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GEOTECHNICS

Axial bearing capacity (ABC) of piles is usually determined by static load test (SLT). However, conducting SLT is costly 
and time-consuming. High strain dynamic pile testing (HSDPT) which is provided by pile driving analyzer (PDA) 
is a more recent approach for predicting the ABC of piles. In comparison to SLT, PDA test is quick and economical. 
Implementing feed forward back-propagation artificial neural network (ANN) for solving geotechnical problems has 
recently gained attention mainly due to its ability in finding complex nonlinear relationships among different parameters. 
In this study, an ANN-based predictive model for estimating ABC of piles and its distribution is proposed. For network 
construction purpose, 36 PDA tests were performed on various concrete piles in different project sites. The PDA results, 
pile geometrical characteristics as well as soil investigation data were used for training the ANN models. Findings 
indicate the feasibility of ANN in predicting ultimate, shaft and tip bearing resistances of piles. The coefficients of 
determination, R², equal to 0.941, 0.936, and 0.951 for testing data reveal that the shaft, tip and ultimate bearing capacities 
of piles predicted by ANN-based model are in close agreement with those of HSDPT. By using sensitivity analysis, it 
was found that the length and area of the piles are dominant factors in the proposed predictive model.

La Capacidad Axial de Soporte (ABC, en inglés) de un pilote de construcción se determina usualmente a través de una 
Prueba de Carga Estática (SLT, inglés). Sin embargo, estas pruebas son costosas y demandan tiempo. La evaluación 
de las Dinámicas de Alto Esfuerzo de Pilotes (HSDPT, inglés), que la provee el programa de Análisis de Excavación 
(PDA, inglés), es una forma de aproximación más reciente para preveer la Capacidad Axial de Soporte. En comparación 
con la Prueba de Cargas Estática, la evaluación PDA es rápida y económica. La implementación de Redes Neuronales 
Arficiales (ANN, en inglés) que permita resolver problemas geotécnicos ha ganado atención recientemente debido a 
su posibilidad de hallar relaciones no lineales entre los diferentes parámetros. En este estudio se propone un modelo 
predictivo ANN para estimar la Capacidad Axial de Soporte de pilotes y su distribución. Para fines de una red 
de construcción se realizaron 36 pruebas PDA en pilotes de diferentes proyectos. Los resultados de los Análisis de 
Excavación, las características geométricas de los pilotes, al igual que los datos de investigación del suelo se utilizaron 
para probar los modelos ANN. Los resultados indican la viabilidad del modelo ANN en predecir la resistencia de los 
pilotes. Los coeficientes de correlación, R², que alcanzaron 0.941, 09.36 y 0.951 para la evaluación de los datos, revelan 
que la capacidad del pilotaje en el último rodamiento, en el cojinete del eje y en la punta que se predijeron con el modelo 
ANN concuerda con las establecidas a través del HSDPT. A través del análisis de respuesta se determinó que la longitud 
y el área de los pilotes son factores dominantes en el modelo predictivo propuesto. 
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1. Introduction

Pile foundations are used extensively to transfer structural loads 
deep enough into the ground. Proper estimation of axial bearing capacity 
is of prime importance in designing geotechnical structures. The ultimate 
amount of the load, which can be carried by the pile shaft, determines the 
type of pile as piles are classified according to their load-transfer mechanism 
(friction piles and end-bearing piles). Hence, in addition to determining 
ultimate bearing capacity of piles, obtaining the pile shaft capacity is also of 
advantage (Nazir et al, 2013). 

There are numerous methods for assessing pile bearing capacity and its 
distribution. Although many attempts have been made to develop analytical 
or empirical methods for pile bearing capacity estimation (e.g. Meyerhof, 
1976; Vesic, 1977; Coyle and Castello, 1981), most of these methods rely on 
empiricism and they are site specific (Randolph, 2003). The most direct way 
for determining the axial bearing capacity of piles is static load test (SLT). 
The test is standardized by American standards test methods (ASTM D1143-
07). However, conducting SLT is time consuming, expensive and difficult 
(Likins and Rausche, 2004). High strain dynamic testing (HSDT) of piles is 
a current approach for predicting the ABC of piles and its distribution. HSDT 
is based on one dimensional wave propagation theory and is performed by 
using a pile driving analyzer (PDA). In essence, in HSDT, a pile is hit by a 
hammer while PDA monitors and records the necessary data for implementing 
wave equation analysis. Consequently, through an iterative procedure using 
CAPWAP software, the pile bearing capacity and its distribution can be 
predicted. The HSDT procedure is standardized by ASTM (ASTM D4945-08).

Utilization of artificial neural network (ANN) in civil engineering has 
recently drawn considerable attention. It is generally attributed to the ANN 
power in finding complex relationship between different parameters when 
the contact nature between them is unknown (Garret, 1994). Although many 
researchers have attempted to show the superiority of ANN in predicting 
the bearing capacity problems, most of them focused on the prediction 
of ultimate bearing capacity of piles rather than its separate shaft and tip 
resistances (Goh, 1995; Goh, 1996). The main objective of this study is 
to propose an ANN-based predictive model of bearing capacity using real 
PDA and site investigation data. The predictive model is built for predicting 
shaft, tip and ultimate resistances (Q

s
, Q

p
 and Q

u
) of piles. Nevertheless, it is 

worth mentioning that this study uses the CAPWAP predicted pile bearing 
capacity rather than the determined bearing capacity of piles through SLT.

There are several published works concerning utilization of 
artificial intelligence techniques for predicting ABC of piles (Chan et 
al. 1995; Chow et al. 1995; Abu-Kiefa, 1998; Shahin, 2001; Lok and 
Che, 2004; Das and Basudhar, 2006; Ardalan et al. 2009; Shahin, 2008; 
Shahin, 2010; Adarsh et al. 2012; Alkroosh and Nikraz, 2012). Among 
researchers who have addressed ANNs for predicting bearing capacity of 
pile foundations, Goh (1995; 1996) developed an ANN-based predictive 
model to estimate the ultimate load capacity of driven piles in sandy 
soils. His findings suggest that compared to conventional methods of 
pile bearing capacity estimation, ANN-based predictive model works 
better. In another study, Lee and Lee (1995) employed ANN for 
estimation of pile bearing capacity. Their study focused on small scale 
laboratory tests where the horizontal and vertical chamber pressure, the 
number of hammer blows, pile penetration depth ratio, and mean normal 
stress of the soil were set as inputs of the network model while the 
ultimate bearing capacity was selected as the model output. According 
to their conclusion, ANN can provide good prediction performance 
in bearing capacity problems. Teh et al. (1997) also addressed the 
workability of neural network for predicting the pile bearing capacity. 
Abu-Kiefa (1998) implemented ANN to predict the ABC of driven piles 
in cohesionless soils. For network construction purpose, he compiled the 
data of 59 recorded cases of good-quality pile load tests. In his study, 
friction angles of the soil, the effective overburden pressure around the 
tip of the pile, the length of the pile and its equivalent cross-sectional 
area were considered as input layers of the ANN model. His conclusion 

showed the feasibility of ANN for predicting shaft and tip resistances 
of piles.

However, among more recent studies, Pal and Deswal (2008) 
studied the ANN application in predicting the total capacity of concrete 
spun pipe piles. They used stress-wave data for building their ANN-
based predictive model. Based on their conclusion, in comparison to 
support vector machines, the prediction performance provided by ANN 
was more reliable. Shahin and Juksa (2009) proposed an ANN-based 
predictive model of bearing capacity for drilled shafts. Their model 
dataset comprised cone penetration test results and drilled shaft load 
tests on 94 recorded cases. Jianbin et al. (2010) developed an ANN 
model for predicting the ultimate ABC of pipe piles. The influential 
parameters that they have considered for network construction included 
the effective length and diameter of pile, unit weight, cohesion and 
internal friction angle of soil as well as the standard penetration test 
(SPT) results. Benali and Nechnech (2011) suggested an ANN-based 
predictive model of pile bearing capacity in cohesionless soils. For 
training the ANN, they had collected the mechanical properties of 
purely coherent soil and geometrical characteristics of 80 axially loaded 
piles. The correlation coefficient, R, equals to 0.92 reveals the reliability 
of their ANN-based predictive model.

2. Methods 

2.1 High Strain Dynamic Testing of Piles

It was mentioned earlier that high strain dynamic testing (HSDT) is 
an innovative method for estimating the ABC of piles. In dynamic testing of 
pile (PDA test), it is hypothesized that a pile with uniform cross section is a 
slender element surrounded by material with much lower stiffness. Hence, 
any mechanical impact through a hammer leads to downward propagation 
of wave (Timoshenko and Goodier, 1951; Salgado, 2008). Therefore, the 
principle of one dimension wave propagation theory can be implemented 
for piles. Details of the solution to the partial differential equations of wave 
propagation theory for predicting axial bearing capacity of piles can be 
found elsewhere (Salgado, 2008).

 Nevertheless, the finite difference-based model introduced by Smith 
(1960) was considered as the bench mark for dynamic testing of piles. To 
estimate the axial bearing capacity, Smith developed a discrete solution 
for wave propagation in piles. In Smith’s model, the pile was simulated 
using a number of masses attached to each other by elastic springs, 
while the soil was modelled by a number of springs, and linear viscous 
dampers to represent its behavior. However, there were some deficiencies 
in Smith`s model due to lack of knowledge on hammer energy and 
cushion characteristics. Smith`s model later on was enhanced by a group 
of researchers at Case Western Reserve University (Goble et al.1970; 
Rausche et al. 1972; Rausche et al. 1985). In their developed method also 
known as CASE method, it was not necessary to model the hammer and 
driving systems. Instead, they reported the use of force and acceleration 
records in a simplified model for predicting the static bearing capacity. 

As stated by Fellenius, (1999) the full power of the wave 
equation analysis was first realized when it was coupled with dynamic 
monitoring of piles. The latter can be determined by installing a pair 
of accelerometer and strain transducer on top of the pile (see Figure 
1). Subsequently, the data recorded by aforementioned instruments are 
transmitted by means of a cable to PDA. The PDA will then transform 
the recorded data into force and velocity. In the next step, the bearing 
capacity of the pile is predicted using CAPWAP program. CAPWAP 
combines the measured force and velocity with the wave equation 
analysis to determine soil resistance and its distribution along the pile. 
The CAPWAP approach is based on an iterative curve-fitting technique 
in which pile response, estimated through wave equation analysis of a 
model pile, is matched to the measured response of the actual pile for 
a single hammer blow (FHWA, 2006).
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Figure 1. Example of installed accelerometer (right) and strain transducer (left) on the pile.

It should be mentioned that in performing PDA tests, to obtain more 
reliable ABC, some criteria such as hammer weight and impact condition must be 
considered. For full mobilization of soil strength along pile shaft, Susilo (2006) 
suggested minimum hammer weight equals to 1% of the required ultimate pile 
capacity whereas for piles with larger expected end bearing contributions, the 
recommended percentage is increased to at least 2% of the ultimate pile capacity.

2.2 Artificial Neural Network 

Artificial neural network is a flexible non-linear function approximation 
tool that estimates a relationship between given input and output parameters. 
Simpson (1990) reported that a specific ANN can be defined using three 
important components: transfer function, network architecture and learning 
law. More details on ANN structure are addressed elsewhere (e.g. Hecht-
Nielsen, 1990; Maren, et al. 1990; Zurada, 1992; Fausett, 1994; Ripley 
1996). However, study by Haykin (1999) recommends that the most well-
known type of feed-forward ANNs is Multi-Layer Perceptron (MLP). In 
feedforward ANNs, the neurons are usually grouped into layers. Using 
neuron connections, signals move from input layer through the hidden 
layer(s) to output layer.

In essence, ANNs are composed of a set of parallel layers and several 
interconnected nodes or neurons. There is also a transfer or activation 
function along each node which transmits signals to either other nodes or 
output of the network. The activation function in each node is applied to the 
net input of that node. The net input of the node is obtained by summation 
of connection weights as well as a threshold value known as bias.

Among different algorithms for training ANNs, Back-propagation 
(BP) algorithm is recognized as the most common training algorithm 
(Dreyfus, 2005). Basically, BP algorithm consists of two passes; a forward 
pass and a backward pass. In the former, using transfer function, the outputs 
are calculated and the errors at the actual output unit are determined 
(Demuth et al. 2007). If the obtained error (mean squared difference 
between the actual and predicted outputs) is more than adequate, then the 
error is propagated back through the network and updates the individual 
weights. This procedure is called backward pass. Forward and backward 
passes are repeated several times until the error is converged to a level 
specified by a cost function such as mean square error (MSE) or root mean 
square error (Simpson 1990, Kosko 1994, Singh et al. 2004).

3. Dataset

Using the procedure suggested by ASTM (D4945-08), 36 PDA tests 
were conducted at various project sites in Indonesia. The tested piles were 
reinforced and pre-stressed concrete piles with different diameters and 
lengths. Most of the tests were conducted in cohesionless soils. An example 
of PDA test performed in one of the project sites is shown in Figure 2. 

To represent soil characteristics, the results of SPT were 
collected. The average SPT (N) values along the pile shaft and tip 
were calculated. It is worth mentioning that for obtaining the average 
SPT (N) value around the pile tip, the Meyerhof’s recommendation 
(1976) was considered. The average SPT (N) value for 10D above and 
4D below the pile tip was obtained where D represents pile diameter. 

Table 1 lists the PDA test results including ultimate bearing capacity of 
piles, pile set, pile shaft and tip resistances. In addition to PDA results, pile 
geometrical characteristic and the average SPT (N) values around the pile 
shaft and tip are also tabulated in Table 1. 

Figure 2. PDA test

4. Model Development

The prediction performance of ANNs is closely related to the 
architecture of the selected network. Therefore, defining the optimum 
network architecture is crucial in designing ANN models. Hornik et al. 
(1989) mentioned that a network with one hidden layer can approximate any 
continuous function In ANN. Lawrence (1994) reported that in designing 
ANN architectures, increasing the number of the hidden layers should be the 
last options; instead focus should be on adding the number of hidden nodes. 
Nevertheless, for network construction, the optimum number of hidden nodes 
should be determined. Several researchers suggested that numbers of hidden 
nodes are related to the number of input and output parameters. In Table 2 
some of the formulas suggested by a number of researchers for obtaining 
the optimum number of hidden nodes are presented. However, the network 
performance is often evaluated based on the root mean squared error (RMSE) 
as well as regression values. That is to say, using the trial-and-error method, 
several network architectures are trained with same input and output data and 
the network that performs best is selected as the optimum network.
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Table 1. Dataset used for ANN-based predictive model.

No. Pile name Pile length (m) Pile set (mm) Pile area (cm2) N
shaft

N
tip

Qu (kN) Qs (kN) Qp (kN)

1 kn 189 25 16 1159.25 9 30 2988 1665 1323

2 kn 204 24.7 23 1159.25 9 30 3940 1445 2495

3 kn 215 19 19 1159.25 3 10 3200 1966 1234

4 P 105 BP6 22.7 3 11309.73 7 37 6753 3649 3103

5 FE P3 BP5 23 4 11309.73 4 21 8501 6035 2466

6 FE P6 BP6 23 3 11309.73 5 21 5322 3529 1794

7 P 112 BP 12 21 3 11309.73 5 15 6089 4293 1796

8 P 108 BP 11 23 5 11309.73 3 12 8500 5903 2597

9 P 109 BP 16 23 4 11309.73 3 12 10930 6412 4518

10 P 105 B2 23 7 11309.73 4 13 11601 7211 4390

11 P 105 B6 22.7 4 11309.73 4 13 8755 5535 3220

12 P 4 A 30 7 1159.25 20 27 1347 1197 150

13 P 18 F 30 7 1159.25 20 27 950 800 150

14 P 33 C 30 6 1159.25 20 27 1176 980 196

15 P 01 34.9 8 876.5 6 10 829 789 40

16 P 02 _ 1 34.9 8 876.5 6 10 605 591 14

17 P 04 34.8 13 552.92 6 10 772 744 28

18 P 05 34.9 11 552.92 6 10 781 774 7

19 P 1 AS6BC.187 12.3 16 625 13 11 864 764 100

20 P 02 AS21ED.349 10.6 8 625 15 13 689 637 52

21 P 03 AS19ED.355 12.8 13 625 14 12 1520 1386 134

22 P01 10.3 9 735.13 18 26 500 485 15

23 P02 8.8 11 735.13 19 27 452 438 14

24 P03 10 6 735.13 18 25 584 556 29

25 P04 - 101 10 7 735.13 18 25 603 576 27

26 P06-112 10.3 6 735.13 18 26 811 768 44

27 P07-122 10 9 735.13 18 25 770 733 36

28 P08-46 10 6 735.13 18 25 748 700 48

29 P1-p330_3 sp 350 5.3 18 678.58 13 15 788 696 92

30 P2-p169 sp 350 5.3 15 678.58 13 15 794 700 94

31 P3-p144 sp 350 5.2 15 678.58 13 15 824 721 103

32 P1-E7 Squar 25 19.6 15 625 11 22 1604 1437 167

33 P2-H 5_4 Squar 25 19.7 12 625 11 22 1419 1269 150

34 P3-H 12 Squar 25 19.1 12 625 9 19 1920 1720 200

35 B2 _1 5 16 625 8 11 764 670 94

36 D4_3 7.4 17 625 13 19 650 509 141
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To determine the optimal network architecture of the ANN model 
which is designed for predicting Qs, Qp and Qu of piles respectively, using 
a MATLAB code created stochastically between -1 and 1, nine networks 
made of different hidden nodes in the range of 2 to 10 (based on the 
recommendations presented in Table 2) were trained and tested. It should 
be mentioned that each model was iterated 5 times.  

For training the networks, Levenberg-Marquardt (LM) algorithm was 
used. Several studies reported that LM converges while other gradient descendent 
training algorithms diverge (e.g. Hagan and Menhaj, 1995). Details of this 
algorithm reported elsewhere (Martin et al. 1995). It is also worth mentioning that 
in developing ANN models, the sigmoid function was used as transfer function. 

Assessments of the networks performance were made based on the 
obtained coefficient of determination, R² as well as RMSE. The former indicates 
the reliability and strength of the correlation between actual and predicted 
outputs. Table 3 lists the obtained R² and RMSE for training and testing datasets. 
As shown in this table, the fourth model which comprises 5 hidden nodes in 
one hidden layer performs best. The obtained R2 and RMSE values for the 
selected model are 0.998, 0.942, 0.012 and 0.091 for training and testing datasets 
respectively. The architecture of the selected model is shown in Figure 3.

It is worth noting that in designing the ANN models, 80 percent ( 29 
out of 36) of the datasets were assigned randomly for training purpose, and 
the last 20 percent was used for testing the performance of the model. 

Table 3. ANN model performances.

Model

No.

Nodes 

in 

hidden 

layers

Network Result

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Train Test Train Test Train Test Train Test Train Test

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 2 0.974 0.078 0.761 0.136 0.978 0.064 0.910 0.515 0.902 0.096 0.674 0.392 0.988 0.089 0.879 0.153 0.961 0.081 0.853 0.250

2 3 0.980 0.065 0.674 0.288 0.978 0.166 0.783 0.226 0.990 0.065 0.832 0.152 0.982 0.104 0.842 0.149 0.976 0.133 0.891 0.155

3 4 0.994 0.071 0.783 0.178 0.994 0.043 0.906 0.135 0.990 0.058 0.784 0.149 0.992 0.037 0.637 0.217 0.968 0.036 0.861 0.194

4 5 0.998 0.016 0.896 0.155 0.998 0.040 0.904 0.107 0.998 0.012 0.942 0.091 0.998 0.019 0.774 0.177 0.998 0.095 0.758 0.157

5 6 0.998 0.017 0.763 0.156 0.998 0.032 0.776 0.252 0.998 0.021 0.794 0.237 0.998 0.024 0.605 0.277 0.998 0.033 0.777 0.117

6 7 0.998 0.022 0.721 0.167 0.998 0.028 0.740 0.187 0.998 0.043 0.629 0.209 0.998 0.031 0.921 0.125 0.998 0.067 0.790 0.168

7 8 0.998 0.049 0.850 0.150 0.998 0.116 0.885 0.139 0.998 0.044 0.589 0.231 0.998 0.033 0.784 0.189 0.998 0.020 0.785 0.211

8 9 0.998 0.051 0.851 0.185 0.998 0.042 0.571 0.262 0.998 0.039 0.752 0.201 0.998 0.098 0.870 0.262 0.998 0.072 0.767 0.291

9 10 0.998 0.038 0.706 0.321 0.998 0.055 0.794 0.202 0.998 0.088 0.887 0.282 0.998 0.075 0.715 0.371 0.998 0.061 0.727 0.299

Figure 3. Architecture of the selected ANN-based predictive model. 

5. Result and discussion

The reliability of the ANN-based predictive model of bearing capacity 
can be seen in Figures 4  to 6. These figures show the predicted Qs, Qp and Qu 

of piles versus their measured values. Figure 4 shows a comparison between 
predicted and measured Qs for training and testing data. The obtained R² values 
equal to 0.999 and 0.941 suggest the reliability of the model in predicting Qs. 

Similarly Figure 5 suggests that the predicted Qp is in good agreement with 
the measured Qp. As displayed in Figure 5-b, the coefficient of determination 
equals to 0.936 for testing data recommends the feasibility of the ANN-based 
predictive model of bearing capacity.

Table 2. The proposed number of neurons for hidden layer

N
i
: number of input neuron, N0: number of output neuron.
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Figure 4. Shaft bearing capacity (Qs) of piles predicted by ANN model versus their measured values.

Figure 5. End-bearing capacity (Qp) of piles predicted by ANN model versus their measured values.

In Figure 6, a comparison is made between the measured and 
predicted Qu of piles for both training and testing data. Coefficient of 
determination equals to 0.951 for testing data suggests that the ANN-based 
predictive model is good enough in capturing the ultimate bearing capacity 
of piles. 

Figure 6. Ultimate bearing capacity (QU) of piles predicted by ANN model versus their measured values
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To have a better understanding of the prediction performance of 
ANN, in Figures 7 to 9 the predicted QS, QP, and QU are checked against their 
measured values for testing dataset. In fact, the idea behind using testing 
dataset is to verify the generalization capability of proposed neural network 
model. Close agreement between measured and predicted values suggests 
that by using pile geometrical characteristics, pile set and the results of 
SPT insitu test, the ANN-based predictive model can be implemented for 
estimating QS, QP, and QU of piles.

Figure 7. ANN-model performance in predicting pile shaft resistance (testing data).

Figure 8. ANN-model performance in predicting pile tip resistance (testing data).

Figure 9. ANN-model performance in predicting ultimate 
bearing capacity of piles (testing data).

The overall prediction performance (for all dataset) of the ANN-
based model is summarized in Table 4. In this table, apart from R², RMSE 
and value account factor (VAF) were also used to control the capacity 
performance of the model.  For determining RMSE and VAF, equations 1 
and 2 were used respectively. 

RMSE = 
        

                                   

VAF =        

 

(1)

(2)

In the aforementioned equations, y and y′ denote the obtained and 
estimated values, respectively and N is the total number of data. It is worth 
mentioning that the model is excellent if the RMSE is zero and VAF is 100.

Table 4. Performance indices of the predictive model

Output R2 RMSE VAF (%)

QP 0.982 0.081 98.199

QS 0.984 0.075 98.361

QU 0.988 0.064 98.770

Overall, the general trend of the results shows that ANN as a method 
which does not require prior assumptions and can provide a relatively reliable 
solution for assessing the pile bearing capacity and its distribution. Although 
direct determination of pile bearing capacity through SLT is still recommended 
due to the amount of uncertainties in other semi empirical methods (Momeni et 
al, 2013), the use of proposed ANN-based predictive model is of advantage as 
it can reduce the required number of PDA tests in each project.  

6. Sensitivity Analysis

Sensitivity analysis was performed to recognize the importance of each 
input variable on the axial bearing capacity of piles. For this reason, the strength 
of the relations between the output parameters and the input parameters was 
evaluated using cosine amplitude method (CAM). This use of this sensitivity 
analysis is reported in several studies (Yang and Zhang, 1997; Jong and Lee, 
2004). To utilize CAM, all data pairs were expressed in common U-space. The 
data pairs used to construct a data array U is defined as:  

U=

The elements ui in the array U is a vector of lengths m that is:

(3)

(4)

Therefore, each data pair can be considered as a point in m-dimensional 
space, where each point requires m-coordinates for a full description. The strength 
of relation between data pairs, ui and uj, is represented by the following equation:

(5)

The strength of the relation (rij value) indicates the influence of 
different input parameters on one of the output parameters. The larger the 
value of rij becomes, the higher is the effect on the output. For example, if 
the output has no relation with the input, then the rij value is zero, while the 
value of rij closer to 1 expresses the further influence of the input parameter. 
Nevertheless, the obtained strength of relations of the problem in hand is 
shown in Figure 10. This figure suggests that the most influential parameters 
on QS, QP and Qu are pile area and pile length. 



92 Ehsan Momeni, Ramli Nazir, Danial Jahed Armaghani, Harnedi Maizir

Figure 10. Strengths of relation (rij) between QS and QP and input parameter

8. Summary and Conclusion

To develop an ANN-based predictive model for estimating the axial 
bearing capacity of piles, 36 PDA tests were performed on different concrete 
piles with various diameters and lengths. The tests were mostly performed in 
cohesionless soils. For network construction purpose, the PDA results, pile length 
and cross sectional area, and the average SPT (N) values along the pile shaft and 
tip were used as inputs while the pile bearing capacity and its distribution were 
set as outputs. Through a trial-and-error procedure, it was found that a network 
with five hidden nodes in one hidden layer yields the best performance. The 
coefficients of determination equal to 0.941, 0.936, and 0.951 for testing data 
revealed the reliability of the proposed ANN model in predicting the shaft, tip 
and ultimate bearing capacities of piles, respectively. Additionally, through a 
sensitivity analysis, it was found that the pile length and cross sectional area are 
the most influential parameters in predicting the bearing capacity of piles. 
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