

Abstract—Importance of software quality is increasing leading to

development of new sophisticated techniques, which can be used in

constructing models for predicting quality attributes. One such

technique is Artificial Neural Network (ANN). This paper examined

the application of ANN for software quality prediction using Object-

Oriented (OO) metrics. Quality estimation includes estimating

maintainability of software. The dependent variable in our study was

maintenance effort. The independent variables were principal

components of eight OO metrics. The results showed that the Mean

Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we

found that ANN method was useful in constructing software quality

model.

Keywords—Software quality, Measurement, Metrics, Artificial

neural network, Coupling, Cohesion, Inheritance, Principal

component analysis.

I. INTRODUCTION

HERE are several metrics proposed in the literature to

capture the quality of OO design and code, for example,

(Aggarwal et al. [13]; Briand et al., [14, 15]; Bieman and

Kang [7]; Cartwright and Shepperd [17]; Chidamber and

Kamerer [21, 22]; Harrison et al. [20]; Henderson-sellers [3];

Hitz and Montazeri [18]; Lake and Cook [2]; Li and Henry

[27]; Lee et al. [28] Lorenz and Kidd [19]; Tegarden et al [5]).

These metrics provide ways to evaluate the quality of

software and their use in earlier phases of software

development can help organizations in assessing large

software development quickly, at a low cost. But how do we

know which metrics are useful in capturing important quality

attributes such as fault-proneness, effort, productivity or

amount of maintenance modifications. An empirical study of

real systems can provide relevant answers. There have been

few empirical studies evaluating the impact of OO metrics on

software quality and constructing models that utilize them in

Manuscript received August 24, 2006

Prof. K.K.Aggarwal is Vice Chancellor of GGS Indraprastha University,

Delhi, India (email: kka@ipu.edu)

Prof. Yogesh Singh is with GGS Indraprastha University, Delhi, India

(email: ys66@rediffmail.com)

Dr. Arvinder Kaur is with GGS Indraprastha University , Delhi, India (e-

mail: arvinderkaurtakkar@yahoo.com.)

Ruchika Malhotra (Corresponding Author phone: 91-011-26431421) is

with GGS Indraprastha University, Delhi, India (email:

ruchikamalhotra2004@yahoo.com).

predicting quality attributes in the system, such as (Basili et

al. [26]; Binkley and Schach [1]; Briand et al [16]; Cartwright

and Shepperd [17]; Chidamber and Kamerer [23]; El Emam et

al. [9]; Gyimothy et al. [24]; Harrison et al. [20]; Li and Henry

[27]; Ping et al. [29]).

Khoshgaftaar at al. [25] introduced the use of the neural

networks as a tool for predicting software quality. In [25],

they presented a large telecommunications system, classifying

modules as fault prone or not fault prone. They compared the

ANN model with a non-parametric discriminant model, and

found the ANN model had better predictive accuracy. We

conduct our study in the OO paradigm. However, since the

OO paradigm is different from procedural paradigm, different

software design metrics have to be defined and used. We

explore the relationship between these design metrics and

maintainability effort in this paper. Our ANN model aims to

predict OO software quality by estimating the number of lines

changed per class.

 The paper is organized as follows: Section 2 provides

overview of existing studies. Section 3 summarizes the

metrics studied and describes sources from which data is

collected. Section 4 presents the research methodology

followed in this paper. The results of the study are given in

section 5. Conclusions of the research are presented in section

6.

II. RELATED WORK

Based on a study of eight medium-sized systems, developed

by students Basili et al. [26] found that several of the

Chidamber and Kamerer metrics were associated with fault

proneness. Briand et al. [18] empirically explored the

relationship between OO metrics and the probability of fault

detection in system classes. Their results indicated that very

accurate prediction models could be derived to predict faulty

classes.

Yu et al. [29] chose eight metrics and they examined the

relationship between these metrics and the fault-proneness.

The subject system was the client side of a large network

service management system developed by three professional

software engineers. It was written in Java consisting of 123

classes and around 34,000 lines of code. First, they examined

the correlation among the metrics and found four highly

correlated subsets. Then, they used univariate analysis to find

out which metrics could detect faults and which could not.

Application of Artificial Neural Network for

Predicting Maintainability using Object-

Oriented Metrics

K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

T

World Academy of Science, Engineering and Technology

International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3552International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
p
en

 S
ci

en
ce

 I
n
d
ex

,
C

o
m

p
u
te

r
an

d
 I

n
fo

rm
at

io
n
 E

n
g
in

ee
ri

n
g
 V

o
l:

2
,
N

o
:1

0
,
2
0
0
8
 p

u
b
li

ca
ti

o
n
s.

w
as

et
.o

rg
/3

0
9
6
/p

d
f

TABLE I

METRICS STUDIED

Gyimothy et al. [24] empirically validated Chidamber and

Kamerer [22] metrics on open source software for fault

prediction. They employed regression (linear and logistic

regression) and machine learning methods (neural network

and decision tree) for model prediction.

Most of these prediction models are built using statistical

models. ANN have seen an explosion of interest over the

years, and are being successfully applied across a range of

problem domains, in areas as diverse as finance, medicine,

engineering, geology and physics. Indeed, anywhere that there

are problems of prediction, classification or control, neural

networks are being introduced. ANN can be used as a

predictive model because it is very sophisticated modeling

techniques capable of modeling complex functions.

In [25], Khoshgoftaar et al. presented a case study of real-

time avionics software to predict the testability of each

module from static measurements of source code. They found

that ANN is a promising technique for building predictive

models, because they are able to model nonlinear

relationships.

Our ANN model aims to predict software quality by

estimating the number of lines changed per class.

III. RESEARCH BACKGROUND

In this section we present the summary of metrics studied in

this paper (Section 2.1) and empirical data collection (Section

2.2).

A. Dependent and Independent Variables

The continuous dependent variable in our study is

maintainability. The goal of our study is to empirically

explore the relationship between OO metrics and maintenance

effort at the class level. We use ANN to predict maintenance

effort per class. The independent variables are principal

components from OO metrics chosen for this study. The

metrics selected in this study are summarized in Table I.

B. Empirical Data Collection

This investigation is to predict the maintenance effort. The

commercial software products UIMS (User Interface System)

and QUES (Quality Evaluation System) data are used in this

investigation, which is presented in [27]. The maintenance

effort is measured by using the number of lines changed per

class. A line change could be an addition or a deletion. A

change of the content of a line is counted as a deletion

followed by an addition. This measurement is used in this

study to estimate the maintainability of the OO systems.

UIMS system consists of 39 classes and QUES system

consists of 71 classes.

IV. SOME COMMON MISTAKES

We used the following methodology in this study:

1. The input metrics were normalized using min-max

normalization. Min-max normalization performs a linear

transformation on the original data [8]. Suppose that minA

and maxA are the minimum and maximum values of an

attribute A. It maps value v of A to v’ in the range 0 to 1

using the formula:

Metric Definition Sources

Lack of Cohesion (LCOM) It counts number of null pairs of methods that do not have common

attributes.

[22][11] [12]

Number of Children

(NOC)

The NOC is the number of immediate subclasses of a class in a hierarchy. [22][11] [12]

Depth of Inheritance (DIT) The depth of a class within the inheritance hierarchy is the maximum

number of steps from the class node to the root of the tree and is measured

by the number of ancestor classes.

[22][11] [12]

Weighted Methods per

Class (WMC)

The WMC is a count of sum of complexities of all methods in a class.

Consider a class K1, with methods M1,…….. Mn that are defined in the

class. Let C1,……….Cn be the complexity of the methods.

∑
=

=
n

1i

iCWMC

[22][11] [12]

Response for a Class

(RFC)

The response set of a class (RFC) is defined as set of methods that can be

potentially executed in response to a message received by an object of that

class. It is given by

RFC=|RS|, where RS, the response set of the class, is given by

}{R M ijjalli
∪=RS

[22][11] [12]

Data Abstraction Coupling

(DAC)

Data Abstraction is a technique of creating new data types suited for an

application to be programmed.

DAC = number of ADTs defined in a class.

[27]

Message Passing Coupling

(MPC)

It counts the number of send statements defined in a class. [27]

Number of Methods per

Class (NOM)

It counts number of methods defined in a class.

World Academy of Science, Engineering and Technology

International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3553International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
p
en

 S
ci

en
ce

 I
n
d
ex

,
C

o
m

p
u
te

r
an

d
 I

n
fo

rm
at

io
n
 E

n
g
in

ee
ri

n
g
 V

o
l:

2
,
N

o
:1

0
,
2
0
0
8
 p

u
b
li

ca
ti

o
n
s.

w
as

et
.o

rg
/3

0
9
6
/p

d
f

AA

Av
v

minmax

min
'

−
−

=

 (1)

2. Perform principal components analysis on the normalized

metrics to produce domain metrics.

3. We divided data into training, test and validate sets using

3:1:1 ratio.

4. Develop ANN model based on training and test data sets.

5. Apply the ANN model to validate data set in order to

evaluate the accuracy of the model.

A. Principal-Component (or P.C.) Analysis

 Many OO metrics have high correlation with each other.

P.C analysis transforms raw metrics to variables that are not

correlated to each other when the original data are OO

metrics, we call the new P.C. variables domain metrics [25].

P.C. analysis is used to maximize the sum of squared

loadings of each factor extracted in turn [4]. The P.C. analysis

aims at constructing new variable (Pi), called Principal

Component (P.C.) out of a given set of

variables),....,2,1(' kjsXj = .

.....

....

....

kkkkkk

kk

kk

XbXbXbP

XbXbXbP

XbXbXbP

+++=

+++=
+++=

2211

22221212

12121111

.
 (2)

All bij’s called loadings are worked out in such a way that

the extracted P.C.s satisfy the following two conditions:

(i) P.C.s are uncorrelated (orthogonal) and

(ii) The first P.C. (P1) has the highest variance; the

second P.C. has the next highest variance so on.

The variables with high loadings help identify the

dimension P.C. is capturing but this usually requires some

degree of interpretation. In order to identify these variables,

and interpret the P.C.s, we consider the rotated components.

As the dimensions are independent, orthogonal rotation is

used. There are various strategies to perform such rotation.

We used the varimax rotation, which is the most frequently

used strategy in literature. Eigenvalue or latent root is

associated with P.C., when we take the sum of squared values

of loadings relating to dimension, then the sum is referred to

as eigenvalue. Eigenvalue indicates the relative importance of

each dimension for the particular set of variables being

analyzed. The P.C.s with eigenvalue greater than 1 is taken for

interpretation. Given an n by m matrix of multivariate data,

P.C. analysis can reduce the number of columns. In our study

n represents the number of classes for which OO metrics have

been collected. Using P.C. analysis, the n by m matrix is

reduced to n by p matrix (where p<m).

B. ANN Modeling

 The network used in this work belongs to Multilayer Feed

Forward networks and is referred to as M-H-Q network with

M source nodes, H nodes in hidden layer and Q nodes in the

output layer [10]. The input nodes are connected to every

node of the hidden layer but are not directly connected to the

output node. Thus the network does not have any lateral or

shortcut connection.

ANN repetitively adjusts different weights so that the

difference between desired output from the network and actual

output from ANN is minimized. The network learns by

finding a vector of connection weights that minimizes the sum

of squared errors on the training data set. The summary of

ANN used in this study is shown in Table II.

TABLE II

ANN SUMMARY

Architecture

Layers 3

Input Units 8

Hidden Units 9

Output Units 1

Training

Transfer Function Tansig

Algorithm Back Propagation

Training Function TrainBR

The ANN was trained by the standard error back

propagation algorithm at a learning rate of 0.005, having the

minimum square error as the training stopping criterion.

C. Performance Evaluation

In this study the main measure used for evaluating model

performance is the Mean Absolute Relative Error (MARE).

MARE is the preferred error measure for software

measurement researchers and is calculated as follows [6]:

n
actual

actualestimate
n

i

÷⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= ∑

=1

MARE

(3)

where:

estimate is the network output for each observation

n is the number of observations

to estimate whether models are biased and tend to over or

under estimate, the Mean Relative Error (MRE) is calculated

as follows[6]:

n
actual

actualestimate
n

i

÷⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= ∑

=1

MRE

(4)

A large positive MRE would suggest that the model over

estimates the number of lines changed per class, whereas a

large negative value will indicate the reverse.

V. RESULTS

In this section we present the analysis performed to find the

relationship between OO metrics and maintainability effort of

the classes.

World Academy of Science, Engineering and Technology

International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3554International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
p
en

 S
ci

en
ce

 I
n
d
ex

,
C

o
m

p
u
te

r
an

d
 I

n
fo

rm
at

io
n
 E

n
g
in

ee
ri

n
g
 V

o
l:

2
,
N

o
:1

0
,
2
0
0
8
 p

u
b
li

ca
ti

o
n
s.

w
as

et
.o

rg
/3

0
9
6
/p

d
f

In this section we present the analysis performed to find the

relationship between OO metrics and maintainability effort of

the classes.

A. Principal Component Analysis Results

 In this section the results of applying P.C. analysis are

presented. The P.C. extraction analysis and varimax rotation

method is applied on all metrics. The rotated component

matrix is given in Table III. Table III shows the relationship

between the original OO metrics and he domain metrics. The

values above 0.7 (shown in bold in Table III) are the metrics

that are used to interpret the PCs. For each PC, we also

provide its eigenvalue, variance percent and cumulative

percent. The interpretations of PCs are given as follows:

• P1: DAC, LCOM, NOM, RFC and WMC are

cohesion, coupling and size metrics. We have size,

coupling and cohesion metrics in this dimension.

This shows that there are classes with high internal

methods (methods defined in the class) and external

methods (methods called by the class). This means

cohesion and coupling is related to number of

methods and attributes in the class.

• P2: MPC is coupling metric that counts number of

send statements defined in a class.

• P3: NOC and DIT are inheritance metrics that count

number of children and depth of inheritance tree in a

class.

TABLE III

ROTATED PRINCIPAL COMPONENTS

P.C. P1 P2 P3

Eigenvalue 3.74 1.41 1.14

Variance % 46.76 17.64 14.30

Cumulative % 46.76 64.40 78.71

DAC 0.796 0.016 0.065

DIT -0.016 -0.220 -0.85

LCOM 0.820 -0.057 -0.079

MPC 0.094 0.937 0.017

NOC 0.093 -0.445 0.714

NOM 0.967 -0.017 0.049

RFC 0.815 0.509 -0.003

WMC 0.802 0.206 0.184

B. ANN Results

We employed ANN technique to predict the maintenance

effort of the classes. This method is rarely applied in this area.

The inputs to the network were all the domain metrics P1, P2,

and P3. The network was trained using the back propagation

algorithm. Table II shows the best architecture, which was

experimentally determined. The model is trained using

training and test data sets and evaluated on validation data set.

Table IV shows the MARE, MRE, r and p-value results of

ANN model evaluated on validation data. The correlation of

the predicted change and the observed change is represented

by the coefficient of correlation (r). The significant level of a

validation is indicated by a p-value. A commonly accepted p-

value is 0.05.

TABLE IV

VALIDATION RESULTS OF ANN MODEL

MARE 0.265

MRE 0.09

r 0.582

p-value 0.004

TABLE V

ANALYSIS OF MODEL EVALUATION ACCURACY

For validate data sets, the percentage error smaller than 10

percent, 27 percent and 55 percent is shown in Table V. We

conclude that impact of prediction is valid in the population.

VI. CONCLUSION

This empirical study presents the prediction of maintenance

effort using ANN technique. The independent variables were

principal components from eight OO metrics. The results

presented above shows that these independent variables

appear to be useful in predicting maintenance effort. The

ANN model demonstrated that they were able to estimate

maintenance effort within 30 percent of the actual

maintenance effort in more than 72 percent of the classes in

the validate set, and with a MARE of 0.265. Thus ANNs have

shown their ability to provide an adequate model for

predicting maintenance effort.

The performance of ANN model is to a large degree

dependent on the data on which they are trained, and the

availability of suitable system data will determine the extent to

which maintenance effort models can be developed.

More similar type of studies must be carried out with large

data sets to get an accurate measure of performance outside

the development population. We plan to replicate our study on

large data set and industrial OO software system. We further

plan to replicate our study to predict models based on early

analysis and design artifacts.

REFERENCES

[1] A.Binkley and S.Schach, “Validation of the Coupling Dependency

Metric as a risk Predictor”, Proceedings in ICSE 98, 452-455, 1998.

[2] A.Lake, C.Cook, “Use of factor analysis to develop OOP software

complexity metrics”. Proc. 6th Annual Oregon Workshop on Software

Metrics, Silver Falls, Oregon, 1994.

[3] B.Henderson-sellers, “Object-Oriented Metrics, Measures of

Complexity”, Prentice Hall, 1996.

[4] C.R.Kothari. “Research Methodology. Methods and Techniques”, New

Age International Limited.

[5] D.Tegarden, S. Sheetz, D.Monarchi, “A Software Complexity Model of

Object-Oriented Systems. Decision Support Systems”, vol. 13, pp.241-

262.

ARE Range Percent

0-10% 50

11-27% 9.09

28-43% 18.18

>44% 22.72

World Academy of Science, Engineering and Technology

International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3555International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
p
en

 S
ci

en
ce

 I
n
d
ex

,
C

o
m

p
u
te

r
an

d
 I

n
fo

rm
at

io
n
 E

n
g
in

ee
ri

n
g
 V

o
l:

2
,
N

o
:1

0
,
2
0
0
8
 p

u
b
li

ca
ti

o
n
s.

w
as

et
.o

rg
/3

0
9
6
/p

d
f

[6] G.Finnie and G. Witting, “AI Tools for Software Development Effort

Estimation”, International Conference on Software Engineering:

Education and practice, 1996.

[7] J.Bieman, B.Kang, “Cohesion and Reuse in an Object-Oriented System”,

Proc. ACM Symp. Software Reusability (SSR’94), pp.259-262, 1995.

[8] J.Han, M. Kamber, “Data Mining: Concepts and Techniques”, Harchort

India Private Limited, 2001.

[9] K.El Emam , S.Benlarbi , N.Goel , Rai, “A Validation of Object-

Oriented Metrics”, Technical Report ERB-1063, NRC, 1999.

[10] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, “A Neural Net Based

Approach to Test Oracle”, ACM SIGSOFT, vol. 29, issue 3, 2004.

[11] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,

“Analysis of Object-Oriented Metrics”, International Workshop on

Software Measurement (IWSM), 2005.

[12] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,

“Empirical Study of Object-Oriented Metrics”, Accepted to be published

in Journal of Object-Technology.

[13] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,

“Software Reuse Metrics for Object-Oriented Systems”, Third ACIS Int'l

Conference on Software Engineering Research, Management and

Applications (SERA'05), IEEE Computer Society, pp. 48-55, 2005.

[14] L.Briand , W.Daly and J. Wust, “Unified Framework for Cohesion

Measurement in Object-Oriented Systems”, Empirical Software

Engineering, vol. 3, pp.65-117, 1998.

[15] L.Briand , W.Daly and J. Wust, “A Unified Framework for Coupling

Measurement in Object-Oriented Systems. IEEE Transactions on

software Engineering”, Vol. 25, pp.91-121, 1999.

[16] L.Briand , W.Daly and J. Wust, “Exploring the relationships between

design measures and software quality”, Journal of Systems and

Software, Vol. 5, pp.245-273, 2000.

[17] M.Cartwright, M.Shepperd, “An Empirical Investigation of an Object-

Oriented Software System”, IEEE Transactions of Software

Engineering, 1999.

[18] M.Hitz, B. Montazeri, “Measuring Coupling and Cohesion in Object-

Oriented Systems”, Proc. Int. Symposium on Applied Corporate

Computing, Monterrey, Mexico, 1995.

[19] M.Lorenz, and J.Kidd, “Object-Oriented Software Metrics”, Prentice-

Hall, 1994.

[20] R.Harrison, S.J.Counsell, and R.V.Nithi, “An Evaluation of MOOD set

of Object-Oriented Software Metrics”, IEEE Trans. Software

Engineering, vol. SE-24, no.6, pp. 491-496, June 1998.

[21] S.Chidamber and C.F.Kamerer, “A metrics Suite for Object-Oriented

Design”, IEEE Trans. Software Engineering, vol. SE-20, no.6, 476-493,

1994.

[22] S.Chidamber, C. Kemerer, “Towards a Metrics Suite for Object Oriented

design”. Proc. Conference on Object-Oriented Programming: Systems,

Languages and Applications (OOPSLA’91). Published in SIGPLAN

Notices, vol 26 no. 11, pp.197-211, 1991.

[23] S.Chidamber, D. Darcy, C. Kemerer, “Managerial use of Metrics for

Object-Oriented Software: An Exploratory Analysis”, IEEE

Transactions on Software Engineering, vol.24 no.8, 629-639, 1998.

[24] T.Gyimothy , R.Ferenc , I.Siket , “Empirical validation of object-

oriented metrics on open source software for fault prediction”, IEEE

Trans. Software Engineering, vol. 31, Issue 10, pp.897 – 910, Oct.

2005.

[25] T.M.Khoshgaftaar, E.D.Allen, J.P Hudepohl, S.J Aud,., "Application of

neural networks to software quality modeling of a very large

telecommunications system," IEEE Transactions on Neural Networks,

Vol. 8, No. 4, pp. 902--909, 1997.

[26] V.Basili, L.Briand, W.Melo, “A Validation of Object-Oriented Design

Metrics as Quality Indicators”, IEEE Transactions on Software

Engineering, vol. 22 no.10, pp. 751-761, 1996.

[27] W.Li, S.Henry, “Object-Oriented Metrics that Predict Maintainability”,

Journal of Systems and Software, vol 23 no.2, pp.111-122, 1993.

[28] Y.Lee, B.Liang, S.Wu and F.Wang, “Measuring the Coupling and

Cohesion of an Object-Oriented program based on Information flow”,

1995.

[29] Yu Ping, Ma Xiaoxing, Lu Jian , “Predicting Fault-Proneness using OO

Metrics: An Industrial Case Study”, CSMR 2002, Budapest, Hungary,

pp.99-107, 2002.

World Academy of Science, Engineering and Technology

International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3556International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
p
en

 S
ci

en
ce

 I
n
d
ex

,
C

o
m

p
u
te

r
an

d
 I

n
fo

rm
at

io
n
 E

n
g
in

ee
ri

n
g
 V

o
l:

2
,
N

o
:1

0
,
2
0
0
8
 p

u
b
li

ca
ti

o
n
s.

w
as

et
.o

rg
/3

0
9
6
/p

d
f

