
 

 

  
Abstract—Importance of software quality is increasing leading to 

development of new sophisticated techniques, which can be used in 

constructing models for predicting quality attributes. One such 

technique is Artificial Neural Network (ANN).  This paper examined 

the application of ANN for software quality prediction using Object-

Oriented (OO) metrics. Quality estimation includes estimating 

maintainability of software. The dependent variable in our study was 

maintenance effort. The independent variables were principal 

components of eight OO metrics. The results showed that the Mean 

Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we 

found that ANN method was useful in constructing software quality 

model. 

 

Keywords—Software quality, Measurement, Metrics, Artificial 

neural network, Coupling, Cohesion, Inheritance, Principal 

component analysis.  

I. INTRODUCTION 

HERE are several metrics proposed in the literature to 

capture the quality of OO design and code, for example, 

(Aggarwal et al. [13]; Briand et al., [14, 15]; Bieman and 

Kang [7]; Cartwright and Shepperd [17]; Chidamber and 

Kamerer [21, 22 ]; Harrison et al. [20]; Henderson-sellers [3]; 

Hitz and Montazeri [18]; Lake and Cook [2]; Li and Henry 

[27]; Lee et al. [28] Lorenz and Kidd [19]; Tegarden et al [5]).  

These metrics provide ways to evaluate the quality of 

software and their use in earlier phases of software 

development can help organizations in assessing large 

software development quickly, at a low cost. But how do we 

know which metrics are useful in capturing important quality 

attributes such as fault-proneness, effort, productivity or 

amount of maintenance modifications. An empirical study of 

real systems can provide relevant answers. There have been 

few empirical studies evaluating the impact of OO metrics on 

software quality and constructing models that utilize them in 
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predicting quality attributes in the system, such as  (Basili et 

al. [26]; Binkley and Schach [1]; Briand et al [16]; Cartwright 

and Shepperd [17]; Chidamber and Kamerer [23]; El Emam et 

al. [9]; Gyimothy et al. [24]; Harrison et al. [20]; Li and Henry 

[27]; Ping et al. [29]). 

Khoshgaftaar at al. [25] introduced the use of the neural 

networks as a tool for predicting software quality. In [25], 

they presented a large telecommunications system, classifying 

modules as fault prone or not fault prone. They compared the 

ANN model with a non-parametric discriminant model, and 

found the ANN model had better predictive accuracy. We 

conduct our study in the OO paradigm. However, since the 

OO paradigm is different from procedural paradigm, different 

software design metrics have to be defined and used. We 

explore the relationship between these design metrics and 

maintainability effort in this paper. Our ANN model aims to 

predict OO software quality by estimating the number of lines 

changed per class. 

    The paper is organized as follows: Section 2 provides 

overview of existing studies. Section 3 summarizes the 

metrics studied and describes sources from which data is 

collected. Section 4 presents the research methodology 

followed in this paper. The results of the study are given in 

section 5. Conclusions of the research are presented in section 

6.  

II. RELATED WORK 

Based on a study of eight medium-sized systems, developed 

by students Basili et al. [26] found that several of the 

Chidamber and Kamerer metrics were associated with fault 

proneness. Briand et al. [18] empirically explored the 

relationship between OO metrics and the probability of fault 

detection in system classes. Their results indicated that very 

accurate prediction models could be derived to predict faulty 

classes. 

Yu et al. [29] chose eight metrics and they examined the 

relationship between these metrics and the fault-proneness. 

The subject system was the client side of a large network 

service management system developed by three professional 

software engineers. It was written in Java consisting of 123 

classes and around 34,000 lines of code. First, they examined 

the correlation among the metrics and found four highly 

correlated subsets. Then, they used univariate analysis to find 

out which metrics could detect faults and which could not.  
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METRICS STUDIED

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gyimothy et al. [24] empirically validated Chidamber and 

Kamerer [22] metrics on open source software for fault 

prediction. They employed regression (linear and logistic 

regression) and machine learning methods (neural network 

and decision tree) for model prediction. 

Most of these prediction models are built using statistical 

models. ANN have seen an explosion of interest over the 

years, and are being successfully applied across a range of 

problem domains, in areas as diverse as finance, medicine, 

engineering, geology and physics. Indeed, anywhere that there 

are problems of prediction, classification or control, neural 

networks are being introduced. ANN can be used as a 

predictive model because it is very sophisticated modeling 

techniques capable of modeling complex functions.  

In [25], Khoshgoftaar et al. presented a case study of real-

time avionics software to predict the testability of each 

module from static measurements of source code. They found 

that ANN is a promising technique for building predictive 

models, because they are able to model nonlinear 

relationships.  

Our ANN model aims to predict software quality by 

estimating the number of lines changed per class. 

III.  RESEARCH BACKGROUND 

In this section we present the summary of metrics studied in 

this paper (Section 2.1) and empirical data collection (Section 

2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.  Dependent and Independent Variables 

The continuous dependent variable in our study is 

maintainability. The goal of our study is to empirically 

explore the relationship between OO metrics and maintenance 

effort at the class level.  We use ANN to predict maintenance 

effort per class. The independent variables are principal 

components from OO metrics chosen for this study. The 

metrics selected in this study are summarized in Table I. 

 

B.  Empirical Data Collection 

This investigation is to predict the maintenance effort. The 

commercial software products UIMS (User Interface System) 

and QUES (Quality Evaluation System) data are used in this 

investigation, which is presented in [27]. The maintenance 

effort is measured by using the number of lines changed per 

class. A line change could be an addition or a deletion. A 

change of the content of a line is counted as a deletion 

followed by an addition. This measurement is used in this 

study to estimate the maintainability of the OO systems. 

UIMS system consists of 39 classes and QUES system 

consists of 71 classes. 

IV.  SOME COMMON MISTAKES 

We used the following methodology in this study: 

1. The input metrics were normalized using min-max 

normalization. Min-max normalization performs a linear 

transformation on the original data [8]. Suppose that minA 

and maxA are the minimum and maximum values of an 

attribute A. It maps value v of A to v’ in the range 0 to 1 

using the formula: 

Metric Definition Sources 

Lack of Cohesion (LCOM) It counts number of null pairs of methods that do not have common 

attributes. 

[22][11] [12] 

Number of Children 

(NOC) 

The NOC is the number of immediate subclasses of a class in a hierarchy. [22][11] [12] 

Depth of Inheritance (DIT) The depth of a class within the inheritance hierarchy is the maximum 

number of steps from the class node to the root of the tree and is measured 

by the number of ancestor classes. 

[22][11] [12] 

Weighted Methods per 

Class (WMC) 

The WMC is a count of sum of complexities of all methods in a class. 

Consider a class K1, with methods M1,…….. Mn that are defined in the 

class. Let C1,……….Cn be the complexity of the methods. 

∑
=

=
n

1i

iCWMC

 

[22][11] [12] 

Response for a Class 

(RFC) 

The response set of a class (RFC) is defined as set of methods that can be 

potentially executed in response to a message received by an object of that 

class. It is given by  

RFC=|RS|, where RS, the response set of the class, is given by 

}{R  M ijjalli  
∪=RS

 

[22][11] [12] 

Data Abstraction Coupling 

(DAC) 

Data Abstraction is a technique of creating new data types suited for an 

application to be programmed. 

DAC = number of ADTs defined in a class. 

[27] 

Message Passing Coupling 

(MPC) 

It counts the number of send statements defined in a class. [27] 

Number of Methods per 

Class (NOM) 

It counts number of methods defined in a class.  
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  (1) 

2. Perform principal components analysis on the normalized 

metrics to produce domain metrics. 

3. We divided data into training, test and validate sets using 

3:1:1 ratio. 

4. Develop ANN model based on training and test data sets. 

5. Apply the ANN model to validate data set in order to 

evaluate the accuracy of the model. 

 

A.  Principal-Component (or P.C.) Analysis  

 Many OO metrics have high correlation with each other. 

P.C analysis transforms raw metrics to variables that are not 

correlated to each other when the original data are OO 

metrics, we call the new P.C. variables domain metrics [25].  

P.C. analysis is used to maximize the sum of squared 

loadings of each factor extracted in turn [4].  The P.C. analysis 

aims at constructing new variable (Pi), called Principal 

Component (P.C.) out of a given set of 

variables ),....,2,1(' kjsXj = . 
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All  bij’s called loadings are worked out in such a way that 

the extracted P.C.s satisfy the following two conditions: 

(i) P.C.s are uncorrelated (orthogonal) and 

(ii) The first P.C. (P1) has the highest   variance; the 

second P.C. has the next highest variance so on. 

The variables with high loadings help identify the 

dimension P.C. is capturing but this usually requires some 

degree of interpretation. In order to identify these variables, 

and interpret the P.C.s, we consider the rotated components. 

As the dimensions are independent, orthogonal rotation is 

used. There are various strategies to perform such rotation. 

We used the varimax rotation, which is the most frequently 

used strategy in literature. Eigenvalue or latent root is 

associated with P.C., when we take the sum of squared values 

of loadings relating to dimension, then the sum is referred to 

as eigenvalue. Eigenvalue indicates the relative importance of 

each dimension for the particular set of variables being 

analyzed. The P.C.s with eigenvalue greater than 1 is taken for 

interpretation. Given an n by m matrix of multivariate data, 

P.C. analysis can reduce the number of columns.  In our study 

n represents the number of classes for which OO metrics have 

been collected. Using P.C. analysis, the n by m matrix is 

reduced to n by p matrix (where p<m). 

 

B.  ANN Modeling 

 The network used in this work belongs to Multilayer Feed 

Forward networks and is referred to as M-H-Q network with 

M source nodes, H nodes in hidden layer and Q nodes in the 

output layer [10]. The input nodes are connected to every 

node of the hidden layer but are not directly connected to the 

output node. Thus the network does not have any lateral or 

shortcut connection. 

ANN repetitively adjusts different weights so that the 

difference between desired output from the network and actual 

output from ANN is minimized. The network learns by 

finding a vector of connection weights that minimizes the sum 

of squared errors on the training data set. The summary of 

ANN used in this study is shown in Table II. 

 

TABLE II 

ANN SUMMARY 

Architecture 

Layers      3 

Input Units  8 

Hidden Units 9 

Output Units 1 

Training  

Transfer Function Tansig 

Algorithm  Back Propagation 

Training Function TrainBR 

 

 

The ANN was trained by the standard error back 

propagation algorithm at a learning rate of 0.005, having the 

minimum square error as the training stopping criterion.  

 

C.  Performance Evaluation 

In this study the main measure used for evaluating model 

performance is the Mean Absolute Relative Error (MARE). 

MARE is the preferred error measure for software 

measurement researchers and is calculated as follows [6]: 

 

n
actual

actualestimate
n

i

÷⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= ∑

=1

MARE  

  

(3) 

 

where: 

estimate is the network output for each observation 

n is the number of observations 

to estimate whether models are biased and tend to over or 

under estimate, the Mean Relative Error (MRE) is calculated 

as follows[6]: 

 

n
actual

actualestimate
n

i

÷⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= ∑

=1

MRE  

  

(4) 

 

A large positive MRE would suggest that the model over 

estimates the number of lines changed per class, whereas a 

large negative value will indicate the reverse. 

V.  RESULTS 

In this section we present the analysis performed to find the 

relationship between OO metrics and maintainability effort of 

the classes. 
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In this section we present the analysis performed to find the 

relationship between OO metrics and maintainability effort of 

the classes. 

 

A.  Principal Component Analysis Results 

    In this section the results of applying P.C. analysis are 

presented. The P.C. extraction analysis and varimax rotation 

method is applied on all metrics.  The rotated component 

matrix is given in Table III. Table III shows the relationship 

between the original OO metrics and he domain metrics. The 

values above 0.7 (shown in bold in Table III) are the metrics 

that are used to interpret the PCs. For each PC, we also 

provide its eigenvalue, variance percent and cumulative 

percent. The interpretations of PCs are given as follows: 

• P1: DAC, LCOM, NOM, RFC and WMC are 

cohesion, coupling and size metrics. We have size, 

coupling and cohesion metrics in this dimension. 

This shows that there are classes with high internal 

methods (methods defined in the class) and external 

methods (methods called by the class). This means 

cohesion and coupling is related to number of 

methods and attributes in the class. 

• P2: MPC is coupling metric that counts number of 

send statements defined in a class.  

• P3: NOC and DIT are inheritance metrics that count 

number of children and depth of inheritance tree in a 

class. 

 

 
TABLE III 

ROTATED PRINCIPAL COMPONENTS 

P.C. P1 P2 P3 

Eigenvalue 3.74 1.41 1.14 

Variance % 46.76 17.64 14.30 

Cumulative % 46.76 64.40 78.71 

DAC 0.796 0.016 0.065 

DIT -0.016 -0.220 -0.85 

LCOM 0.820 -0.057 -0.079 

MPC 0.094 0.937 0.017 

NOC 0.093 -0.445 0.714 

NOM 0.967 -0.017 0.049 

RFC 0.815 0.509 -0.003 

WMC 0.802 0.206 0.184 

 

B.  ANN Results  

We employed ANN technique to predict the maintenance 

effort of the classes. This method is rarely applied in this area. 

The inputs to the network were all the domain metrics P1, P2, 

and P3. The network was trained using the back propagation 

algorithm. Table II shows the best architecture, which was 

experimentally determined. The model is trained using 

training and test data sets and evaluated on validation data set. 

Table IV shows the MARE, MRE, r and p-value results of 

ANN model evaluated on validation data. The correlation of 

the predicted change and the observed change is represented 

by the coefficient of correlation (r). The significant level of a 

validation is indicated by a p-value. A commonly accepted p-

value is 0.05. 

TABLE IV 

VALIDATION RESULTS OF ANN MODEL 

MARE 0.265 

MRE 0.09 

r 0.582 

p-value 0.004 

 
TABLE V 

ANALYSIS OF MODEL EVALUATION ACCURACY 

 

 

 

 

 

 

 

 

For validate data sets, the percentage error smaller than 10 

percent, 27 percent and 55 percent is shown in Table V. We 

conclude that impact of prediction is valid in the population. 

VI.  CONCLUSION 

This empirical study presents the prediction of maintenance 

effort using ANN technique. The independent variables were 

principal components from eight OO metrics. The results 

presented above shows that these independent variables 

appear to be useful in predicting maintenance effort. The 

ANN model demonstrated that they were able to estimate 

maintenance effort within 30 percent of the actual 

maintenance effort in more than 72 percent of the classes in 

the validate set, and with a MARE of 0.265. Thus ANNs have 

shown their ability to provide an adequate model for 

predicting maintenance effort. 

The performance of ANN model is to a large degree 

dependent on the data on which they are trained, and the 

availability of suitable system data will determine the extent to 

which maintenance effort models can be developed. 

More similar type of studies must be carried out with large 

data sets to get an accurate measure of performance outside 

the development population. We plan to replicate our study on 

large data set and industrial OO software system. We further 

plan to replicate our study to predict models based on early 

analysis and design artifacts. 
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