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ABSTRACT 

 

With the development of science and technology, humanoid robots are widely used 

among several industries. Humanoid robots are seen as a human replacement in a vast 

sense. It is a test for analysts to imitate the human aptitude in a counterfeit humanoid 

robot movement framework. With the developing innovation, the humanoid robots are 

being created for planetary investigation alongside other versatile robots to additionally 

enhance the mobility in a thickened domain. This paper is focussed on the development 

of an Artificial Neural Network based navigational controller for path planning 

examination of humanoid robot strolling. The path planning analysis is carried out on a 

NAO humanoid robot. Sensory information regarding obstacle distances and location of 

target are fed as inputs to the controller and required streaming angle is obtained as the 

output. Navigational analysis has been performed in both simulation and experimental 

environments with complicated arena conditions. Finally, a comparison between 

simulation and experimental results has been done, and the result are found to be in good 

agreement. 

 

Keywords: Humanoid Robot; Navigation; Path planning; ANN. 

 

INTRODUCTION 

 

Robotics have been the centre of attraction for many researchers over the last few decades. 

Ito et al. [1] have studied about different types of ball handling behaviours of a small 

humanoid robot in a dynamic neural network model. Patacchiola et al. [2] have proposed 

a neural network approach for head pose estimation. They evaluated four architecture 

performances for the wild data sets. Pothal et al. [3-5] used a neural network approach 

combined with fuzzy logic system for navigation of multiple mobile robots in highly 

cluttered environments. Savage et al. [6] have generated the behaviours of a mobile robot 

by using Genetic Algorithm (GA). Bajrami et al. [7] have used both fuzzy logic controller 

(FLC) and artificial neuronal fuzzy logic (ANFL) for avoiding both static and dynamic 

obstacles in a mobile robot platform. Parhi et al. [8-10] used different artificial intelligent 
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(AI) techniques for path optimization of robotic agents and validated their approach 

through multiple simulations and experiments. Park et al. [11] have studied the 

“communicable congruence” with human in an experimental neuro-robotics. They 

controlled humanoid robots by the neuromorphic model with the utilization of the 

dynamic character in a neural network model. Pradhan et al. [12-15] used fuzzy logic as 

a potential navigational algorithm for both path and time optimization of a robotic agent 

to move from a definite initial position to a desired target location. Son et al. [16] 

combined feed forward neural network controller with a PID module to control a SCARA 

parallel robot joint angle position. Tamayo et al. [17] have developed and analysed the 

AH1N2 humanoid robot. Mohanta et al. [18-19] applied genetic algorithm for systematic 

search of a safe path in the navigation of a mobile robot towards its target location. Sun 

et al. [20] have discussed about the direction following control of an adaptable connection 

space controller. They have used and analysed different AI technique for solving various 

problem related to robot navigation. Several researchers [21-24] have also tried to modify 

basic AI algorithms for performance improvement in engineering problems. Virgala et al. 

[25] have supervised examining, demonstrating and recreation of movement of humanoid 

robot hand with 24 degrees of freedom (DOF). Deepak et al. [26-29] used artificial 

immune based and other related approach in mobile robot navigation. Mohanty et al. [30-

33] developed different nature inspired algorithms for smooth planning of mobile robot 

navigation. Elliot et al. [34] have conducted several experiments for the accomplishment 

of a new control architecture design for the mobile robots which help in the autonomy of 

disabled people. Singh et al. [35-38] used neural network as a potential navigation 

approach for multiple robotic agents. Singh and Nandi [39] analysed different calibration 

techniques for a humanoid in drawing different objects. Kundu et al. [40-43] used 

different AI techniques for navigation of underwater mobile robots. They considered 

different constraints that may arise while working with a robot in underwater conditions. 

Madani et al. [44] have proposed a machine-learning based multi-level mental model 

induced from early-ages' academic movement of human's advancement capacities with 

regards to humanoid robot's strolling appearing. Nuovo et al. [45] discussed regarding a 

memory imagination based analysis for a humanoid robot. 

From the extensive survey of the available literature, it can be conceived that navigation 

and path planning have been mostly applied to mobile robots only. A very few works 

have been reported towards humanoid navigation. Therefore, the current work is devoted 

towards the design and development of an artificial neural network (ANN) based control 

architecture for navigation of a humanoid robot in a complex environment. Here, NAO 

has been chosen as the humanoid platform for navigational analysis. The performance of 

the controller has been verified through multiple simulations and experiments. Finally, 

the results obtained from both the environments are compared against each other with 

good agreement between them. 

 

ARTIFICIAL NEURAL NETWORK 

 

ANN system is inspired from the human brain, and its functional architecture is similar 

to biological neural systems. The characteristics of the human brain like complex and 

non-linear information processing in parallel time have inspired the development of an 

artificial neural system to solve different engineering problems. To design an artificial 

neural system, neuron modelling, layer designing, and learning algorithm are important 

which have been briefly described as follows. 
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Neuron Modelling  
A biological neuron consists of a cell body connected to dendrites and axons that receives 

and conveys the signal from one cell body to another respectively. The biological neurons 

comprise of body cells, dendrites, axons, and synapses. The information exchange takes 

place in the form of electrical signals between the neurons through dendrites and axons 

at the junction space called synapse. McCulloch and Pitt recreated the biological neurons 

characteristics in the form of neuron model. 

 

Architecture  
The architecture of ANN that connects neurons to other neurons forms a net which is 

distinguished into three layers. The first one is an input layer that receives the signal from 

another stimulated neuron. The data is forwarded to the next layer which consists of one 

or more neurons that can be chosen independently also known as an unseen layer that 

processes the data with suitable mathematical operations. The processed data is then 

transferred to the output layer that analyzes the data by the use of activation function The 

architecture of the ANN system can be feed forward or feedback type in nature. The feed 

forward does not send back the signal to the previous layer, and the data is allowed to 

propagate in a forward direction towards the output. On the other hand, the feedback ANN 

the data could propagate backward, and such a system is used in dynamic applications. 

Figure 1 represents the basic control architecture of an ANN model. 

 
Figure 1. ANN architecture. 
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The input value fed to the input layer, and the result distributed to the unseen layer 

and turn the neural network generate output is given by: 
    lay lay

j jY f V           (1) 

Where,      ( ) ( 1)lay lay lay

j ji i

i

V W Y                                                     (2) 

(lay) = Unseen layer 

j = jth neuron in unseen layer “lay” 

i = ith neuron in unseen layer “lay-1” 
( )lay

jiW = weight of the neuron. 

For the neural network controller, the input parameters are as follows. 

Front obstacle distance=FOD 

Left obstacle distance=LOD 

Right obstacle distance=ROD 

Target angle=TA 

The controller output is steering angle. 

By using the MATLAB programming, the ANN has been written, and all the tests 

are done in a personal computer. For this work, the hyperbolic tangent function is chosen 

as activation function. 

F(x)=
ax−a−x

𝑎𝑥+𝑎−𝑥
                                                         (3) 

The output of the network φactual unlike from the φdisered in the training pattern 

presented to the network. The performance of the network is the sum-squared difference 

between φactual and φdisered. 

  Error=
1

2
∑(φdisered − φactual)2                           (4) 

For calculating the error in the network back propagation method used. This 

method is used to measure the computational error gradient to find out the exact weight 

correction to minimise the error of the output layer. 

The error gradient is as follows. 
    4 (4)

1 desired actualf V            (5) 

For the unseen layer, the local gradient for neuron is given by:  

  ( ) ( ) ( 1)laylay lay lay

f j k ij

k

f V W  
  

 
                       (6) 

The weight is given as: 

     1 1ji ji jiW n W n W n                                       (7) 

And change in weight is given as: 

    ( ) ( 1)1 lay lay

ji ji j iW n W n Y                                 (8) 

Where    The momentum coefficient 0.3 ,    Learning rate 0.35 , n   Iteration 

number. 

 

Learning Algorithm 
Sometimes to attain accuracy for a given system, the input parameters and the weight of 

synapses need to be modified, and ANN’s learning algorithm gives the steady reaction to 

inputs as desired. ANN Learning is carried out to produce the desired output by regulating 

the input parameters. Some authors have suggested three necessary steps to be followed 

for designing ANN learning algorithm. The learning model is the first step that describes 

the process of learning in accordance with the system. The learning algorithm is the next 
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step that refers to the rules adapted to modify the parameters and synapses weight. The 

final step is the boundary condition which puts the limitation on the learning ability. It 

refers to the capacity of learning, samples and time requirement for training the ANN. 

The learning process is of two types supervised and unsupervised that have been widely 

used. The information received by the supervised learning is in the quotation form 

whereas the data that an unsupervised learning receives is random. 

 

IMPLEMENTATION OF ANN MODEL IN HUMANOID NAVIGATION 

 

The path planning for humanoid robot in simulation environment has been carried out 

using V-REP software with one NAO robot in the scene and five numbers of obstacles. 

Figure 2 and Figure 4 show the simulated path obtained by application of ANN in the 

humanoid platform. To compare the simulation results, an experimental platform was also 

prepared under laboratory conditions. Figure 3 and Figure 5 show the experimental path 

obtained by application of ANN. The results obtained from both the platforms are 

compared against each other. Table 1 determines the error in path length and Table 2 

shows the error in the time taken between simulation and experimental platform using the 

ANN approach. 

 

  
(a)       (b) 

  
(c)       (d) 

  
(e)       (f) 

 

Figure 2. Simulation results for scene 1. 
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(a)       (b) 

  
(c)       (d) 

  
(e)       (f) 

Figure 3. Experimental results for scene 1. 

 

  
(a)       (b) 

  
(c)       (d) 

  
(e)       (f) 

 Figure 4. Simulation results for scene 2. 
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(a)       (b) 

  
(c)       (d) 

  
(e)       (f) 

Figure 5. Experimental results for scene 2. 

 

Table 1. Comparison of simulated and experimental path length. 

Sl. No. Simulation path 

length(m) 

Experimental path 

length (m) 

Error in path 

length (%) 

1 3.18 3.41 6.74 

2 3.08 3.36 8.33 

3 3.05 3.25 6.15 

4 3.2 3.4 5.8 

5 3.01 3.15 4.44 

 

Table 2. Comparison of simulated and experimental time taken. 

Sl. No. Simulation 

Time taken(s) 

Experimental time 

taken (s) 

Error in time 

(%) 

1 55.5 57.4 3.31 

2 53.0 55.9 5.18 

3 49.9 52.1 4.22 

4 54.5 57.5 5.21 

5 50.7 53.3 4.87 

The path obtained in every scene using ANN gives an optimal solution to the problem; 

so ANN method can be used as a potential navigational controller that can provide the 

least path length and time taken from start point to end point. It can be noticed that the 

experimental results always show higher values than the simulation ones. The simulation 

platform is an ideal one where there is absence of any loss factor. However, there are 

presence of different factors like slippage of robot’s foot, frictional losses, loss in data 

transmission, etc. in the experimental platform which cause the higher values. 
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CONCLUSION 

 

Path planning for humanoid robot requires sensory system and the conditions in local 

environment. The classical methods applied to avoid obstacles and reach the target don’t 

provide the optimized path that a robot could manoeuvre since intelligent approaches 

could provide an efficient path for the robot to reach the target following a least path in 

the minimum possible time. Therefore, the current paper is dedicated to obtain such a 

path using ANN method in a cluttered environment. Path planning using ANN method 

proves to be more efficient. Therefore, ANN can be successfully used for optimized 

humanoid robot path planning in a cluttered environment. 
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