validation.
Assuming that modes are underdamped and that noise is
present in the measurements, the FPE criterion leads, for each
excitation, to a 15-dimensional ARMAV(4,4) model. These
models are then validated by statistical tests on the prediction
errors. As already seen, the prediction errors should be a
Gaussian white noise sequence. Figure 8 gives the results of
statistical tests on the channel-1 prediction error in the case of
the ‘A(x) excitation’ . One can observe in figure 8(a) that the
auto-correlation function of the error remains, for the most part,

7
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Figure 8. Statistical tests on channel-1 prediction error in the case of ‘A(x) excitation’ : (a) auto-correlation function with its 95%
confidence interval, (b) density function.
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Figure 9. Stability diagram applied to the ‘A(x) excitation’ data.

within the confidence interval, except a zero lag. Therefore, the
prediction error is close to white noise. Figure 8(b) indicates
that the density function of the prediction error is close to the
Gaussian distribution. The same conclusions have been found
for the 15 channels and validate the model.

8.2.2. Structural mode distinction and extraction. Once an
adequate discrete-time model has been attained, the distinction
of structural modes from spurious modes is performed by use
of stability diagrams. The results indicate the presence of
ten physical modes. As an example, figure 9 illustrates the
stabilization diagram for the ‘A(x) excitation’ . The chosen

stabilization criteria are here 1% for frequencies, 5% for
damping ratios and 1% for MAC values (i.e. the MAC between
the mode shapes are at least 99%). The sum of the spectra of
the 15 measured responses is also plotted.

8.2.3. Modal parameter estimation. The average values and
uncertainties of the modal parameters are listed in table 2. The
identified mode shapes of the undamaged structure are depicted
in figure 10.

The MAC values between the mode shapes of the
undamaged and damaged structure are represented in figure 11
along with the frequency shifts.

8
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Figure 10. Identified mode shapes for the undamaged state.
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Figure 11. Comparison of frequencies and mode shapes in the
undamaged and damaged states.

From table 2, it can be observed that the method gives
an excellent estimation of the frequencies, while the damping
ratio estimates are poor. The frequencies being estimated with
a high degree of accuracy, they are used in damage detection
analysis. However, this does not mean that they can be used as
damage indicators. They might simply not be sensitive to the
damage. By inspection of figure 11, it turns out that the first
and the last six frequencies can be used as damage indicators.
It is assumed that the structure shows linear and time-invariant
behaviour in damage state.

For this particular damage, the detected changes of
indicators are very significant and so, it is possible to detect

damage without any difficulties. The damage can even be
detected using the estimated natural frequencies exhibiting
small changes. Indeed, in figure 12, it is seen that the 99%
confidence intervals of the three frequencies corresponding to
modes 2, 3 and 4 in the damaged state do not overlap the
undamaged state 99% confidence intervals.

In this benchmark, the detected changes of the natural
eigenfrequencies are caused by a structural change. However,
in other experimental cases, the modal parameters can also
exhibit small changes due to fluctuations in the ambient
environment, such as ambient temperature changes. Such an
influence has to be removed from the damage. The separation
of the environmental influences from the damage events can be
performed by fitting ARX models to the measured frequency–
temperature data [14].

9. Conclusions

In this paper, the application of ARMAV models in multi-
channel structural identification has been presented. These
models only use time series obtained from the output. They
have demonstrated their capability to reach good estimates
of frequencies and mode shapes when the free response
signal is analysed or, in the case of forced response analysis,
when the system output is obtained with uncorrelated random
signals. The estimation of the ARMAV model has been
carried out by the prediction error method. A simple statistical
method for damage detection has also been presented and
successfully applied. The damage detection method is based
on the evaluation of modal parameter uncertainties and on

9
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Table 2. Estimated eigenfrequencies fi and damping ratios ζi with their uncertainties.

Undamaged state Damaged state

Mode shape fi (Hz) δfi (Hz) ζi (%) δζi (%) fi (Hz) δfi (Hz) ζi (%) δζi (%)

Bending 1X 3.128 0.006 0.128 0.063 2.680 0.006 0.863 0.312
Bending 1Y 3.928 0.004 0.123 0.035 3.857 0.006 0.348 0.162
Torsion 1 6.129 0.003 0.116 0.037 6.066 0.005 0.391 0.118
Bending 2Y 9.687 0.005 0.092 0.036 9.517 0.007 0.192 0.075
Bending 2X 10.819 0.004 0.093 0.025 9.902 0.008 0.381 0.113
2nd slab bend. 1 12.271 0.016 0.494 0.109 10.693 0.009 0.343 0.108
1st slab bend. 1 13.053 0.013 0.467 0.153 11.303 0.016 0.452 0.154
2nd slab tors. 1 17.694 0.017 0.397 0.067 15.093 0.022 0.619 0.168
1st slab tors. 1 19.037 0.027 0.417 0.170 16.195 0.017 0.841 0.209
Torsion 2 21.415 0.018 1.09 0.301 18.827 0.019 0.122 0.056

Figure 12. Estimated natural frequencies of modes 2, 3 and 4. The estimated 99% confidence intervals are represented by dotted lines.

the use of statistical tools like confidence intervals and the
normal distribution of random variables. However, the present
investigation is limited to damage detection; the problem of
damage localization was not examined. In the prediction
error method, the criterion function is minimized using a
highly nonlinear optimization procedure. If the application
involves many response channels, the iterative updating of
the model parameters may require many computations and be
time consuming. Moreover, the criterion function can exhibit
undesired local minima. Consequently, it is worthwhile to
spend effort on producing good initial values for the iterative
procedure by e.g. a multi-stage least-squares method.
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