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Abstract

In this paper, the application of auto-regressive moving average vector
models to system identification and damage detection is investigated. These
parametric models have already been applied for the analysis of multiple
input—output systems under ambient excitation. Its main advantage consists
in its capability of extracting modal parameters from the recorded time
signals, without the requirement of excitation measurement. The excitation

is supposed to be a stationary Gaussian white noise. The method also allows
the estimation of modal parameter uncertainties. On the basis of these
uncertainties, a statistically based damage detection scheme is performed
and it becomes possible to assess whether changes of modal parameters are
caused by, e.g. some damage or simply by estimation inaccuracies. The
paper reports first an example of identification and damage detection applied
to a simulated system under random excitation. The ‘Steel-Quake’
benchmark proposed in the framework of COST Action F3 ‘Structural
Dynamics’ is also analysed. This structure was defined by the Joint Research
Centre in Ispra (Italy) to test steel building performance during earthquakes.
The proposed method gives an excellent identification of frequencies and
mode shapes, while damping ratios are estimated with less accuracy.

1. Introduction (Gauss—Newton algorithm) [3]. The method also incorporates
model order selection, model validation and structural mode
Auto-regressive moving average vector (ARMAV) modelgistinction and extraction. The distinction of structural
have already been applied for the analysis of ambient excit@gm ‘extraneous’ modes is based upon the use of stability
multi-DOF's systems, such as civil engineering structurggagrams. Another method in distinguishing physical from
(bridges, buildings...). These models only use time serieg,,,_yhysical modes has been developed in [4, 5] and is based

obtained from the output signals of the system. It can be shO\gP| the dispersion analysis methodology. The ARMAV model

that the ARMAV model allows us to describe the dynamics of : . . )
: ) . . gechmque is a method which allows not only the extraction
a structure subjected to filtered white noise. In other wor

S .
the only restrictions are that the structure behaves line ?f the modal parameters from a given measured output, but
is time-invariant, and that the unknown input force can

arly, . . . . .
b%so the estimation of their uncertainties on the basis of

modelled by a white noise filtered through a linear and tim&€ covariance matrix of the ARMAV model parameters [6].
invariant shaping filter [1]. In some cases, the application oftHd1e quantification of these uncertainties is very relevant for
ARMAV identification can be extended to various excitatiogtructural monitoring based on vibration measurements. In
models, consisting of white or colored noise, mixed witkhis way, if the changes of the modal parameters are not
harmonics and non-stationary noise [2]. caused by estimation inaccuracies, the uncertainties of the

The identification method known as the prediction errambiased estimated modal parameters allow us to establish a
method is accomplished by a nonlinear, iterative procedypeobabilistic confidence in the existence of a damage.
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2. Theauto-regressive moving average vector model  The number of discrete time ARMAV model eigenvalues is in
general larger than or different to the number of eigenvalues
Given am-dimensional time seriggn] = y(nAt), whereAtr  corresponding to the true system. Therefore, only a subset
is the sampling period, the parametric ARMAN(g) modelis  of the discrete eigenvalues will represent structural modes.
described by the following matrix equation [7] The distinction between the physical and non-physical modes
is performed by use of stability diagrams for increasing AR

y[n] = Zp: aryln — k] + u[n] + Zq: beuln —k] (1) model order.
k=1 k=1

wherew[n] is a stationary zero-mean Gaussian white noi¢e Parameter estimation of the ARMAV model
processa, andb; are (n, m) matrices of AR (auto-regressive) -
and MA (moving-average) coefficients. The AR part of ordet1 One-step-ahead prediction
p describes the system dynamics while the MA part of ordeet us introduce, the model parameters to be determined, i.e.
q is related to the external noise as well as to the white noise
excitation, and ensures the stationarity of the system response. 0 = [aiaz...a,biby...b,]". (7)
In these linear parametric models, the system oujfrit
is supposed to be produced by a stationary Gaussian whiesystems are in principle stochastic, which means that the
noise inputu[n]. By using this approach, one may analyseutputy[r] at times, cannot be determined exactly from data
linear systems where only the system output is measured, whilailable attime, ;. Letus defingj[n|n—1, 8], the one-step-
the input is unknown but produced by uncorrelated randoamead predicted system response at tinhased on parameter
signals. These models can also be used directly to analgsand on the available data for 7,1 [3]
data obtained from the free response of linear systems and have ) ]
already demonstrated in this case their capability in reaching .
good estimates of the modal parameters [8, 9]. ylnin =1, 6] = ; acyln — K]+ kX_; bieln — ki6]. (8)
It may be shown that an ARMAs, 25 — 1) model is the B B
covariance identical discrete model ofrarvariate continuous The variables[n|6] is the prediction error and is defined as
system withd degrees of freedom, the number of chanmels

being equal tal/s [8, 10]. If the sampled response is affected g[n|0] = y[n] — y[nin — 1, 6]. 9)
by measurement noise, the adequate model changes in general
to an ARMAV(2s, 2s) model [1]. The variables[n|0] thus represents the part of the outpiit]

that cannot be predicted from the past data.

The prediction is accomplished by the construction of the
associated Kalman filter. The aim of the Kalman filter is to
In the state space, the ARMAV model can be expressed byProduce an optimal predictiai{x|n —1, 6] for the state vector

z[n]. The steady-state optimal state predictor, described in
z[n] = Ax[n — 1]+ W[n] y[n] = Cx[n] (2) terms of the Kalman filter of the state space system, is given

by [1]

3. Modal parameter estimation

wherex[n] is the state vector given by

[n] = [yln]"yln + 11" ...yl +p - 101", (3)

C is the observation matrixA is a (p - m, p - m) matrix yln] = Calnin — 1, 0] + e[n|6] (10)
containing the different coefficients of the auto-regressivghere K is the Kalman gain matrix, that includes the
part while W[r] includes the moving-average terms of thejescription of the disturbance on the system as well as the
ARMAV model. The matrice€” and A are expressed by~ Gaussian white noise excitation. The Kalman gain matrix is

z[n + 1n, 6] = Az[n|n — 1, 0]+ Ke[n|6]

defined b
c=[1 0 ... 0 0] Sneany
. . o I 0 ... 0 07 'rbi+a
i w K= LR B
0 0 . 0 I ' —Qap-1 —Qp-2 ... —ai I bp + a,
a ap1 ... a2 a1 (b, =0if ¢ = p — 1). (11)

The natural eigenfrequencigis and damping ratios. can be

extracted from the eigenvaluesof the AR matrixA as [7] The state space system (10) is known as the innovation state

space system.

[In(z,)] Real(In(z,))
r = r = _l— (5) . .
2m At [In(z2)] 4.2. Model parameter estimation
with r = 1,2,....m - p. Let us defineL, the matrix The parameter estimately based onN samples can be

formed with the eigenvectors of positioned as columns. Thegpained as the global minimum point of a criterion function
complex mode shapes stocked in mafbiare extracted from Vi (0)

the matrixL as A ;
Oy = arg minVy (0 12
& — CL. ©) N 90 n(0) (12)
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where ‘arg min’ means ‘the minimizing argument of thé. Model order deter mination and model validation
function’. The criterion functionin the scalar and multivariable

cases are given by [3] 5.1. Model order determination
1M1 5 The best model order is in general not knowapriori, and
N Z Es[nlﬁ’] several criteria have been proposed to find the best model order.
n=1 Two of the most widely used techniques for selecting the order
Vo) — (scalar) 13) ©f a parametric model are the Akaike’s final prediction error
() = 1 X (13) criterion (FPE) and Akaike’s information theoretic criterion
det(— Z s[n|0]s[n|9]T> (AIC) [3]. These criteria are based on monitoring the decrease
N= in the criterion functionVy (0) as the orderg + ¢) increases.
(multivariable) According to the principle of FPE and AIC, the order of an

: ... ARMAV model is selected to be the integer which minimizes
Thus the model paramet@ris selected so that the prediction : o 9

. X .~ one of the following criteria:
error becomes as small as possible. This way of estimating

6 is called the prediction error identification method (PEM) _ 1+v/N .
[3]. The predictor (8) is nonlinear, since the prediction errors FPE=Vx(0) 1—v/N AIC = Nlog(Vy(9)) + 2v
themselves depend on the parameier So the function (29)

V() cannot be minimized by analytical methods. In ordexhereN is the number of samples and= [p + q] - m? is
to perform the minimization, the iterative numerical Gausghe total number of estimated parameters. Minimizing AIC

Newton method is used. Ef(;,) represents the-dimensional IS €quivalent to minimizing FPE, provided a laryeand low
column vector of model parameter estimaieat iteration 0 model order. These criteria include a penalty for badness of fit

the iterative method is represented by and for too high-order models.
A(i+1 A (i i : . .
0" =8 +a FO (14) 5.2. Model validation
with dim(@ﬁf,)) — v = (p+q) m?- f9 is a search There are many different ways to check the validity of the
direction based on information abouty(§) acquired at ARMAV model. Here, statistical tests of the prediction errors
previous iterations, and%) is a positive value determined so2'® examined: Ifthe estimated model contgins th_e true system,
that v é(i+1) v é(i) The £ direction is defined then the prediction errors should be a white noise sequence.
atVn(8y ) < Vw(8y). The £ direction is defined as The auto-correlation functions of these errors can be plotted
O — 7@ 0, 1 and the validation can be answered by inspection. Several
! [Hx @01 Vi @) (15) formal statistical tests of whiteness of the error sequence have

The Hessian matrify (8, ) and the gradient of the criterion 2/S0 been developed. The typical whiteness testis to determine

. NG . the covariance estimate
functionVy, (95:,)) are defined as
N

A 1
Lo 1Y A (i) () RY(t) == ) emen+1) (20)
Hy(6y) = N[an, oy 19[n, eNF} (16) N ;
n=1
N wheree(n) = ¢[n|6y]; indicates theith component of the
sz//(é’x)) _ _%[Zd,[m g?]e[n’ g:’/’]} (17) prediction error. If(n) is indeed a white noise sequence, then
n=1 M
where _ =—— Y (R¥1))? 21
) oglnin—1,07 "= Fr o & @D
A (D) dy[nln —1,6,] e =1
Pln, Oy ] = By R (18) . .y
would be asymptotically (M) distributed [3]. Independence

is the gradient of the predictor (8), i.e. the derivative of (8) Withetween the prediction errors(n) can thus be tested by
respect to each of the ARMAV model parameters. comparing;y., with the chi-square statistics. Itis common to

_ To start the iterative procedure, a first estimatiorf@f se the 95% level as a reference point for accepting or refusing
is needed. For this reason, a high-order ARV model is firgle model.

applied to the responggn]. The prediction errog[n] of this Another way to validate the model is to compare the

modelis then used as external inputin an ARX (auto-regressifgaciral densities obtained from the model and from the fast
exogeneous-input) model. The estimated parameters of s rier transform (FFT). Fora-variate system, the ARMAV

model then become the initial estimate [3]. Due to the poss@ﬁectral densities of the outpyfr] can be described by a
occurrence of undesired local minima in the criterion functio i1, m) matrix S, (w) as [1]
) yy

it is worthwhile to spend some effort on producing good initial ‘ _
values for the iterative search procedure. Also, since ti%,(w)=(C(I€* — A)TK+DACTEY — A)TIK+ D)
Gauss—Newton method has good local convergence rates, but (22)

not necessarily fast convergence far from the minimum, thesberew is an arbitrary angular frequency and the superséfipt
efforts usually pay off in fewer iterations and shorter computingjgnifies the Hermitian transpose, i.e. transpose and complex
time. So, the previous way of computing initial values can beonjugate. The diagonal elements 8f,(w) are the auto-
combined with a multi-stage least-squares method [7] in ordgwectral densities, whereas the off-diagonal elements are the
to obtain good initial parameter estimates. cross-spectral densities which are complex in general.
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Figure 1. Simulated beam with measurement points and
localization of damage.

Damaged element

6. Estimation of modal parameter uncertainties

Estimation of ARMAV models using the PEM method is
known to provide asymptotically unbiased and efficient model
parameter estimates for Gaussian distributed prediction errors.
In this case, the estimation errors of the estimator can be
evaluated by the Cramer—Rao lower bound of variance. This
lower bound is used for the cal culation of the model parameter
covariance matrix of the difference between the true parameter
6o and estimated parameter §y as N tends to infinity, i.e.
P@y) = E[(B0 — Oy)(00 — 0x)T]. An estimate of the
covariance matrix associated with the unbiased estimate 6y
isgiven, asin[1, 3], by

N -1
Py = | Yl 0niagwln 0| (@3

n=1

where the sampled covariance matrix of the prediction errors
isgiven by

N
A = Y elnldnlelnion]”. (24)
n=1

Then, besides checking whether the prediction errorsarewhite
noiseor nat, it isalso necessary to check whether the prediction
errors are Gaussian or not. This can be performed by the use
of normal distribution plots.

Considering the auto-regressive part of estimated
covariance matrix, i.e. Pz (8 ), itispossibleto determinethe
modal parameter uncertainties. The change of parametrization
from a set of auto-regressive parameters to another set of
modal parameters can be performed by a known functional
relation. This functional relation is given by the eigenvalue
problem followed by the calculation of the modal parameters.
This means that the resulting functional relation between the
model and the modal parameters is highly nonlinear. To
obtain apractically applicable approach, therelation isusually
linearized using a first-order generalized Taylor expansion.
This approach combined with the estimation of the covariance
matrix P,z (0y) can lead to an estimation of the modal
parameter uncertainties [6].

7. Numerical example

In order to verify thevalidity of the proposed method, asimply
supported beam simulated with finite elementsis excited with
a random signal applied all over the structure. Damage is
simulated by gradually decreasing the bending stiffness of one
element (figure 1).

4

Table 1. Estimated modal parameters and their uncertaintiesin the
undamaged state.

fi (H2) Err (%) & (%) Err (%)
254001 0.23 174+£0.70 364
10.19+£0.02 0.14 0.39+0.15 215
2291+£0.02 0.02 0.17+0.06 10.3
40.84+0.02 0.03 0.20+0.05 30.9
64.15+0.03 0.03 0.15+0.04 231

7.1. Preprocessing

Four measurement points are considered and noise is added
to the simulated measurements. The sampling frequency is
850 Hz and for each channel, 10 000 data points are captured.
Theanalysisisconcentrated on thefivefirst modes. Therefore,
the data are filtered and then decimated resulting in a new
sampling rate of 170 Hz and 2000 points per channel.

7.2. |dentification

The first step of the identification procedure is the selection
of the ARMAV model order. The FPE criterion leads to
an ARMAV (6,6) candidate model (figure 2). This model is
characterized by an over-determination of the number of poles
(the number of polesis higher than the number of structural
poles). The distinction of the physical modes of the structural
system from the non-physical modes is performed by use of
stability diagrams. Figure 3 illustrates the stability plot for
increasing model order in the case of the undamaged structure.
The chosen stabilization criteria are the following:

o the natural eigenfrequencies of a mode of the current and
previous model s have an absol ute and maximum deviation
of 1%,

e the damping ratios of a mode of the current and previous
models have an absolute and maximum deviation of 5%,

e the mode shape of a mode of a currently estimated model
correlates with a mode shape belonging to the previously
estimated model in such a sense that the MAC (modal
assurancecriterion) between thesemode shapesareat | east
99%.

The sum of the spectra of the four responsesis also plotted in
figure 3 to reveal the fact that stable modes are indeed |ocated
on the peaks of the spectra.

The distinction and extraction of structural from
‘extraneous’ modes can also be performed by the dispersion
analysis (DA) methodology, which provides the fraction of
vibration energy associated with each dynamical mode in
each system transfer function [4,5]. Modes characterized by
negligible dispersion are then considered ‘ extraneous'.

The estimated eigenfrequencies f; and damping ratios ¢;
with their uncertainties are listed in table 1 and refer to the
undamaged state. Theterm Err indicates the errors between
the estimated and theoretical values. The method gives an
excellent estimation of frequencies. The method also gives an
excellent agreement of identified mode shapes (not presented
here) with the theoretical mode shapes. On the other side,
damping ratios are estimated with less accuracy.
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FPE

ARMAV(2,1) ARMAV{22) ARMAV(43) ARMAV(44) ARMAV(GS) ARMAV(BE) ARMAV(E7) ARMAV(SS)

Model order

Figure 2. FPE criterion.
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& : stable freq. + damp. + vect.

Figure 3. Stability diagram in the undamaged case.

7.3. Model validation

In order to validate the model, the prediction errors are
checked. The prediction errors should be a Gaussian white
noise sequence. Infigure4(a), the auto-correlation function of
the channel -2 prediction error with its 95% confidence interval
is plotted. It indicates that the function remains within the
confidence interval, except at zero lag. Figure 4(b) gives the
whiteness probability of the error and indicates a probability
closeto one. Therefore, the prediction error is close to white
noise. In figure 4(c), the theoretical and estimated density
functions are plotted. One can conclude that the prediction

error is close to Gaussian white noise. The same conclusion
has been found for al channels, and therefore the model may
be considered as validated.

7.4. Damage detection

As dready seen, the uncertainties on the estimated
eigenfrequencies are very small compared to the uncertainties
onthe estimated damping ratios. It isnot worthwhileto usethe
damping parameters for damage detection and therefore, the
estimates of frequencies are chosen as damageindicators. The
simple statistical approach for damage detection is based on

5
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Figure 4. Statistical tests on channel-2 prediction error: (a) auto-correlation function with its 95% confidence interval, (b) whiteness

probability, (c) density function.

confidence intervals obtained from the standard deviation of
estimated natural frequencies[1]. It will be assumed that any
damage has been detected if the 99% confidence interval of
the estimated frequency of amode is non-overlapping with the
99% confidence interval of the frequency of the same mode
in the undamaged state. In order to evaluate changes in the
frequencies, a probability based damage indicator can be also
formulated. If frequencies are assumed to be independent
distributed variables and that a negative change in frequencies
indicates damage caused by structural change, the probability
of negative change Ps, in frequency f; isgiven by [11]

Rv,:l—@( )

where o2 and o2 are the variances of the frequencies f; and
fio corresponding to the damaged and undamaged states. @ is
the unit normal distribution function.

In this section, the natural eigenfrequency of mode 5 is
used as a damage indicator. Indeed, this frequency presents
the most significant changesin this particular damage and can
be estimated with a high degree of accuracy. The analysis
is performed for three excitation levels per damage case. In
figure 5, the fifth eigenfrequency and the probability damage
indicator are shown as a function of the damage level. The
damage level represents the decrease in the bending stiffness
of the damaged element. The 99% confidence intervals in the
undamaged and damage states, respectively, are represented
by the straight and dotted lines. It can be seen that, at a
damage level of 5%, the confidence interval of the frequency
does not overlap with the undamaged state confidenceinterval.
Therefore, the damage has been detected with a probability

fi — fio

2, 2
o toj

(25)

6

close to one at a damage level of 5%, which correspondsto a
frequency decrease of only 0.45%.

8. The'Sted-Quake example

Thisexampleillustrates the application of ARMAV technique
in system identification and damage detection. Theapplication
will be illustrated on the ‘ Steel-Quake’ structure proposed as
benchmark in the framework of the European COST Action
F3 ‘Structural Dynamics. The ‘Steel-Quake structure is
used at the Joint Research Centre in Ispra (Itay) to test the
performance of steel buildings during earthquakes [12, 13].
The different tests performed correspond to the baseline
undamaged and damaged states of the building.

8.1. Description and testing of the structure

The structure corresponds to a two-floor frame as depicted in
figure 6. The main dimensionsare8 m x (4 x 2) m x 3 m.
In the background, it can be observed the reaction wall which
supports the four pistons (not present in the picture) used to
deform the structure (on each side, on each stage) and toinduce
damage in the x-direction. Note that braces have been added
in the plane parallel to the wall to reduce the risk of collapse
in that direction.

Four excitation points were tested using an impact
hammer. Their locations are shown in figure 7 (points
A(x), A(y), B(—z), C(—2); x, y and z indicating the three
directions). Eight to ten hammer impacts were recorded for
each test. The sensor configuration was the same for all the
four tests (figure 7). The sampling frequency was 128 Hz and
for each channel, 3200 data points were captured.
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Figure5. Freguency of mode 5 and probability damage indicator as a function of the damage level (- - - -: 99% confidence intervals).

Figure 6. View of the * Steel-Quake' structure.

8.2. Sructural identification and damage detection

The analysisis concentrated on the frequencies below 25 Hz.
Therefore afilter with acut-off frequency of 32 Hz was applied

7

Figure 7. Sensor and excitation configuration.

and the datawere twice decimated resulting in anew sampling
rate of 64 Hz and 1600 points per channel. The ARMAV
identifi cation method incorporates ARMAV model estimation,
model order selection, model validation and structural mode
distinction and extraction.

8.2.1. Model order determination and model validation.
Assuming that modes are underdamped and that noise is
present in the measurements, the FPE criterion leads, for each
excitation, to a 15-dimensional ARMAV (4,4) model. These
models are then validated by statistical tests on the prediction
errors. As dready seen, the prediction errors should be a
Gaussian white noise sequence. Figure 8 gives the results of
statistical tests on the channel-1 prediction error in the case of
the ' A(x) excitation’. One can observe in figure 8(a) that the
auto-correlation function of theerror remains, for themost part,

7
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Figure 8. Statistical tests on channel-1 prediction error in the case of * A(x) excitation’: (a) auto-correlation function with its 95%

confidence interval, (b) density function.
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Figure 9. Stability diagram applied to the * A(x) excitation’ data.

withintheconfidenceinterval, except azerolag. Therefore, the
prediction error is close to white noise. Figure 8(b) indicates
that the density function of the prediction error is close to the
Gaussian distribution. The same conclusions have been found
for the 15 channels and validate the model.

8.2.2. Sructural mode distinction and extraction. Once an
adequate discrete-timemodel has been attained, thedistinction
of structural modes from spurious modes is performed by use
of stability diagrams. The results indicate the presence of
ten physical modes. As an example, figure 9 illustrates the
stabilization diagram for the * A(x) excitation’. The chosen

8

stabilization criteria are here 1% for frequencies, 5% for
damping ratiosand 1% for MAC values (i.e. the MAC between
the mode shapes are at least 99%). The sum of the spectra of
the 15 measured responses is also plotted.

8.2.3. Modal parameter estimation. The average values and
uncertainties of the modal parametersarelistedintable2. The
i dentified mode shapes of the undamaged structure are depicted
in figure 10.

The MAC vaues between the mode shapes of the
undamaged and damaged structure arerepresented in figure 11
aong with the frequency shifts.
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Figure 10. Identified mode shapes for the undamaged state.
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Figure 11. Comparison of frequencies and mode shapesin the
undamaged and damaged states.

From table 2, it can be observed that the method gives
an excellent estimation of the frequencies, while the damping
ratio estimates are poor. The frequencies being estimated with
a high degree of accuracy, they are used in damage detection
analysis. However, this does not mean that they can be used as
damage indicators. They might simply not be sensitive to the
damage. By inspection of figure 11, it turns out that the first
and the last six frequencies can be used as damage indicators.
It isassumed that the structure shows linear and time-invariant
behaviour in damage state.

For this particular damage, the detected changes of
indicators are very significant and so, it is possible to detect

damage without any difficulties. The damage can even be
detected using the estimated natural frequencies exhibiting
small changes. Indeed, in figure 12, it is seen that the 99%
confidence intervals of the three frequencies corresponding to
modes 2, 3 and 4 in the damaged state do not overlap the
undamaged state 99% confidence intervals.

In this benchmark, the detected changes of the natural
eigenfrequencies are caused by a structural change. However,
in other experimental cases, the modal parameters can also
exhibit small changes due to fluctuations in the ambient
environment, such as ambient temperature changes. Such an
influence has to be removed from the damage. The separation
of the environmental influencesfrom the damage events can be
performed by fitting ARX modelsto the measured frequency—
temperature data[14].

9. Conclusions

In this paper, the application of ARMAV models in multi-
channel structural identification has been presented. These
models only use time series obtained from the output. They
have demonstrated their capability to reach good estimates
of frequencies and mode shapes when the free response
signal is analysed or, in the case of forced response analysis,
when the system output is obtained with uncorrelated random
signals. The estimation of the ARMAV model has been
carried out by the prediction error method. A simple statistical
method for damage detection has also been presented and
successfully applied. The damage detection method is based
on the evaluation of modal parameter uncertainties and on

9
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Table 2. Estimated eigenfrequencies f; and damping ratios ¢; with their uncertainties.

Undamaged state Damaged state
Mode shape fiHz)  58fi(Hz) & (%) 685 (%) fi(H) 6&fi(H2) ¢ (%) 64 (%)
Bending 1X 3.128 0.006 0.128 0.063 2,680 0.006 0.863 0.312
Bending 1Y 3.928 0.004 0.123 0.035 3.857  0.006 0.348 0.162
Torsion 1 6.129 0.003 0.116 0.037 6.066 0.005 0.391 0.118
Bending 2Y 9.687  0.005 0.092 0.036 9.517  0.007 0.192 0.075
Bending 2X 10.819 0.004 0.093 0.025 9.902 0.008 0381 0.113
2nddabbend. 1 12271 0.016 0494  0.109 10.693  0.009 0.343 0.108
Ilstdabbend. 1  13.053 0.013 0.467 0.153 11.303 0.016 0452 01%4
2nd dabtors. 1 17.694 0.017 0.397 0.067 15.093 0.022 0619 0.168
1st dabtors. 1 19.037 0.027 0417 0.170 16.195 0.017 0.841 0.209
Torsion 2 21415 0.018 1.09 0.301 18.827 0.019 0.122  0.056
Mode 2 Mode 3 Mode 4
396 6.16 9.75
o e e o Undomoged state o Undomagedsite |
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Figure 12. Estimated natural frequencies of modes 2, 3 and 4. The estimated 99% confidence intervals are represented by dotted lines.

the use of statistical tools like confidence intervals and the
normal distribution of random variables. However, the present
investigation is limited to damage detection; the problem of
damage localization was not examined. In the prediction
error method, the criterion function is minimized using a
highly nonlinear optimization procedure. If the application
involves many response channels, the iterative updating of
the model parameters may require many computations and be
time consuming. Moreover, the criterion function can exhibit
undesired local minima.  Conseguently, it is worthwhile to
spend effort on producing good initial values for the iterative
procedure by e.g. a multi-stage |east-squares method.
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