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Application of artificial 
neural network for predicting 
the performance of  CO2 enhanced 
oil recovery and storage in residual 
oil zones
Hung Vo Thanh *, Yuichi Sugai & Kyuro Sasaki

Residual Oil Zones (ROZs) become potential formations for Carbon Capture, Utilization, and Storage 
(CCUS). Although the growing attention in ROZs, there is a lack of studies to propose the fast tool 
for evaluating the performance of a  CO2 injection process. In this paper, we introduce the application 
of artificial neural network (ANN) for predicting the oil recovery and  CO2 storage capacity in ROZs. 
The uncertainties parameters, including the geological factors and well operations, were used 
for generating the training database. Then, a total of 351 numerical samples were simulated and 
created the Cumulative oil production, Cumulative  CO2 storage, and Cumulative  CO2 retained. The 
results indicated that the developed ANN model had an excellent prediction performance with a high 
correlation coefficient  (R2) was over 0.98 on comparing with objective values, and the total root mean 
square error of less than 2%. Also, the accuracy and stability of ANN models were validated for five 
real ROZs in the Permian Basin. The predictive results were an excellent agreement between ANN 
predictions and field report data. These results indicated that the ANN model could predict the  CO2 
storage and oil recovery with high accuracy, and it can be applied as a robust tool to determine the 
feasibility in the early stage of CCUS in ROZs. Finally, the prospective application of the developed 
ANN model was assessed by optimization  CO2-EOR and storage projects. The developed ANN models 
reduced the computational time for the optimization process in ROZs.

Carbon capture, utilization, and storage (CCUS) is the potential solution to slow down greenhouse gas emis-
sion and climate  change1,2.  CO2 could be stored in many possible formations such as saline aquifers, depleted 
hydrocarbon reservoirs, depleted fractured shale formations, fractured basement reservoirs, and deep ocean 
 formations3–6. Currently, Residual Oil Zones (ROZs) have been considered as promising formations for long-
term geological  CO2  storage7. ROZs are the reservoirs in which the oil is at or migrate closer to the residual oil 
 saturation8. ROZs are the most optimum reservoirs to store  CO2

9,10.
Moreover, many similar studies have been investigated the feasibility and promising of  CO2 EOR and storage 

in ROZs. �ere are many di�erent types of ROZs in the term of origin and  evolution10. Harouaka et al.11 divided 
the ROZs into types; brown�eld ROZs are the main pay zone (MPZ) below the oil–water contact of reservoirs 
and the green�eld is the only residual oil zone or not associated with normal oil reservoirs. Unfortunately, ROZs 
are not o�cial for oil exploitation because conventional techniques cannot produce oil at these  formations7.

However, there are several studies that demonstrated the success of oil production in ROZs using  CO2-EOR 
 method8,11–13. In particular, the Permian basin with the active ROZs employed the  CO2 injection in a number 
of �eld projects, but the actual evaluation of ultimate oil recovery is not yet  investigated14. Also, the  CO2 storage 
capacity in ROZs capacity is still preliminary estimates with large  uncertainties15. �is is because of the limitation 
of characterization data and existing geological uncertainties in ROZs.  CO2-EOR and storage in MPZ have been 
presented in various  studies16–21. Ettehadtavakkol et al.16 proposed the framework for optimal design to rank 
 CO2-EOR and storage candidates. Ahmadi et al.17 used the numerical simulation to perform  CO2 sequestration 
and EOR into the pay zone and aquifer. Zhang et al.18 calculated the  CO2 storage capacity in the H-59 block 
of Jilin oil�eld China. �ey investigate the trapping mechanism and  CO2 plume shape using the well pattern, 
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reservoir heterogeneity and injected  CO2 amount. Ampomah et al.19 proposed the integrated work�ow based on 
the uncertainty quanti�cation method and the arti�cial neural network optimization approach to co-optimize 
the  CO2 storage and EOR in the Farnsworth Unit oil �eld in Texas. Dai et al.20 employed Monte Carlo (MC) 
simulations for the quanti�cation uncertainty of  CO2 sequestration potential within an active EOR project in 
the Morrow reservoir at the Farnsworth Unit, Texas. Hill et al.21 stated that geologic  CO2 storage coupling EOR 
provides the bene�ts to improve oil recovery, which o�sets major capital costs of capture and storage facility.

Regarding the  CO2-EOR in ROZs, many type of researches were conducted to prove the potential oil 
 recovery22–25. Koperna et al.22 demonstrated that the  CO2 �ooding is potential for the oil �eld development plan 
in ROZs of the Permian Basin. Honarpour et al.23 utilized the laboratory data and compositional  CO2 �ood 
simulation to evaluate the oil recovery of Residual oil zones in the Seminole San Andres Unit. �ey tried to 
understand the rock �uid characterization and model the complexity in ROZs. Bergmo et al.24 conducted the 
simulation of  CO2-EOR on water-�ooded oil reservoirs underlying the paleo residual oil zone to estimate the 
potential oil recovery on ROZs. Stewart et al.25 carried out the simulation study to investigate the feasibility of 
 CO2 injection in ROZs of Pierce Oil Field, Central North Sea. �ese authors con�rmed that the  CO2-EOR could 
produce the low carbon intensity crude oil in the mature �eld.

By reviewing the literature, studies on coupled  CO2-EOR and storage in ROZs are minimal. Ren and Ducan 
26 used the numerical simulator (Eclipse-300) to evaluate the performance of  CO2-EOR and storage by adjusting 
injection strategies, well con�gurations, and injection pattern in the real San Andreas ROZs reservoir. �is work 
contributed to better understand for the future development of  CO2 storage and EOR in ROZs.

Jamali and Ettehadtavakkol et al.27 conducted the �eld scale modelling for MPZ and ROZs San Andres Unit 
in the Permian Basin to assess the potential Carbon storage and ability to reduce leakage in ROZ. Recently, Chen 
and  Pawar28 developed the novel method using numerical simulation and statistical analysis in residual oil zones 
of Goldsmith-Landreth San Andres. �ese authors demonstrated the e�ectiveness of the predictive empirical 
model using machine learning could provide for capacity assessment and optimization of  CO2-EOR and storage. 
However, the composition reservoir simulation is taking a long time processing for engineering problems such 
as sensitivity analysis and optimization process.

Also, the simulation work needs a large number of data such as seismic, well log, and core data. �ese issues 
could be solved by an Arti�cial Neural Network (ANN) to create the smart proxy model for the predictive pur-
pose. ANN can be employed as an alternative solution for complicated problems in the reservoir  engineering29. 
�ere are many studies to use ANN in petroleum engineering, such as the screening enhance oil recovery 
“method”30, assisted history  matching31, estimation dew point  pressure32, drilling  engineering33 ,etc. In the case 
of  CO2 sequestration, Kim et al.34 used ANN for prediction storage e�ciency in a saline aquifer. �ese authors 
stated that the ANN model is a robust tool for predicting the feasibility of  CO2 sequestration with high accu-
racy. Moreover, Ahmadi et al.35 applied ANN for the prediction of the  CO2 properties in carbon capture and 
sequestration operations. Besides, ANN models were used for the evaluation performance of the WAG process 
in  CO2-EOR and sequestration  projects36,37.

Furthermore, several studies were employed ANN-based proxies models for EOR  projects38,39. �ese authors 
stated that the ANN expert system could propose the fast technical and economic assessment for EOR projects. 
Recently, You et al.40 proposed a robust framework that integrating the ANN and multi-objective optimizers to 
�nd the optimal solution for  CO2-EOR and storage in the FWU �eld.

Regarding the application of machine learning tools to sever as fast proxy models of high-�delity reservoir 
simulation using regression  approach41, arti�cial neural  network42. Besides machine learning approach was sup-
ported for other reservoir engineering problems such as history  matching43, reservoir  characterization44. �ese 
studies were demonstrated that the utilization of a machine learning approach would improve computational 
e�ciency with complex issues in subsurface engineering.

However, ANN techniques have not been implemented to create predictive models to estimate the oil recovery 
performance and  CO2 storage capacity for depleted reservoirs or ROZs. �us, this study aims to propose the 
ANN models for generation predictive tools to evaluate the feasibility of  CO2-EOR and storage with simply and 
reducing time-consuming compositional reservoir simulation for ROZs. Also, this study was coupled Particle 
Swarm Optimization and ANN system to speed up the optimization process of the  CO2-EOR project.

To best of our knowledge, this work is the �rst to be adapted ANN model for a generation the robust predic-
tive tools in  CO2-EOR and storage in ROZs.

In sum, the main objectives of our work are the following:

• To create the predictive models for  CO2-EOR and storage in ROZs.
• To generate the rapid tool reducing time-consumable compositional reservoir simulation.
• To validate the stability and accuracy of ANN models using the real ROZs �eld in the Permian Basin.
• To demonstrate the application perspective of ANN models for optimization  CO2 injection process.

Artificial neural networks model generation. Arti�cial Intelligence (AI)-neural networks are a com-
mon method for a generation of predictive models. AI-based reservoir simulation employed pattern recognition 
to teach reservoir performance to a  computer45. Moreover, the data-driven model could be created a fast and 
accurate prediction instead of reservoir simulation. For this paper, the data-driven models are built to evaluate 
the  CO2 storage capacity and oil �eld recovery in Residual Oil Zones. �e work�ow for the construction of the 
data-driven models is depicted in Fig. 1a. �e procedure of this work�ow is summarized as follows:

Step 1: Design Simulation Model. A 3D reservoir model was used CMG-GEM to simulate the  CO2 injec-
tion process. �e reservoir properties were referenced from Goldsmith-Landreth San Andres Unit (GLSAU) in 
the Permian  Basin46. �e �ve-spot well pattern scale was considered for this study. As depicted in Fig. 1a, the 
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simulation model has 12,960 (36 × 36 × 10) grid cells. �e area of the pattern is equal to 435 acres. �e horizontal 
size is 4392 � × 4390 � in the I and J  directions7. �e reservoir thickness and other properties were considered as 
uncertainty parameters. �e base case and uncertainty variables are summarized in Table 1.

In previous research, the reservoir thickness and rock properties were adopted from core  data47. In this study, 
information for rock-�uid properties was adapted from GLSAU in the history matching model by Trentham 
et al.48. Figure 1c highlighted the relative permeability relationship for this work. �e oil is supposed to compose 

Figure 1.  Data-driven modelling work�ow, reservoir model, and rock-�uid properties. (a) �e framework 
linked between the reservoir simulation and ANN for data-driven models. (b) �e illustration of base 
case reservoir models and location of the Residual Oil Zone in the subsurface. (c) �e behavior of relative 
permeability curves used for reservoir simulation.
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of a total of 10 pseudo hydrocarbon components (C1, C2, C3, C4, C5, C6, C7–C13, C14–C20, C21–C28 and 
C29 +)47. �e mole fractions for each component are following: 0.3577, 0.0584, 0.0597, 0.0536, 0.0358, 0.0116, 
0.2282, 0.081, 0.0416 and 0.072447.

For this work, the continuous  CO2 injection was conducted for 10 years injection phase followed by 90 years 
post-injection phase. Figure 2a highlights oil saturation at the end of 10 years of production. Figure 2b depicts 
the amount of  CO2 stored and retained for the base case design model.

Step 2: De�ne Uncertainty Parameters. �ere is a lot of uncertainties factor in ROZs because these reservoirs 
are not common in the exploration and production process. �erefore, these uncertainties could be used for the 
data-driven model to evaluate the performance of oil production and  CO2 storage capacity in ROZs. In this study, 
the uncertainty variables are listed in Table 1. �e range of uncertainty parameters are followed the studies of 
Koperna and  Kuuskraa22, Honarpour et al.23, Trentham et al.49, Harouaka et al.11, Aleidan et al.50, Trentham et al.48.

Step 3: Latin Hypercube Design. To create the training database, 351 simulation jobs were created by Latin 
Hypercube Design (LHD) using CMOST-AI which is an Arti�cial Intelligence package from CMG. �is tool 
is a powerful package for sensitivity analysis, history matching, optimization, and uncertainty assessment. �e 
main reason is considering LHD because it is the independence of the number of training samples from the 
uncertainty variables.

Table 1.  �e uncertainty variables for generation the reservoir simulation samples.

Uncertainty parameters Minimum Maximum Units

Porosity 0.05 0.25 –

Permeability 0.01 200 mD

�ickness 50 300 �

Residual oil saturation to gas �ood  (Sorg) 0.1 0.2 –

Residual oil saturation to water �ood  (Sorw) 0.2 0.4 –

Producer bottom hole pressure 100 1500 psi

CO2 injection rate 5 20 MM scf/day

Figure 2.  Base case reservoir simulation performance. (a) �e iso-surface of oil saturation in the end of  CO2 
injection scheme. (b) �e cumulative  CO2 stored,  CO2 retained, and oil production in the 10 years injection 
followed by 90 years post-injection period.
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Step 4: Conduct training simulation samples to collect inputs/outputs for the ANN models. �is step is an 
important process for the data-driven model. �e compositional simulator CMG-GEM is used to conduct 351 
simulation jobs. For each simulation job, the uncertainty variables (inputs) and the equivalent objective interests 
(outputs) were collected as the training database. �e objective interests are cumulative Oil Production, the 
cumulative  CO2 stored, and the cumulative  CO2 retained in ROZs.

Step 5: Create ANN model for objective functions. In this study, ANN has utilized for a generation the data-
driven model. Basically, the structure of a neural network consists of the input layer, output layer, and one or 
more hidden layers. Moreover, the neural network black-box of MATLAB was adapted to develop the predictive 
model. �e training ANN process was performed using the Levenberg–Marquardt (LM) algorithm. �is algo-
rithm is supported by reducing the output error in all of the connection  weights34. �e input variables include 
the parameters listed in Table 1. �e training data set is randomly divided into three main parts such as train-
ing, validating, and testing. During the ANN training process, the accuracy of the prediction output variables 
observed by investigating the cross plot of ANN predicted values and simulation results. R-squared values are 
considered for the evaluation ANN model. Also, the error of the training data and blind testing set are the second 
criteria to evaluate the ANN model. �is model training will stop when three criteria are satis�ed. First, the larg-
est R-squared values are obtained, and second, the root mean square error (RMSE) is not decreased any more.

�ese constraints prevent the over-�tting issue and evaluating the performance of the data-driven model-
based  ANN51. �e two decisive factors are calculated using formulas:

where xi,sam , xi,pred , xi,sam are data point from numerical simulation samples, the prediction values by neural 
network and the average of numerical sampling data, respectively.

Step 6: Validation and �eld application of ANN model. To employ the ANN model for prediction purposes. 
�e 351 samples were used for training and blind testing purpose to ensure the stability of the data-driven model. 
�en, the data-driven model will be deployed in the �ve real ROZs �elds from the Permian Basin. �is step 
will ensure that the feasibility of data-driven in the real �eld application not only in  CO2-EOR and storage but 
also in other science/engineering disciplines. �e MATLAB equation of ANN model for prediction �eld data 
expressing as: Result = net (matrix data).

Results
Samples for ANN training. Figure 3 highlights the training simulation results of cumulative Oil Produc-
tion, cumulative  CO2 retained and the cumulative  CO2 injection. As depicted in Fig. 3, 351 simulation jobs are 
diversity in the term of objective functions.

�e data-driven model has used 300 samples for a training network. 51 samples were used for a blind testing 
network to avoid the over-�tting issue. Generally, the ANN model was trained using Levenberg–Marquardt feed-
forward back-propagation algorithm. By using MATLAB Network Toolbox, the ANN model was created follow-
ing an 80%–10%–10% training plan corresponding with the partitioning dataset for a training-validation-test 
with a total of 300 samples. �e same training plan was employed for three di�erent targets. 80% (240 samples) 
were used for training to calculate the gradient and to update weights and biases. 10% (30 samples) was used for 
validation to evaluate the network generalization and stop training when generalization halt enhancing. 10% 
(30 samples) were used for veri�cation to use for comparing di�erent models. �e veri�cation scheme is not 
in�uencing on “training” therefore; it could evaluate the neural network performance during the training model.

Optimal number of neurons and hidden layers. Neurons (nodes) are the computational unit that is 
transfer function to link the input and output connection in ANN. Also, the hidden layer in an ANN architecture 
is the layer between the input and output layers. �e nodes pull a set of weighted uncertainty parameters and 
output oil production,  CO2 storage, and  CO2 retained through activation function in neural networks. �erefore, 
the number of hidden layers and the number of neurons in each hidden layer are the crucial factors that a�ect 
the predictive performance.

Generally, there are several studies to apply ANN for predicting the performance of  CO2-EOR and  storage34,36. 
�ese studies did not propose the optimal number of neurons and hidden layers. In their works, the number of 
neurons in single hidden layers is 10 neurons. �ere is no reason to claim that 10 neurons and one hidden layer 
are the best solutions for ANN models. �us, this study addressed this issue to clarify the importance of the 
number of neurons and hidden layers. �e developed ANN model has changed the size of neurons (i.e., 10, 20, 
40, 80, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 540). Also, the number of hidden layers has changed (i.e., 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). We changed the neurons and hidden layers in ANN models until we obtained the 
best performance. �e result of trial and error to determine the optimal number of neurons and hidden layers 
highlights in Fig. 4a,b. Besides, Fig. 4c represents the optimal ANN architecture for this study. �e performance 
of this ANN architecture will elaborate in the next section.

Performance of the ANN model. �e result of the training performance of three objectives with the 
mean square error and the number of epoch during the training network depicts in Fig. 5. Successful training 
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is completed until the lowest errors in the veri�cation, and testing curves are nearly similar based on the epoch 
numbers. As shown in Fig. 5a, the result of cumulative oil production converged to a mean square error of 
0.02519 at the 50th iteration. For the cumulative  CO2 injection and cumulative  CO2 retained (Fig. 5b,c), the best 
validation performance is 0.30279, 0.1259 at the 20th and 40th iteration, respectively.

It is indicated that the training results are reasonable to qualify the following criteria: (i) the mean square error 
value is small; (ii) the testing curve and veri�cation curve are not very di�erent; (iii) no signi�cant over�tting 
has occurred during the training process. Moreover, Fig. 6 depicts the excellent correlation between numerical 
samples and ANN prediction objectives that represented for training-validation-testing data.

As can be seen in this �gure, data-driven ANN models for cumulative oil production (Fig. 6a), cumulative 
 CO2 stored (Fig. 6b), and cumulative  CO2 retained (Fig. 6c) were revealed that the overall  R2 greater than 0.98. 
�is correlation factor proves a similarity between the result of the data-driven ANN model and the numerical 
simulation value. �e  R2 values and RMSE for the data-driven ANN model are listed out detail in Table 2.

Although the ANN prediction model has excellent performance in the term of RMSE and  R2. It is necessary 
to test the developed ANN models with blind datasets before employing the predictive model for real �elds in 

Figure 3.  �e numerical simulation samples for training and blind testing ANN models. (a) �e samples 
of cumulative oil production. (b) �e samples of cumulative  CO2 stored. (c) �e samples of cumulative  CO2 
retained.
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the Permian Basin. 51 numerical simulation samples were used to test the data-driven model. �ese samples 
were not used during the training process. �e blind set data was a matrix of 41 rows and 8 columns.

Figure 7 depicts the result of the sample blind test results for cumulative oil production, the cumulative  CO2 
stored, and cumulative  CO2 retained. �e  R2 greater than 0.98 illustrates the success of blind testing validation 
for three data-driven models based on ANN in ROZs. �ese data-driven models will be used for comparative 
study in the real �elds of the Permian basin (USA).

Field application of ANN model. We deployed the data-driven model created using ANN to several ROZ 
�elds in the Permian Basin. �e �ve �elds comprised Robertson (San Andres), Vacuum (Grayburg/San Andres), 
Wasson (Bennett Ranch), Wasson (Denver), Seminole (San Andres). Table 3 summarizes the values of the res-
ervoir parameters for these �elds.

Figure 4.  �e e�ect of neuron and hidden layers to ANN models. (a) �e optimal neurons of each layers. (b) 
�e optimal number hidden layer. (c) �e optimal architecture of ANN prediction models.
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However, the residual oil saturation to gas  (Sorg) for the �ve �elds was not mentioned in the previous study. 
�us, we suppose that the  Sorg for all �ve �elds is similar to the Goldsmith �eld in San Andres area. �erefore, the 
 Sorg de�ned as equal to 0.15. Also, Chen and  Pawar7 con�rmed that the cumulative oil production, cumulative 
 CO2 injection, and cumulative  CO2 retained are not so sensitive to  Sorg. �erefore the assumption value of  Sorg will 
not a�ect the prediction results of data-driven models. Note that the predictive data-driven models are mainly 
based on the base case model illustrated in Fig. 1b, and the area of the base case reservoir model is 435 acres.

For each ROZ �eld with a speci�c area, the prediction has used the values calculated from the base case res-
ervoir model multiplied by the ratio of the real �eld area to the base case reservoir model area. For instance, the 
area of the Robertson �eld in the San Andres Unit is 6000 acres. �e ratio of the real �eld area for Robertson (San 
Andres) to the base case reservoir model area is 6000/435 = 13.79. �erefore, the total capacities for Robertson 
(San Andres) are calculated by multiplying the results predicted by the base data-driven model by the area ratio 
13.79. Figure 8a highlights the results of oil recovery for all �ve ROZ �elds computed from the data-driven models 
and the equivalent values reported in the study of Koperna and  Kuuskraa22. Figure 8a also depicts the results of oil 
�eld recovery for �ve �elds using the ANN model, the predicted results of Chen et al.7 and the �ndings recorded 
by Koperna and  Kuuskraa22. Recap that the bottom hole pressure for production wells is set equal to 800 psi and 
the amount of  CO2 injection is set equivalent to one million tons per year. We can observe that the prediction 
results of oil recovery by ANN model closer to the report data than Chen’s study. �ese results suggested that 

Figure 5.  �e ANN training performances for three objectives. (a) �e best validation performance of 
cumulative oil production is 0.025 at epoch 50th. (b) �e best validation performance of cumulative  CO2 stored 
is 0.3 at epoch 20th. (c) �e best validation performance of cumulative  CO2 retained is 0.12 at epoch 40th.
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the ANN models could predict the oil recovery performance with high accuracy in ROZs. By comparison plot, 
the prediction results ANN models with report data and previous study, we demonstrated that the developed 
ANN model was enhanced than previous machine learning model.

Moreover, the developed ANN models have also used for evaluating the  CO2 storage capacity, and the fraction 
of  CO2 retained all �ves �eld ROZs. �e prediction results are depicted in Fig. 8b,c. As can be seen in Fig. 8b, 
the highest  CO2 storage capacity is in Wasson (Denver Unit), and the smallest  CO2 storage capacity is in Rob-
ertson (San Andres Unit). In sum, the potential  CO2 storage is in two �elds: Wasson (Denver Unit) and Vacuum 
(Grayburg/San Andres). �e reason for that is due to the ROZ thickness and area of two �elds larger than the 
remaining �elds. �e last predictive objective of this work is the fraction of  CO2 retained in ROZs. We can see 
from Fig. 8c that the highest fraction of  CO2 retained in Wasson (Bennett Ranch). Also, reservoir simulation 
samples were performed using continuous  CO2 injection with the �ve-spot well pattern. It was proven that this 
scenario had the highest amount of  CO2 storage because the  CO2 injection did not break through the production 
well within 10 years oil production period that led to a very high fraction of  CO2 retained for all �ve ROZs �elds. 
�e prediction results demonstrate that the proposed ANN models can apply for feasibility studies on  CO2-EOR 

Figure 6.  �e regression plots comparing the numerical samples and ANN prediction. (a) �e excellent 
correlation of training, validation, and testing of cumulative oil production with  R2 greater than 0.99. (b) �e  R2 
greater than 0.99 indicated the good performance of cumulative  CO2 stored network. (c) �e greater 98%  R2 for 
all training, validation, and testing demonstrates the cumulative  CO2 retained networks.

Table 2.  �e correlation factor and Root Mean Square Error for data-driven ANN models.

Parameters Oil production CO2 stored CO2 retained

R2 (overall ) 0.995 0.982 0.987

RMSE 1.29 1.44 5.51
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and storage performance in the �eld scale CCUS project as well as the Permian Basin. It is indispensable to 
conduct the preliminary assessment of the potential geological storage formation in the early stage of the CCUS 
project. �e ANN models can predict the level �eld oil recovery,  CO2 stored and  CO2 retained in ROZs with 
high accuracy by using seven uncertainty parameters, such as thickness, porosity, and permeability, residual oil 
saturation to water �ooding, residual oil saturation to gas �ood,  CO2 injection rate, and producer bottom well 
pressure. �us, developed ANN models could consider as a useful, fast, and robust tool to estimate the feasibility 
of Carbon Capture, Utilization, and Storage (CCUS) projects, especially in ROZs.

Figure 7.  �e blind testing of the data-driven ANN models. (a) �e blind testing result of cumulative oil 
production with  R2 greater than 0.993. (b) �e excellent blind testing of cumulative  CO2 stored with  R2 greater 
than 0.994. (c) �e greater 98%  R2 for the blind testing of cumulative  CO2 retained.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18204  | https://doi.org/10.1038/s41598-020-73931-2

www.nature.com/scientificreports/

Application perspective of developed ANN models. Although the �eld application was demon-
strated the e�ectiveness of developed ANN models, however, the unstable oil price is a substantial barrier for 
 CO2-EOR and storage project. �erefore, the applicable ANN models should be considered in both technical 
and economic aspects. In this section, the developed ANN models will serve as the replication-competent of the 
reservoir simulation model to support for the optimization process.

�e  CO2 injection process will be optimized using Particle Swarm Optimization (PSO) and developed ANN 
models to obtain the best oil production,  CO2 storage, and economic parameters such as the Net-Present Value 
(NPV). �e �nancial metrics for  CO2 injection were highlighted in Table 452. Besides these economic parameters, 

Table 3.  �e residual oil zones parameters for �ve �elds in the Permian Basin, USA.

Parameters
Robertson (San 
Andres)

Vacuum (Grayburg/
San Andres)

Wasson (Benett 
Ranch) Wasson (Denver)

Seminole (San 
Andres)

�ickness (�) 65 194 150 150 100

Permeability (mD) 15 15 11 12 15

Sorg 0.35 0.314 0.35 0.35 0.32

Sorw 0.15 0.15 0.15 0.15 0.15

Area (acres) 6000 19,200 7027 27,848 15,700

Figure 8.  �e prediction results of data-driven ANN models for �eld application in the Permian Basin. (a) 
Comparing between oil production calculated from ANN model and the values recorded in the study of 
Koperna and Kuuskraa (2006) and Chen et al. (2019). (b) �e predicted cumulative  CO2 stored from ANN 
models. (c) �e predicted fraction of  CO2 retained from ANN models.
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the predicted oil prices from 30 to 60 $/bbl was considered for uncertainty in the crude oil market of any 
 CO2-EOR project.

�e PSO approach is used 300 experiment jobs to search for the optimal solution over all of the objective 
functions. Figure 9 depicts the results of 300 experiment jobs. �is �gure has also highlighted the performance 
of the base case and the optimal solution for this work. As can be seen in Fig. 9, the optimal solution is achieved 
at experiment 278th with the highest value function value of 10.46. Recap that when experiment jobs are over 
220th, the objective function values converge to a plane. It is indicated that these 300 experiments already �nd 
enough solution distance to achieve the optimal solution.

�e optimal results of cumulative oil production and  CO2 storage is highlighted in Fig. 10. It is found that the 
optimal case has 857,000 tons of  CO2 storage. �e cumulative oil production has 26.4 MM bbl.

For better evaluation of the improvement of the optimization process, the base case scenario was compared 
with the optimal solution. �e optimization results shown that the cumulative oil production was increased by 
30.60% and NPV of optimal case was enhanced by 33.08%. Also, the  CO2 storage had been improved by 44.76%. 
At the same time, the objective function was enhanced from 7.63 to 10.46. Table 5 summarizes the comparison 
of the baseline case and optimal case.

�e optimal solution in this study had been better prediction performance than the base case scenario in all 
considered objectives, including cumulative oil production,  CO2 storage, and Net Present Value. Furthermore, 
the role of developed models was integrated with PSO to speed up the optimization process. �e PSO coupling 
ANN models need only 566 s to obtain the optimal solution that reducing computational time for the optimiza-
tion process. Also, this study was considered the unstable oil prices to evaluate the NPV projects. Utilization of 
the ANN models, the base case and optimal case were economically calculated the NPV with the range of oil 
prices vary from $30–$60/barrel, as highlighted in Fig. 11.

It can be seen in Fig. 11 that the optimal solution demonstrates more feasible economic consideration for a 
range $(30–60) per barrel oil prices. �is result indicates the excellent perspective of developed ANN models 
for evaluating the economic feasibility of a project. Furthermore, these developed ANN models would provide 
a fast and robust tool to estimate project economic bene�ts.

Discussion
Our results suggest that the need to develop the ANN predictive tools for evaluation of the performance of 
 CO2-EOR and storage in ROZs. We showed that the ANN models could achieve the high accuracy of predic-
tion results by comparing it with reported data from �ve real �elds in the Permian Basin. �e reason for this 
excellent predictive performance because of the careful selection of the speci�c uncertainties parameters for 
training ANN models. Also, the blind testing process is fundamental to verify the accuracy of ANN models. 
Many studies using ANN without consideration of the blind testing network. �is issue should not ignore when 
we developed the ANN models.

Table 4.  �e �scal and economic parameter for  CO2 injection project.

Parameters Values

Oil price 30–60 ($/bbl)

CO2 capture 2.38 ($/Mcf)

CO2 separation 0.35 ($/Mcf)

Compression 0.65 ($/Mcf)

Transportation 1.16 ($/Mcf)

Injection 0.26 ($/Mcf)

Discount rate 15%

Income tax 30%

Figure 9.  Value of objective function for optimization study.
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Figure 10.  �e cumulative oil production for the base case and optimal case (a); the  CO2 storage amount for 
the base case and optimal case (b).

Table 5.  Comparison between the base case and the optimal solution.

Results Unit Base case Optimal case Di�erence (%)

Cumulative oil production 107 bbl 2.02 2.64 30.60

CO2 storage 105 ton 5.92 8.57 44.76

NPV 107 USD$ 2.66 3.54 33.08

Objective function 107 bbl oil + 107 lbmol  CO2 + 107$ 7.63 10.46 37.09

Figure 11.  NPV comparison between the base case and optimal solutions achieve with di�erent values of oil 
prices.
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We recognized that each ANN model is case-speci�c, which means the ANN model built for one particular 
area cannot be used in another reservoir characteristic. For instance, this study was developed for ROZs, so the 
ANN model from this work just applied in the ROZs �eld. However, the procedure is generated the DDM is 
easy to adapt for case by case. Also, the key element to producing the ANN model is the spatiotemporal database 
training. �e more reservoir information comprised in the training database, the more accuracy the network 
training will be. We can adjust the number of reservoir parameters for “training” ANN model depended on the 
available information. Furthermore, the range of uncertainty parameters used in training models is signi�cant. 
�e selection speci�c range for training cases should refer to the literature or previous work. �e ANN models 
might not give robust results if the models are tested on the properties out of the range of training cases.

Our �ndings �nd that the number of simulation jobs is an important component for hand-shaking reservoir 
simulation and machine learning tools to develop the ANN models.

�is work was used 351 samples for training and blind testing network purpose. Note that increasing the 
numerical samples led to improve predictive models. �us, the di�erence between predictive results and �eld 
report data is less than 8%. While the other study used 250 samples for a generation, the predictive empirical 
models to get a di�erence less than 10%7. �e issue of the numerical samples was not raised when using ANN 
for predictive the performance of  CO2-EOR and  storage22,36. Also, these past studies did not pay attention to 
veri�cation sample blind test results. However, our work was clearly expressed the performance of predictive 
models before “employ” the ANN model for prediction in the real �eld application.

Furthermore, our study was demonstrated the application perspective of the developed ANN model by 
coupling with PSO to speed up the optimization process. �e advantage of ANN models could support conven-
tional reservoir simulator to reduce time-consuming for engineering applications such as sensitivity analysis 
and optimization aspect.

In summary, our study proposes an innovative framework for “generation” robust and high accuracy ANN 
models. In order to reproduce the proposed method, it is recommended hitherto for other  CO2 storage “for-
mation” such as saline aquifers, depleted hydrocarbon reservoirs, and unconventional reservoirs. A probable 
limitation of data-driven models is applicable to di�erent geology characteristics. However, our work claims that 
the selection uncertainty variables for the training scheme would reduce the weakness of data-driven models. 
�erefore, this methodology could be applied in the di�erent aspects of CCUS, Enhanced Oil Recovery, reservoir 
engineering, and other science disciplines.

Conclusions
�is study assessed the performance of  CO2-EOR and storage in Residual Oil Zones using Arti�cial Neural 
Networks. It explored the applicable of data-driven models for prediction �eld oil recovery,  CO2 stored, and 
 CO2 retained in the real �eld ROZs in the Permian basin (USA). �e following key points could be drawn based 
on the �ndings of this work:

1. Numerical reservoir simulation of residual oil zones was conducted to generate the training database utilized 
as input and output layer in ANN data-driven model design. �is study was created 351 numerical simula-
tion jobs for the spatiotemporal database to collect the objective function included  CO2 oil production,  CO2 
stored, and  CO2 retained in the ROZs reservoir model.

2. �e developed ANN model was built with the optimal design of architecture comprising of 7 hidden layers 
and 20 neurons of each hidden layers , minimum Mean Square Error, the maximum correlation factor  (R2) 
of testing data set. As the veri�cation, the blind testing results revealed that the  R2 was higher than 0.99, and 
the overall training had a low MSE of less than 2%.

3. As a real �eld application, data-driven models were applied for �ve ROZs �elds in the Permian basin, USA. 
We found that the ANN models can achieve an excellent forecast of oil recovery that �ts excellent with the 
report data conducted by Koperna and  Kuuskraa22. Furthermore, the ANN models can also be adapted to 
predict the  CO2 storage capacity in multiple ROZs. �e excellent agreement of the predictive  CO2 stored 
results was compared with the data in the work of Chen and  Pawar7. Also, to the best of our knowledge, the 
 CO2-EOR and storage capacity has not been investigated in ROZs by using data-driven ANN models.

4. �e proposed ANN models can predict the  CO2-EOR and storage performance with high accuracy in ROZs. 
Our �ndings suggest that the developed models can be reproduced and applied in the other aspect of EOR 
and  CO2 sequestration, such as prediction trapping index,  CO2 leakage from the cap-rock or  CO2 plume 
migration area. Besides, the proposed data-driven modelling work�ow is supposed very useful in researches 
and practical applications, especially the intelligence techniques that are commonly developed and utilized.

5. �e proposed data-driven model can be linked with commercial simulation packages such as CMG or 
ECLIPSE to enhance their ability and accuracy for forecasting the  CO2-EOR and storage performances in 
geological formations.

6. �e developed ANN models could integrate with other optimization algorithms to improve the speed of the 
optimization process.
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