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Abstract

Purpose: We aimed to develop an ovarian cancer–specific

predictive framework for clinical stage, histotype, residual

tumor burden, and prognosis using machine learning meth-

ods based on multiple biomarkers.

Experimental Design:Overall, 334 patients with epithelial

ovarian cancer (EOC) and 101 patients with benign ovarian

tumors were randomly assigned to "training" and "test"

cohorts. Seven supervisedmachine learning classifiers, includ-

ing Gradient Boosting Machine (GBM), Support Vector

Machine, Random Forest (RF), Conditional RF (CRF), Na€�ve

Bayes, Neural Network, and Elastic Net, were used to derive

diagnostic and prognostic information from 32 parameters

commonly available from pretreatment peripheral blood tests

and age.

Results: Machine learning techniques were superior to

conventional regression-based analyses in predicting mul-

tiple clinical parameters pertaining to EOC. Ensemble meth-

ods combining weak decision trees, such as GBM, RF, and

CRF, showed the best performance in EOC prediction. The

values for the highest accuracy and area under the ROC

curve (AUC) for segregating EOC from benign ovarian

tumors with RF were 92.4% and 0.968, respectively. The

highest accuracy and AUC for predicting clinical stages with

RF were 69.0% and 0.760, respectively. High-grade serous

and mucinous histotypes of EOC could be preoperatively

predicted with RF. An ordinal RF classifier could distinguish

complete resection from others. Unsupervised clustering

analysis identified subgroups among early-stage EOC

patients with significantly worse survival.

Conclusions:Machine learning systems can provide critical

diagnostic and prognostic prediction for patients with EOC

before initial intervention, and theuseof predictive algorithms

may facilitate personalized treatment options through pre-

treatment stratification of patients.

Introduction

Epithelial ovarian cancer (EOC) is classified into at least five

distinct histotypes: high-grade serous carcinoma (HGSC), endo-

metrioid carcinoma, clear cell carcinoma, mucinous carcinoma,

and low-grade serous carcinoma (LGSC). These histotypes exhibit

different morphology, etiology, and biological behavior. Accord-

ing to the World Health Organization (WHO) classification of

tumors of the ovary (2014), histotypes are distinguished based on

their histopathologic and immunohistochemical characteristics,

as well as the inherent molecular characteristics (1). EOC is

surgically and pathologically staged by the International Feder-

ation of Gynecology and Obstetrics (FIGO) staging classification,

and the current standard of care consists of either primary debulk-

ing surgery (PDS) or internal debulking surgery (IDS) following

neoadjuvant chemotherapy (NACT; ref. 2). Both histopathology

and FIGO staging are considered the gold standard for classifica-

tion of EOC subgroups and are relevant prognostic factors for

stratification (3). Although there is a need for histotype-specific

and/or stage-dependent treatment options, most patients with

EOC are still treated with a conventional "one-size fits all" appro-

ach of surgical intervention and platinum-based combination

chemotherapy. Recent clinical application of PARP inhibitors in

BRCA-deficient ovarian cancers, mostly HGSC, is a major step for

individualized cancer treatment strategy that entails genetic test-

ing to define a subgroup of EOC with a specific vulnerability that

canbe targeted for therapy (4). In addition, the therapeutic benefit

of NACT followed by IDS is currently accepted based on large

randomized clinical trials in which the prognosis of advanced

ovarian cancer treatedwithNACTplus IDSwas not inferior to that

treated with PDS followed by chemotherapy (5). However, estab-

lishment of patient-selection criteria based on the extent of
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disease and/or patient condition, as well as universal staging

criteria in the NACT setting are thought to be crucial unmet

needs to further use this primary treatment modality (5). To

select more effective therapeutic approaches for EOC with

complex phenotypes, it is important to identify stratification

factors that could accurately define patient characteristics

before initial intervention. In addition, development of meth-

ods to predict treatment outcomes and prognosis is an impor-

tant paradigm in the realm of personalized medicine (6, 7).

Several studies have shown that the diagnostic accuracy can be

improved by using a combination of biomarkers and multiple

clinical factors (8, 9). Common statistical methods familiar to

clinicians are ill-suited for handling complex information; until

recently, this has been a major limitation that prevents the

extraction of meaningful information from large datasets with

multiple input variables. Machine learning is a branch of

artificial intelligence (AI) technology that allows computers to

"learn" potential patterns from past examples. Use of machine

learning approach to predict new data using the identified

patterns has helped detect difficult-to-recognize patterns from

complex combinations of multiple biomarkers (10).

In this study, we aimed to develop an ovarian cancer–specific

prediction approach based onmachine learning algorithms using

multiple biomarkers and clinical variables for the pretreatment

estimation of clinical stages, histotypes, surgical outcomes, and

prognosis of patients with EOC.

Materials and Methods

Patients and serum samples

This was a retrospective cohort study of 334 patients with EOC

and 101 patients with benign ovarian tumor who were treated

between 2010 and 2017 at the Department of Obstetrics and

Gynecology, The Jikei University School of Medicine. Tumors

were staged in accordancewith the FIGOclassification (2014).We

retrospectively investigated clinicopathologic parameters, includ-

ing age at diagnosis, clinical stage, residual tumor size after

primary surgery, and 32 preoperative peripheral blood biomar-

kers (Supplementary Table S1). The study was conducted in

accordance with the ethical principles of the Declaration of

Helsinki. The retrospective analysis of clinical information was

approved by the ethics committee of The Jikei University School

ofMedicine [Institutional review Board (IRB) no. 29-138(8754)].

For the study, the IRB issued a waiver for written consent because

data collection was retrospective.

Data splitting

Dataset was split into training and test cohorts with repeated

random sampling until there was no significant difference

(P value � 0.20) between the two cohorts with respect to all

variables (Table 1). The P value was calculated using Welch t test

for continuous variables and Fisher exact test for categorical

variables. This resulted in allocation of 168 patients with EOC

and 51 patients with benign ovarian tumor to the training cohort,

and 166 patients with EOC and 50 patients with benign ovarian

tumor to the test cohort.

Supervised machine learning classifiers

In this study, seven types of supervised machine learning

classifiers, including Gradient Boosting Machine (GBM), Support

Vector Machine (SVM), Random Forest (RF), Conditional Ran-

dom Forest (CRF), Na€�ve Bayes (NB), Neural Network (NN), and

Elastic Net (EN), were assessed. We also used logistic regression

classifier as the baseline. All classifiers were implemented using R

package caret (method "gbm" forGBM, "svmRadial" for SVM, "rf"

for RF, "cforest" for CRF, "nb" for NB, "nnet" for NN, and

"glmnet" for EN; ref. 11). For ordinal classification, R package

ordinalForest was used. Classifierswere trainedusing repeated 10-

fold cross-validation of training dataset, and their predictive

performance was evaluated in the test dataset. For calculating

variable importance for prediction, 100 sets of independent

trainingwere performedusing different randomseed. Themedian

of variable importance obtained in each training was used as a

representative value. Each variable importance is calculated with

varImp function of the caret package. In case of ordinal classifi-

cation, variable importance is provided as varimp using ordfor

function of the ordinalForest package.

Confidence of prediction was assessed using Shannon's infor-

mation gain. When no information about k-class (in which class

the patient is included) is available for a patient i, the Shannon's

information entropy indicating uncertainty is given by:

HðiÞ ¼ log2ðkÞ

If a classifier provides prediction probabilities for each class, the

entropy will decrease.

HcðiÞ ¼
Xk

j¼1

pjðiÞlog2ðpjðiÞÞ

Here, pj(i) is the predicted probability that the patient i is

included in class j. By comparing the prior and the posterior

entropy, we obtain a measure of total information gain, i.e.,

information gained by the prediction.

IGðiÞ ¼ HðiÞ �HcðiÞ

The individual information gain for each class is given by:

IGjðiÞ ¼ pjðiÞ � IGðiÞ

Translational Relevance

Identification of variables that predict the patient's charac-

teristics before initial intervention will facilitate selection of

more effective therapeutic approaches for epithelial ovarian

cancer (EOC). We developed an ovarian cancer–specific pre-

diction approach based on artificial intelligence (AI) using

multiple markers in peripheral blood and clinical factors for

pretreatment estimation of clinical stages, histotypes, surgical

outcomes, and prognosis of patients with EOC.We found that

machine learning approach could predict malignant tumors

with appreciably high accuracy compared with earlier reports.

Moreover, we could show that unsupervisedmachine learning

approach identified subgroups among early-stage EOC

patients, which is significantly associated with recurrence-free

survival rate. Therefore, this study not only could construct

highly accurate predictors of ovarian tumor characteristics but

also could propose a usage of AI to reveal difficult-to-recognize

clusters of patients from complex combinations of multiple

biomarkers. It may be possible to select personalized treat-

ment options by pretreatment stratification of patients with

EOC using machine learning–based predictive algorithms.
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RF classifier

A RF classifier comprises an ensemble of decision trees (ref. 12;

Supplementary Fig. S1A) and is based on two machine learning

techniques: bagging and random feature selection. In bagging,

each tree is trained using a bootstrap sample of training data.

During the process of training, each tree is grownusing aparticular

bootstrap sample. The RF predictive performance during training

is assessed using out-of-bag samples, which are not selected in the

bootstrap sample. In addition, the RF classifier randomly selects a

subset of features in each split nodewhen growing a tree. By virtue

of these techniques, the RF classifier avoids overfitting and stra-

tifies samples by considering complex interactions between

variables.

Unsupervised RF clustering

An RF dissimilarity measure (13) was used to evaluate the

similarity among patients based on multiple variables. The RF

dissimilarity was used as input for multidimensional scaling

(MDS), which provides a visual representation of the positional

relationship among a set of patients. Subsequently, Partitioning

AroundMedoids (PAM) clustering was applied on the two scaling

coordinates of MDS.

Statistical analysis

Correlation between bloodmarkers was evaluated using Spear-

man rank coefficient. To evaluate the difference in recurrence of

cancer, univariate Cox proportional hazardsmodels incorporated

in the R package survival were used. Probability values were

calculated by the Wald test.

The R codes used in this article are available at https://github.

com/eiryo-kawakami/CCR2019_code.

Results

Differentiation of EOC from benign tumor based on multiple

preoperative blood markers

To investigate the utility of multiple variables as predictors of

ovarian tumor characteristics, we compared multiple logistic

regression analysis based on 32 peripheral blood markers to

single logistic regression analysis using each marker. Figure 1A

shows the ROC curve derived frommultiple logistic regression for

segregating EOC from benign tumor based on 32 peripheral

blood markers in the test cohort (red line). The values for the

highest accuracy of the prediction and the area under the ROC

curve (AUC) were 86.7% and 0.897, respectively (Supplementary

Table S2). These results are superior to those of any single

regression, represented by dashed lines (Fig. 1A). When we

applied stepwise regression in which the regression model is

constructed with a subset of variables, the AUC slightly improved

(Fig. 1A, brown line; Supplementary Table S2, 86.7% accuracy

and 0.919 AUC). At the same time, the same test dataset with 32

peripheral blood markers was used to predict EOC using several

supervised machine learning methods (Fig. 1B; Supplementary

Table S2). The highest predictive accuracy and the AUC were

93.7% and 0.976 with GBM, 90.5% and 0.939 with SVM, 92.4%

and 0.968 with RF, 93.7% and 0.978 with CRF, 88.6% and 0.954

with NB, 88.0% and 0.883 with NN, and 91.8% and 0.966 with

EN, respectively (Supplementary Table S2). Therefore, these

supervisedmachine learning analyses were found to predict more

accurately than the conventional multiple logistic regression

analysis. It is notable that GBM, RF, and CRF, which are all

ensemble methods that combine weak decision trees, displayed

the highest performance.

Table 1. Clinical characteristics of 435 patients with epithelial ovarian tumor and benign ovarian tumor

All patients (N ¼ 435) Training cohort (N ¼ 219) Test cohort (N ¼ 216) P value

Age (range) 52.2 (19–87) 51.5 (19–84) 52.9 (23–87) 0.297

Histologic types

EOC

High-grade serous (%) 102 (23.4) 46 (21.0) 56 (25.9) 0.258

Endometrioid (%) 66 (15.2) 37 (16.9) 29 (13.4) 0.350

Mucinous (%) 31 (7.1) 18 (8.2) 13 (6.0) 0.457

Clear (%) 98 (22.5) 49 (22.4) 49 (22.7) 1

Others (%) 37 (8.5) 18 (8.2) 19 (8.8) 0.8655

Benign ovarian tumor

Benign cyst (%) 58 (13.3) 30 (13.7) 28 (13.0) 0.888

Teratoma (%) 43 (9.9) 21 (9.6) 22 (10.2) 0.873

FIGO stage

I (%) 154 (46.1) 77 (45.8) 77 (46.4) 1

IA (%) 44 (13.2) 21 (12.5) 23 (13.9) 0.748

IC (%) 110 (32.9) 56 (33.3) 54 (32.5) 0.908

II (%) 27 (8.1) 14 (8.3) 13 (7.8) 1

IIA (%) 10 (3.0) 5 (3.0) 5 (3.0) 1

IIB (%) 17 (5.1) 9 (5.4) 8 (4.8) 1

III (%) 128 (38.3) 64 (38.1) 64 (38.6) 1

IIIA (%) 19 (5.7) 10 (6.0) 9 (5.4) 1

IIIB (%) 21 (6.3) 11 (6.5) 10 (6.0) 1

IIIC (%) 88 (26.3) 43 (25.6) 45 (27.1) 0.804

IV (%) 25 (7.5) 13 (7.7) 12 (7.2) 1

IVA (%) 8 (2.4) 3 (1.8) 5 (3.0) 0.501

IVB (%) 17 (5.1) 10 (6.0) 7 (4.2) 0.620

Extent of tumor resection

Complete (none) (%) 231 (69.2) 120 (71.4) 111 (66.9) 0.407

Optimal (<1 cm) (%) 37 (11.1) 15 (8.9) 22 (13.3) 0.226

Suboptimal (�1 cm) (%) 66 (19.8) 33 (19.6) 33 (19.9) 1
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Next, the relative importance of a variable for segregating EOC

from benign tumor was calculated with each predictive approach

(Fig. 1C). We identified the top eight factors, including age,

carbohydrate antigen 125 (CA125), albumin (Alb), lactate dehy-

drogenase (LDH), lymphocyte, sodium, fibrinogen (Fbg), and

C-reactive protein (CRP), as important RF predictors for distin-

guishing EOC frombenign tumor. Standard boxplots that present

the distribution of each variable between benign and malignant

samples are shown in Fig. 1D. In particular, age was a critical

variable in all analytical approaches. Interestingly, the importance

of any specific variable greatly differed between each predictive

method. Logistic regression used various variables including

LDH, lymphocyte, and sodium as important predictors, in addi-

tion to age (Fig. 1C; Supplementary Table S3). On the contrary,

these variables were of less important in the RF that could select

subsets of variables to construct weak decision trees and gain

accuracy without suffering from overtraining and multicollinear-

ity (14). Although the stepwise regression also selects subsets of

variables, it thoroughly relies on the selected variables (Fig. 1C).

Use of highly correlated variables in regression analysis is known

to render the model unstable due to multicollinearity. In fact,

there were strong positive correlations between Fbg andCRP, CRP

and CA125, and CA125 and LDH, andmoderate negative correla-

tions between Alb and Fbg, CRP, or CA125 among these variables

(Fig. 1E). Accordingly, supervised machine learning algorithms

that employ the ensemblemethod combiningweak decision trees

such as GBM, RF, and CRF showed the best predictive perfor-

mance. Therefore, we decided to use RF in subsequent predictive

analysis for consistency. Representative classification trees of the

RF classifier are presented in Supplementary Fig. S1B and S1C. To

evaluate the effect of sample size on machine learning perfor-

mance,we assessed the highest predictive accuracy andAUC in the

RF prediction using different numbers of samples. We randomly

selected 20%, 40%, 60%, and 80% of patients from the training

and test cohorts. To reduce any potential bias due to random

selection, we generated ten independent sets of data for the

evaluation. The highest accuracy of prediction and AUC nearly

reached saturation when using 60% of patients (Supplementary

Fig. S1D and S1E). Thus, based on 32 blood markers, a larger

sample size would not provide better predictive performance.
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Figure 1.

Differentiation of EOC from benign

ovarian tumor based onmultiple

preoperative blood markers. A,

ROC curves derived from logistic

regression for segregating EOC

from benign ovarian tumor. The

result of a multiple regression

model using all 32 peripheral blood

markers is indicated in a red line,

whereas single regression results

are represented by dashed black

lines. B, ROC curves for

differentiating EOC from benign

ovarian tumor using supervised

machine learningmethods. C,

Relative importance of variables

for segregation of EOC from

benign ovarian tumor calculated in

the logistic regression and RF.

Variable importance is represented

as a percentage of the highest

value. D, Box and jitter plots

representing the distribution of top

eight important blood markers for

distinguishing EOC from benign

ovarian tumor. E, Correlation

between top eight important

predictors evaluated using

Spearman rank coefficient.

Artificial Intelligence in Epithelial Ovarian Cancer

www.aacrjournals.org Clin Cancer Res; 25(10) May 15, 2019 3009

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

5
/1

0
/3

0
0
6
/2

0
5
0
4
8
6
/3

0
0
6
.p

d
f b

y
 g

u
e

s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2



Prediction of clinical stages andhistologic types of EOCwithRF

classifier

We next attempted to preoperatively predict the clinical stages

of EOC, disaggregated into early-stage (stage I/II) and late-stage

(stage III/IV), by using the 32 peripheral blood markers with the

RF classifier. The values for the highest predictive accuracy and the

AUC of the ROC curve were 69.0% and 0.760, respectively

(Fig. 2A; Supplementary Table S2). We found CRP and LDH as

important parameters for predicting the clinical stage of EOC, in

addition to well-known tumor markers such as CA125 and

carbohydrate 19-9 (CA19-9), by the mean decrease in Gini index

as a measure of variable importance (Fig. 2B). It should be noted

that as the clinical stage progressed, CA125, CRP, LDH, Fbg, and

platelet (PLT) increased, whereas othermarkers includingCA19-9

and Alb decreased (Fig. 2C).

We further aimed to evaluate thepredictive ability for histologic

types of EOC using the same approach. The highest predictive

accuracies for high-grade serous, clear cell, endometrioid, and

mucinous histotypes were 75.8%, 67.7%, 55.6%, and 96.0%,

respectively. The AUC values for the histotypes were 0.785, 0.650,

0.597, and 0.728, respectively (Fig. 2D; Supplementary Table S2).

When we evaluated the variable importance for prediction of

histotype, CA125 andCA19-9were themost important predictors

for high-grade serous type of EOC (Fig. 2E). As shown in Fig. 2F,

these results were consistent with the comparison analyses

that showed relatively high CA125 and relatively low CA19-9 in
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Figure 2.

Prediction of clinical stages and histologic types of EOC with RF classifier. A and D, ROC curve for RF-based prediction of clinical stages (A) and histologic types

(D) in EOC based on the 32 peripheral bloodmarkers. B and E, Variable importance for RF-based prediction of clinical stages (B) and histologic types (E)

evaluated as mean decrease in Gini index. The box plot and the bar plot show results from 100 independent training iterations. C and F, Box and jitter plots

representing distribution of top eight important bloodmarkers for RF-based prediction of clinical stages (C) and histologic types (F).
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high-grade serous type when compared with the other types of

EOC (Fig. 2F). Similarly, we found that CEA, which was an

important predictor for mucinous type (Fig. 2E), showed a higher

value in mucinous type than in the other types (Fig. 2F).

Prediction of residual tumor with an ordinal classification

method

Based on the preoperative blood markers, we also tried to

predict residual tumor size. The presence of residual tumor after

surgery is a powerful prognostic indicator that affects both pro-

gression-free survival (PFS) andoverall survival (15). The status of

residual tumor is generally classified into three groups based on

the extent of resection: "complete" (no residual tumor), "optimal"

(<1 cm residual tumor), and "suboptimal" (�1 cm residual

tumor). This classification is an ordinal classification, as the

classes exhibit an order (complete < optimal < suboptimal).

Standard classification algorithms cannot make use of ordinal

information, which impairs the prediction performance. There-

fore, we applied an ordinal classification method on the residual

tumor size prediction, which converts the class value into a

numeric quantity and applies an RF regression learner to the

transformed data (16). Figure 3A shows the prediction results of

residual tumor size for individual patients in the test cohort, in

which the confidence of prediction for each class is represented as

Shannon's information gain. Stage I patients were eliminated

from this analysis because there were too few patients with

residual tumor. The most important variables for this prediction

were CA19-9, lymphocyte, and CA125 (Fig. 3B). The highest

predictive accuracy and AUC for distinguishing complete resec-

tion (0 cm) from others were 64.9% and 0.697, respectively

(Fig. 3C, gray line), whereas those for distinguishing suboptimal

resection (�1 cm) fromotherswere 62.9%and0.667, respectively

(Fig. 3C, light blue line). We identified 16 instances in which the

prediction was badly out of order, i.e., misprediction of complete

resection as suboptimal or vice versa (Fig. 3D, indicated in gray).

Interestingly, predictions designated as high confidence
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Prediction of residual tumor size after primary surgery with an ordinal classification method. A, Prediction of residual tumor size for individual patients in test

cohort. The confidence of prediction for each class is represented as Shannon's information gain. B, Variable importance of bloodmarkers for prediction of

residual tumor size. Box plot shows results from 100 independent training iterations. C, ROC curves for prediction of residual tumor size in patients with EOC.

D and E, Confusion matrix indicating the prediction quality of the RF classification for all predictions (D) and for those predictions with high (>0.2 bits)

confidence (E).
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(>0.2 bits) contained only 1 such badmisprediction out of the 22

instances (Fig. 3E). Thus, Shannon's information gain can be a

useful measure for assessing whether a prediction is wildly out of

line in ordinal classification.

Unsupervised clustering analysis using machine learning

approach associated with prognosis

Next, unsupervised clustering analysis using an RF dissimilarity

measure (13), which can handle mixed variable types and is

robust to outliers, was performed to identify specific EOC patient

subgroups related to prognosis based on the same32preoperative

blood markers. MDS plot using the RF dissimilarity as input

shows clear separation of benign tumor patients and late-stage

EOC patients (Fig. 4A). When PAM clustering method was

applied on the MDS data, almost all benign ovarian tumors were

included in cluster 1 (Fig. 4B), whereasmost of the late-stage EOC

were included in cluster 2 (the area of MDS1 > 0; Fig. 4D). Early-

stage EOC were widely distributed among clusters 1 and 2

(Fig. 4C). Examination of the association between the two clusters

and clinicopathologic features of EOC showed a statistically

significant difference in relapse-free survival (RFS) rate (Fig. 4E,

P ¼ 4.46 � 10�7; Table 2). Moreover, we also found a significant

difference in RFS rate between the clusters among early-stage EOC

patients (Fig. 4F, P ¼ 0.00359, Table 2). On the contrary, no

significant difference in RFS rate was detected between the two

clusters for late-stage EOC (Fig. 4G, P ¼ 0.315; Table 2). In

addition, we found no clear difference in MDS distribution

among EOC histotypes (Fig. 4H). Multiple blood markers
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including CRP, CA125, Alb, Fbg, hemoglobin (Hb), Hct, PLT, and

chloride were significantly different between the early-stage EOC

in the two clusters (Fig. 4I). The univariate Cox proportional

hazards model based on each clinicopathologic parameter

showed that stage and residual tumor size were also significant

prognostic factors in all EOC (Table 2).

Discussion

Use ofmachine learning algorithms based onAI technology for

diagnostic and prognostic assessment has beenwidely accepted in

the context of some cancers (6, 9). It is clear that this innovative

approach is an important tool in the realm of precision medicine

that may facilitate the selection of optimal treatment strategies. In

addition, the ability of AI models to discover embedded patterns

within data by handling numerous factors at once may lead to a

better understanding of the complex mechanisms that underlie

carcinogenesis and cancer progression. However, the machine

learning algorithm that provides the greatest diagnostic and

prognostic power for a given set of variables is poorly understood.

Our approach allowed for the comparison of multiple supervised

learning algorithms to identify the approach with the most

favorable performance. Ovarian cancer comprises multiple het-

erogeneous features containing various clinical stages and several

histopathologies with varying grades. The current standard of

treatment, with its "one-size fits all" approach, is no longer a

sufficient strategy in light of the recent development and evalu-

ation of targeted therapies and our growing knowledge of the

molecular mechanisms of this disease. Currently, the lack of

ability to accurately identify clinically meaningful patient subsets

before initial treatment has been a key limitation in clinical

settings. Therefore, predicting clinical characteristics of EOCbased

on preoperative information and stratification of patients with

respect to prognosis is a fundamental approach toward individ-

ualized optimal medical care. In a study, preoperative monocyte-

to-lymphocyte ratio in peripheral blood of patients with ovarian

cancer was identified as a predictor of clinical characteristics based

on binary logistic regression analysis (17). In a recent study, AI

systems were used for prognostic assessment of patients with

ovarian cancer based on basic clinical variables including age,

FIGOstage, histopathologywith tumor grade, andCA125 (18). In

this study, we investigated the ability of multiple machine learn-

ing methods to predict the basic characteristics of patients with

EOC based on readily available biomarkers. We found that

ensemble classifiers such as RF that incorporate weak decision

trees were able to preoperatively predict various clinical variables

such as stages and histotypes (high-grade serous and mucinous)

of EOC with appreciable accuracy (69.0% accuracy and 0.760

AUC for clinical stages; 75.8% accuracy and 0.785 AUC for high-

grade serous; 96.0% accuracy and 0.728 AUC for mucinous). The

underperformance of these classifiers with regard to clear cell

(67.7% accuracy and 0.650 AUC) and endometrioid histotypes

(55.6% accuracy and 0.597 AUC) may result from the lack of

particularly strong distinguishing characteristics of these tumors

at the level of serum biomarkers. Nevertheless, these results

indicate that AI technology may provide valuable diagnostic

information based on preoperative biomarkers, which may facil-

itate a personalized treatment strategy before the primary thera-

peutic approach in EOC. In addition, based on the thorough

comparisonof different variables using supervisedmachine learn-

ing techniques, this study may provide valuable information to

clinicians regarding variables that are the most useful for patient

stratification.

Identification of reliable biomarkers that are able to predict

surgical outcomes in advancewould facilitate the identification of

patients with advanced EOCwhomay benefit fromPDS (19). It is

well accepted that residual disease following upfront surgery

strongly correlates with patient survival and that complete gross

cytoreduction to no residual disease status appears to be associ-

ated with the best overall outcomes (15). However, patients with

advanced stage EOC who are preoperatively predicted to have

residual disease based on our machine learning approach may be

superior candidates for NACT. Here, we report the use of ordinal

classification method to predict surgical outcomes in terms of

residual tumor size in stage II–IV EOC patients with a 64.9%

accuracy and AUC of 0.697 (0 cm vs. >0 cm) based solely on

preoperative information. Recently, large transcriptional profiles

of primary debulked EOC tumors have been used to identify

genomic signatures that had the potential to accurately predict

suboptimal cytoreduction as the outcome of PDS (20). The caveat

to this approach is that surgery is needed to obtain the samples for

analysis, at which point the outcome of cytoreduction would

already be known. Although not assessed in this study, preoper-

ative prediction of tumor chemosensitivity may have a profound

impact on treatment decision-making vis-a-vis initiation of

NACT; therefore, further efforts should be made to establish

methods for predicting tumor chemosensitivity.

In a previous study, a combinationof serum tumormarkers and

age with or without ultrasound findings was used to predict

ovarian cancer in patients with adnexalmasses (21). In particular,

multivariate logistic regression analysis was used to differentiate

stage I EOC from benign ovarian tumor using HE4, CA125, CEA,

andpatient's age (AUC: 0.797; ref. 8). It has been recently reported

that preoperative serumCRP levels could be of additional value to

CA125 in the differential diagnosis of ovarian tumor (22). In our

study, segregation of EOC from benign ovarian tumor was

achieved with a high accuracy (�94%; AUC: �0.98) by several

supervised machine learning approaches, which clearly outper-

formed standard regression analysis and the existing prediction

models. Furthermore, factors such as Alb, LDH, lymphocyte,

Table 2. Association of RFS with clinicopathologic parameters of patients with

EOC

Parameter HR (95% CI) P value

All data (N ¼ 334)

Age <50 vs. �50 1.0 (0.69–1.8) 0.205

Histotype HGSC vs. others 1.4 (0.95–2.2) 0.0856

Stage Early vs. late 8.9 (5.1–15) 9.25 � 10�15

Residual tumor 0 vs. >0 5.4 (3.6–8.2) 1.68 � 10
�15

0–1 vs. >1 4.4 (2.9–6.6) 2.67 � 10
�12

Cluster 1 vs. 2 7.4 (3.4–16) 4.46 � 10
�7

Early-stage (N ¼ 182)

Age <50 vs. �50 1.0 (0.96–1) 0.892

Histotype HGSC vs. others 1.2 � 10�8 (0–Inf) 0.998

Cluster 1 vs. 2 9.2 (2.1–41) 0.00359

Late-stage (N ¼ 152)

Age <50 vs. �50 1.0 (0.99–1.0) 0.518

Histotype HGSC vs. others 0.56 (0.36–0.87) 0.00987

Residual tumor 0 vs. >0 1.9 (1.2–3.1) 0.00745

0–1 vs. >1 1.8 (1.1–2.7) 0.0112

Cluster 1 vs. 2 1.6 (0.64–4) 0.315

NOTE: There were too few early-stage EOC patients with residual tumor. A

definition for the significance of bold is P value of < 0.05.

Abbreviations: CI, confidence interval; HR, hazard ratio; Inf, infinity.
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sodium, and Fbg were found to be useful in differentiating EOC

from benign ovarian tumor, in addition to the known tumor

markers; these findings suggest that the supervised machine

learning analysis can help identify new biomarkers that are not

identified by conventionalmultiple regression analysis. However,

as shown in Fig. 1E, there were strong correlations among some of

these important explanatory variables. It is well-known that

multicollinearity among explanatory variables may pose a prob-

lem with increase in the number of variables. In this context,

multicollinearity among these explanatory variables could be

excluded by using the ensemble method that incorporates weak

decision trees including RF.

As the approach used in this study did not consider any

information from imaging studies or pretreatment biopsies, the

ability to accurately predict the clinical behavior and treatment

outcome before intervention was limited. However, manipula-

tion of large datasets from high-throughput sequencing analysis

such as RNA sequencing of preoperative peripheral blood may

improve prediction performance. Therefore, further validation

efforts should be made by increasing the number of input

variables based on the machine learning approach robust to

overfitting in a larger independent cohort. As tumors grow over

time, signaling between the tumor and its niche, consisting of

fibroblasts, infiltrating immune cells, and endothelial cells, also

evolves. It is believed that chemoresistant and highly aggressive

tumors become so, in part, due to permissive signals that

originate in the niche (23). Despite the importance of the tumor

environment, clinicians still rely nearly exclusively on tumor-

specific markers for prognostic assessment and treatment deci-

sion-making. Changes in parameters obtained from preopera-

tive peripheral blood investigations are inherently a combina-

tion of tumor-specific and niche-specific factors. The machine

learning approach used in this study identified systemic factors

such as Alb, LDH, lymphocyte, and sodium as important factors

in malignancy; this approach may identify patients with protu-

mor niches, which may significantly influence the choice and

timing of treatment.

Accurate prognostic prediction tools aid clinical decision-

making for the management of EOC. The supervised machine

learning approach in this study revealed the association of

preoperative blood markers with important features of EOC,

which may be used for stratification of patients. This prompted

us to investigate the direct correlation of these makers with

prognosis of EOC patients. Unsupervised clustering analysis

based on 32 preoperative blood markers was able to segregate

EOC subgroups which were clearly associated with clinical

stage and prognosis. Importantly, the series of unsupervised

machine learning approach revealed two clusters in early-stage

EOC associated with prognosis, which could be classifiable

preoperatively. In a previous study, readily available biomar-

kers in clinical settings including indicators of the systemic

inflammatory response and pretherapeutic coagulation-related

factors were shown to be of prognostic relevance in patients

with EOC (24). A recent meta-analysis of data from 13 studies

(n ¼ 3,467) showed that both high neutrophil-to-lymphocyte

ratio and platelet-to-lymphocyte ratio are associated with unfa-

vorable prognosis of patients with EOC (25). In addition,

elevated levels of pretreatment plasma D-dimer, Fbg, and PLT

were found useful in predicting disease progression and sur-

vival outcomes of patients with EOC (26–28). These reports

support our findings; indeed, additional studies using inde-

pendent datasets are required to investigate how we can utilize

this preoperative blood signature for accurate prognostic assess-

ment of patients with EOC. Furthermore, future studies should

investigate the use of AI-based machine learning algorithms to

identify predictive features in time series of preoperative blood

values, which might significantly expand the accuracy of prog-

nosis and warrants further investigation.

In conclusion, this study demonstrates that AI-based algo-

rithms are powerful tools that may provide critical information

for diagnostic and prognostic assessment of patients with EOC

before initial intervention.
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