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ABSTRACT Due to the lack of living space and the increase in population, there has been a construction

boom in the underground space to improve the quality of human life. Tunnel engineering plays a vital role in

the development of underground space. In addition to traditional methods, some intelligent methods such as

artificial neural networks (ANNs) have been applied to various problems in the tunnel domain in recent years.

This paper systematically reviews the application of ANNs from different aspects of tunnel engineering.

It reveals that the backpropagation algorithm (BPA) and Levenberg-Marquardt algorithm (LMA) are the

most widely used. Due to the limitations of some original models, some scholars use optimization algorithms

such as particle swarm optimization (PSO) and genetic algorithm (GA) to optimize the original ANNs to

obtain better prediction results. A comparison between the ANN-based methods and methods like statistical

methods is conducted. Finally, the following conclusions can be drawn: (1) The recommended ratio of the

training set and test set is 3:1; (2) The advantage of optimized ANNs is not apparent when the optimization

algorithm varies. Additionally, the performance of ANNs is always better than that of statistical methods.

INDEX TERMS Artificial neural networks, tunnel engineering, prediction accuracy.

ABBREVIATIONS IN ALPHABETICAL ORDER

(ANFIS) Adaptive neuro-fuzzy inference system

(AIC) Akaike information criterion

(AF) Application field

(ABC) Artificial bee colony

(ANNs) Artificial neural networks

(ANNFF) Artificial neural network with forgetting factor

(AIER) Average inference error rate

(ARE) Average relative error

(BPA) Backpropagation algorithm

(BPNN) Backpropagation neural network

(BLR) Bayesian linear regression

(BNC) Bayesian network classifier

(CGA) Conjugate gradient algorithm

(CFT) Curve fitting toolbox

(DWF) Daughter wavelet function

(DT) Decision trees

(ELM) Extreme learning machine

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

(FFNN) Feedforward neural network

(FLM) Fuzzy logic model

(GPOD) Gappy Proper Orthogonal Decomposition

(GF) Gaussian function

(GP) Gaussian process

(GA) Genetic algorithm

(GIS) Geographic information system

(TANSIG) Hyperbolic tangent function

(ICA) Imperialist competitive algorithm

(KNN) K-nearest

neighbors

(KSOFM) Kohonen self-organizing feature map

(LMA) Levenberg-Marquardt

algorithm

(LMBP) Levenberg-Marquardt

backpropagation algorithm

(LIN) Linear function

(LMRA) Linear multiple regression analysis

(LIR) Linear regression

(LRM) Logarithmic regression method

(LOGSIG) Logistic sigmoid function
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(MABE) Mean absolute bias error

(MAE) Mean absolute error

(MAPE) Mean absolute percentage error

(ME) Mean error

(MSE) Mean squared error

(MSEREG) Mean squared error with Regularization

(MRNN) Midpoint recurrent neural network

(MNN) Modular neural network

(MLP) Multilayer perceptron

(MOE) Multi-object

error

(MRA) Multiple regression analysis

(MARS) Multivariate adaptive regression splines

(NMRA) Nonlinear multiple regression analysis

(NM) Not mentioned

(PSO) Particle swarm optimization

(PE) Percentage error

(POSLIN) Positive linear function

(PA) Prediction accuracy

(PNN) Probabilistic neural network

(PURELIN) Pure linear function

(RBF) Radial basis function

(RBFNN) Radial basis function neural network

(RRNN) Radius recurrent neural network

(RF) Random forest

(ReLU) Rectified linear units function

(RNN) Recurrent neural network

(RE) Reference

(RAE) Relative absolute error

(RRMSE) Relative root mean square error

(RMSE) Root mean square error

(RRSE) Root relative square error

(SCGA) Scaled conjugate gradient algorithm

(SIG) Sigmoid function

(SPSS) Statistical Product and Service Solutions

(SSRE) Sum squared relative error

(SVM) Support vector machine

(SVMFF) Support vector machine with a forgetting

factor

(SVR) Support vector regression

(SM) Surrogate model

(VAF) The variance accounted for

(TL) Transfer learning

(TBMs) Tunnel boring machines

(UD) Uniform design

(WNN) Wavelet neural network

NOMENCLATURE

(R2) Coefficient of Determination

(R) Correlation coefficient

(α) Learning rate

(tk) Measured output

(β) Momentum constant

(yk) Predicted output produced by the ANNs

(σ ) Standard deviation

(tk ) The average value of actual tk values

(yk ) The average value of actual yk values

(Ncountry) The number of countries

(Ndecade) The number of decades

(Nh) The number of hidden neurons

(Nimp) The number of imperialists

(Ni) The number of input neurons

(No) The number of output neurons

(var(tk-yk)) The variance of tk-yk
(var(yk)) The variance of yk
(wj) The weight vector

(n) Training epochs

I. INTRODUCTION

According to World Urbanization Prospects, 55% of the

world’s population lives in urban areas, and it is expected

to increase to 68% by 2050 [1]. Together with urbanization,

the overall growth of the world’s population will increase

the urban area by another 2.5 billion people by 2050. The

growing population leads to the extensive development of

underground space, which offers the possibility of improving

the quality of life [2]. Tunneling is one of the methods to

develop underground space using machinery such as shield

TBMs. In the past few decades, researchers have been using

traditional methods such as analytical methods and numerical

simulation methods to solve tunnel-related problems [3], [4].

However, obtaining accurate results is not easy because many

calculations require detailed external parameters and reason-

able estimates. Driven by big data, ANNs are considered to

be an emerging method used in tunnel engineering and have

been applied to solve these tunnel-related problems.

ANNs are inspired by the biological behavior of neurons

and human brain research and can help tunnel engineers

establish relationships between input parameters and output

parameters [5]. Shi et al. applied ANN to predict settlements

during tunneling [6], and then the tunnel support stability was

obtained [7]. Benardos et al. predicted the performance of

TBM, mainly including the TBM advance rate, by present-

ing an ANN model [8]. To learn more about the hazardous

geological zones in front of a tunnel face, Alimoradi et al.

built an ANN model to classify the mechanical properties

of rock mass in the zones [9]. Lau et al. applied RBFNN to

estimate production rates on the following cycle in tunneling

construction [10]. Mahdevari et al. estimated the unknown

nonlinear relationship between the rock parameters and tun-

nel convergence by using the data from the Ghomroud water

conveyance tunnel in Iran [11]. Rastbood et al. developed an

ANN to predict the stresses executed on segmental tunnel

lining [12]. Wu et al. applied ANN to verify the proposed

tunnel ventilation systemwith variable jet speed [13]. Ribeiro

e Sousa et al. used different types of data mining techniques

ranging from ANNs to naive Bayesian classifiers to predict

the type of rockburst [14].

Lai et al. reviewed the main developments in the field of

tunnel deformation prediction system based on ANNs [15].
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Lu et al. present applications of artificial intelligence in civil

engineering [16]. However, the thorough investigation of the

application of ANNs in tunnel engineering is still insuffi-

cient. Providing a brief review of the studies related to the

application of ANNs in the context of the tunneling field can

help plan, design, and construct tunneling projects with ANN

techniques.

This study aims to review the application of ANN-based

models in the field of tunnel engineering. Section 2 shows the

methodology of this paper. Section 3 presents an overview of

the ANNs. Section 4 demonstrates the application of ANNs

in different aspects of tunnel engineering. Section 5 discusses

the features of ANNs, such as architecture, transfer functions,

prediction performance. In Section 6, primary conclusions

and future works are summarized.

II. METHODOLOGY

The research methodology of this paper can be summarized

as follows:

A. CONDUCTING A KEYWORD-BASED SEARCH

This paper employs Web of Science to perform a

keyword-based searching of published papers from 1900 to

2019. The keywords include artificial neural networks and

tunnel. In this step, 422 published papers are collected as a

basic literature library.

B. SEARCHING TOP 100 HIGH LOCAL CITED PAPERS

Histcite pro is used to select 100 papers with the highest

citation among 422 papers.

C. SEARCHING PAPERS PUBLISHED IN 2017-2019

Reviewing recently published papers can help readers know

the latest developments in related research. Finally, 52 papers

of the remaining 322 papers are selected.

D. SCREENING THE COLLECTED PAPERS

There are several criteria for screening the 152 papers col-

lected in the above two steps. First, the content of the paper is

directly related to tunneling engineering. Second, the model

used in the paper should use at least one ANN-based model.

Finally, 61 papers are extracted from the 152 collected papers.

E. REVIEWING THE PAPERS

To summarize different characteristics of the ANNs, such as

the number of the hidden layers and learning rate, 61 papers

are carefully reviewed.

III. OVERVIEW OF ARTIFICIAL NEURAL NETWORK

Many studies have detailed the definition and development

process of ANNs [17]. ANN can be applied to approxi-

mate functions between a large number of input parameters

and output parameter(s) because it has the ability of self-

learning. Moreover, ANNs can learn from previous data and

can help obtain useful information from the raw data. These

strengths make ANNs a valuable tool for predicting some

TABLE 1. Pros and Cons of the ANNs.

complex problems. According to different factors, ANNs can

be divided into different categories (see Fig. 1).

A. ARTIFICIAL NEURAL NETWORK

Training an ANNmodel is a process of adjusting weights and

biases until it meets the stop criteria defined by the users,

or until the error converges to the minimum value initially

set [18]. After establishing an ANNmodel, the optimal model

is found by optimizing the number of hidden layer(s) and

hidden nodes, the type of transfer function, and so on [19].

Table 1 lists the pros and cons of ANNs.

The ANNs in tunnel engineering can be demonstrated in

three aspects: the characteristics, the modeling process, and

the main types of ANN used in this field.

1) CHARACTERISTICS OF ANN

The activation function, also called the transfer function,

is used for transferring the information in the artificial neu-

rons. The derivative of SIG can be expressed according to the

function itself, thus it can be applied to the most common

training algorithm. Park et al. stated that SIG is the most

efficient through its better performance [25]. Rajabi et al.

stated that SIG is more efficient when it is compared with

linear functions in general [28].

In theory, the activation function can be different from one

layer to another [29]. The selection of activation functions is

related to the complexity of the problem and the purpose of

the model [5], [30].

The learning ability of the ANNs comes from its network

topology, which mainly includes the number of layers and

the number of neurons. When the ANN model is applied to
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FIGURE 1. Classifications of main ANNs applied in the tunneling field.

the tunnel-related field, it always has one input layer, one

or two hidden layers, and one output layer. Among these

layers, one of the most critical steps in building an ANN

model is to determine the number of hidden layers because

mathematical adjustment operations are performed in these

layers [19], [31].

The neurons in the input and output layers correspond to

the input and output variables of the problem. Hidden neurons

enable the network to solve complex problems and are closely

related to the performance of ANNs [32].

The training algorithm automatically adjusts the weights

and thresholds of neurons to minimize errors [29]. There

are many existing ANN training algorithms, including BPA,

LMA, the conjugate gradient method, and so forth. BPA

and LMA are the most commonly used training algorithms

in ANNs. LMA is 10 to 100 times faster than the usual

BPA and proved to be the quickest and most robust algo-

rithm [33], [34].

2) MODELING PROCESS OF ANN

The ratio of training, validation, and test sets is a significant

factor that affects ANN’s performance. So far, there is no

specific method for defining the ratio of available data.

Different dimensions and scales of input parameters will

lead to instability learning and a decrease in learning speed.

To obtain dimensionless data, it is necessary to normalize the

data before network training [35], [36].

Three main steps, including training, validation, and test-

ing, constitutes a successful ANN. During the training pro-

cess, the training algorithm is applied to update the weights

and minimize the error. The validation step is the criterion for

stopping the training step, and the test procedure is applied to

a trained and validated ANN to measure its performance [37].

In most cases, only the training and test steps are carried out

because an appropriate model can be chosen through previous

experience.

Regarding the performance evaluation of the trained ANN

model, Table 2 summarizes some main performance metrics.

TABLE 2. Main Performance functions of a trained ANN model.

When using two or more performance indicator(s), the total

rank method proposed by Zorlu et al. is commonly used to

obtain the optimal model from the different results of these

indicators [30], [38]–[40].

As shown in Table 1, the interpretability of the result pre-

dicted by ANNs is poor because ANN is a black-box model.

Thus, sensitivity analysis is conducted to find out the relative

importance of the influencing factors that affect the prediction

results [28], [29], [41].

3) MAIN ANN TYPES USED IN TUNNEL ENGINEERING

Basic ANNs includeMLP, RBFNN,WNN, and KSOFM (see

Figs. 1 and 2). Commonly used optimized ANNs include

PSO-ANN, ICA-ANN, GA-ANN, and ABC-ANN.

Among the most popular basic ANN types, MLP belongs

to FFNN and contains at least one hidden layer. The advan-

tage of the MLP is that it can be used in high nonlinear

problems [42]. BPA is the most popular and efficient learning

procedure in ANNs, especially for MLP [21], [30], [43].

RBFNN is an FFNN that uses radial basis functions such

as a GF as the activation function [11]. Unlike BPNN,

RBFNN performs in two ways: (1) is more efficient and
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FIGURE 2. Structure or map of different basic ANNs: a) MLP; b) RBFNN;
c) WNN; d) KSOFM.

straightforward, thereby reducing training time; (2) avoids

falling into a local minimum and overtraining [44]. There

are an input layer, hidden layer, and output layer in RBFNN,

as shown in Fig. 2.

WNN is usually an FFNN composed of one input layer,

one hidden layer, and one output layer. WNN uses wavelets

as its activation function [21].

Among unsupervised ANNs, KSOFM is the most widely

used neural networks [43]. Using KSOFM can automatically

divide the dataset into multiple clusters according to the

similarity of the dataset.

B. IMPROVED ARTIFICIAL NEURAL NETWORKS

Although the BPA is the most commonly used algorithm,

the learning speed is relatively low and may fall into a local

minimum [20], [45]. Therefore, optimization methods such

as PSO, ICA, GA, and ABC are introduced to improve the

performance of the network andmake it easier for the network

to find a global minimum. A simple comparison between

these optimizers is shown in Table 3 [20], [30], [41].

IV. APPLICATIONS OF ANNs IN TUNNEL ENGINEERING

ANNs have a wide range of applications in tunnel engi-

neering, such as tunneling-induced settlement, tunnel support

stability, roadheader or TBM performance, and so forth. The

reviewing results are shown in the Appendix.

A. TUNNELING-INDUCED SETTLEMENT

The application of the ANNs in tunneling-induced settlement

accounts for a large part of the reviewed papers.

Many factors affect the tunneling-induced settlement,

including tunnel geometry, geological conditions, and shield

operation factors, and so on. In such a complex problem, the

relationship between the influence parameters and the ground

settlement is unknown, and it is usually nonlinear. ANNs

proved to be the best way to analyze settlement data since

they can predict the settlement by establishing an unknown

relationship between structural features and existing settle-

ment data [46]. One of the most challenging difficulties in

ANN modeling is obtaining parameters that may be related

to ground settlement [47].

Boubou et al. utilized ANNs and least square approxima-

tion to correlate ground surface movement and TBM operat-

ing parameters [29]. The accuracy of the model is evaluated

by using the monitoring data of the Toulouse subway line

B tunnel. They concluded that the most critical parameters

affecting ground surface movements are the TBM’s advance

rate, the hydraulic pressure used for the cutting wheel, and

the TBM’s vertical guidance parameters.

B. THE STABILITY OF UNDERGROUND STRUCTURES

ANNs can be used to predict the stability of underground

structures such as tunnels, gate roadways, and rock caves.

An ANN can be applied to establish a model to depict the

complicated relationship between the stable status of tunnel

support and rock mechanics and construction parameters.

BPNN, MLP, RBFNN are the primary neural networks for

predicting the interaction of underground structure stability,

tunnel support pressure, and ground-support during deep rock

excavation [7], [53]–[56].

VOLUME 8, 2020 119531



X. Wang et al.: Application of ANN in Tunnel Engineering: A Systematic Review

TABLE 3. A Comparison between PSO, GA, ICA and ACO.

C. ROADHEADER PERFORMANCE AND TBM

PERFORMANCE

ANNs can help predict the performance of TBM [8]. The

results show that the ANN system has achieved satisfac-

tory results in predicting the TBM advance rate. ANN is

integrated with a GIS platform for tunnel performance pre-

diction. The integrated model makes full use of GIS’s capa-

bilities in data management, storage, and visualization. The

results show that the integrated GIS-ANN approach can be

used as a decision support tool for tunnel engineers to pre-

dict tunnel performance [57]. Statistical methods, such as

MRA, SPSS, together with ANNs, are conducted to predict

TBM performance [58], [59]. For the penetration rate of

TBM, the prediction accuracy of SVM, LMRA, and ANN

are compared [60], [61]. In order to predict the penetration

rate and advance rate of TBM, Armaghani et al. utilized an

ANN, PSO-ANN, and ICA-ANN to make the prediction and

compared the prediction ability of these methods [30], [39].

A hybrid finite element and surrogate modeling approach

based on RNN is proposed to simulate and support TBM

steering, which provides support for the steering decisions of

tunnel engineers [62], [63].

Roadheaders can bring productivity to tunneling, mining,

and civil engineering. Thus roadheader performance predic-

tion has become one of the main issues in the economic pro-

cess of undergroundmining. ANNs, together with KSOFMor

statistical methods such as MRA, RF, zero R, etc., are applied

to predict roadheaders’ performance [31], [37], [43], [64].

D. GEOLOGICAL CONDITIONS

The ground condition ahead of tunnel face can be predicted

by ANNs. In the literature [65], the proposed ANN model

shows high efficiency in predicting ground type in front of

the tunnel face. Thus, it is valuable to utilize the proposed

ANN model to reduce the influence of geological condi-

tions changes. Zhao et al. conducted a data-driven framework

based on different methods, including ANN, XGBoost, Cat-

Boost, DT, KNN, and BLR, to predict the geological types of

stratum [24]. It reveals that the proposed ANN predictor out-

performs other models. Moreover, ANN can also be applied

to predict hazardous geological zones in front of the tunnel

face and void behind the lining [9], [66].

E. OVERBREAK PREDICTION

Mottahedi et al. applied various methods, including ANNs,

LMRA, NMRA, SVM, adaptive neuro-fuzzy inference sys-

tem, and FLM, to predict the relationship between the causing

factors and overbreak data [67]. The results indicate that

specific drilling, specific charge, and rock mass rating are the

most effective factors on the overbreak. Among these meth-

ods, the prediction performances of adaptive neuro-fuzzy

inference systems and FLM are better than that of MRA,

ANN, and SVM.ANN-based hybrid models are always being

used in recent years. For example, hybrid models that com-

bine GA and ANN, ABC and ANN are utilized to predict

overbreak separately [38], [40], [68]. The results show that

the prediction performance of the hybrid model is better than

that of the original ANN.

F. TUNNEL CONVERGENCE

In the research field of tunnel convergence, MLP is applied

frequently. Mahdevari et al. usedMLP, RBFNN, andMRA to

estimate the nonlinear relationship between the rock param-

eters and convergence [11]. The results show that the MLP

has higher accuracy compared with the RBF and MRA.

However, the prediction performance of ANN is worse than

that of SVM [36]. In addition, Adoko et al. applied MARS,

together with ANNs, to predict tunnel convergence [35]. It is

concluded that the accuracy of the MARS method is lower

than that of the MLP model. Zarei et al. utilized SPSS and

discrete element methods to introduce a new convergence

criterion for water conveyance tunnel, and it comes out that

the ANN is more suitable than the other two methods [69].

Note that the performance of different data mining methods

and statistical methods varies depending on different data.

G. OTHER APPLICATIONS

Rastbood et al. applied MLP to predict yield stresses and

displacement of segmental tunnel lining rings based on the

results obtained from the numerical method [12]. It is con-

cluded that among all input variables, height is the most
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effective parameters on outputs parameters. Thus, the pro-

posed model shows an excellent ability to predict different

types of stresses and extreme values of ring displacement.

A few researchers in recent years also studied the appli-

cations of ANN in the tunnel ventilation system. To regulate

the pollutant concentration,Wu et al. applied the ANN unit in

the comprehensive dynamic model designed for tunnel venti-

lation systems with jet fans. Also, a new neural network was

utilized to approximate the cost-to-go function that is used

to optimize the performance [13]. Zheng et al. predicted the

inside air temperature and ventilation rate of a tunnel by ANN

instead of complex mathematical models. It is concluded that

the average air temperature inside the tunnel is predictedmore

accurately than the single inside temperature at the center of

the tunnel [70].

Regarding the use of ANN in rockburst and flying rock

generated by blasting, the in-situ rockburst database is ana-

lyzed by ANNs, SVM, and other two different data mining

techniques [14]. Based on the PNNmodel, Feng et al. predict

rockburst in the deep tunnels [71]. The flyrock distance gen-

erated by blasting is predicted by three hybrid ANN models,

including ICA-ANN, GA-ANN, and PSO-ANN [41]. The

results show that the prediction performance of PSO-ANN

is better than that of the other two methods.

Moreover, ANNs can be used to estimate next-cycle pro-

duction rates in tunneling construction. Lau et al. utilized

RBFNN to analyze the nonlinear relationship between system

states and systems outputs at consecutive time events [10].

It is proved that RBFNN can help tunnel engineers forecast

the production rate in the following cycle.

V. DISCUSSION

The main features and performance of different methods are

summarized in this section.

A. CHARACTERISTICS OF ANN-BASED MODELS

As can be seen from the Appendix and Fig. 3, the per-

centage of the training set, validation set, and test set are

in the intervals of [54.7%,94.1%], [0%,25%],[5.9%,39.4%],

respectively. In addition, in the 50 datasets that available for

analysis, the validation set is only applied in 11 datasets,

which means that only the training set and test set exist

in most models when ANNs are involved in the tunneling

engineering field. The Appendix implied that the average

percentage of the training, validation, and test set is 74.70%,

3.94%, and 21.34%, respectively (see Table 4). Besides, there

are some previous recommendations that can be a guide to the

ratio of the training set to the test set (see Table 5).

TABLE 4. The maximum, average, and minimum percentages of training,
validation and test set.

FIGURE 3. Stacked column graph of the percentages of training,
validation, and test set.

TABLE 5. Recommendations of the percentages of the training set and
test set.

According to Tables 4 and 5, setting the ratio of the training

set to the test set to 3:1 is suggested in the future tunneling-

related research.

The performance of the ANNs depends mainly on the

architecture, namely the number of input, hidden and output

layers, and the number of neurons in the hidden layer(s).

Some scholars believe that neural networks with a

single hidden layer are sufficient to approximate any

function [20], [43], [77]–[80]. The strength of an ANNmodel

with one hidden layer is that it can decrease the complexity

of a model [81]. Other scholars consider that two hidden

layers can meet the requirements to solve high complexity

problems [19]. Jung et al. stated that the number of hidden

layers is restricted to two because additional hidden layers

could trigger the vanishing gradient problem in the activation

function [65]. Two or more hidden layers are known as a way

to solve the overfitting problem. However, the performance

of ANNs is not improving with more than two layers [18].

In practice, some scholars decided the number of hidden lay-

ers by the trial and error method or experience [5], [28], [47].

In conclusion, single hidden layer networks can be applied

in most problems, especially in linear or low nonlinear prob-

lems. However, in nonlinear problems, two-layer networks

are more proper to be utilized while the difficulty in opti-

mization and risk of overdetermined ambiguity exists. One

to three layers are reckoned to be sufficient for most of the

problems [82].More hidden layersmay cause issues like huge

calculation.

Numerous empirical equations are proposed to guide

the determination of the number of hidden neurons (see

Table 6) [20], [30], [38], [40], [81]. After the range of Nh is

determined, the trial and error method is conducted to obtain

the optimal value of Nh [20], [28], [30], [40], [41], [83], [84].
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TABLE 6. Equations for determination of the hidden neurons.

Data in Fig. 4 illustrates that the number of hidden layers

is mostly set to be one (36 datasets), followed by two (20

datasets) and three (4 datasets). When Nh = 1, the number of

hidden neurons is always between 3 and 24, and the average

number is 13 (see Fig.4 a)). Figs. 4 b) and c) indicates that

whenNh = 2, both the numbers of the neurons in the first hid-

den layer and the second hidden layer are either beyond 20 or

between 3 and 13. Only in a few cases, Nh = 3 is applied.

Although the learning rate, the momentum constant, and

the training epochs are three essential parameters determined

by experience, their values are not given in some cases.

Note that the success of the training process varies with the

selection of the momentum coefficient [58].

The values of the learning rate and momentum constant in

the collected papers are fluctuant, the learning rate is from

0.01 to 0.7, and the momentum constant is from 0.01 to

0.9(see Appendix). The magnitude orders of learning rate

values are either 10−1 or 10−2. The learning rate should be

decided through the trial and error method until the gradient

descent process is working correctly. The training speed will

be slow when the learning rate is too low. However, oscil-

lations will occur when the learning rate is too large. Thus,

the momentum coefficient is proposed to promote the process

of computation, which can fasten the learning speed and

keep the change of the weight stable. Most of the magnitude

orders of the momentum coefficient are equivalent to those

of the learning rate, i.e., either 10−1 or 10−2 except in two

cases [55], [84].Moreover, different value domain ofmomen-

tum constant have been proposed by different researchers,

such as 0.4-0.9 [93], 0.0-1.0 [94], [95], close to 1.0 [96], [97].

The value of the training epochs in the reviewed papers is

mostly from 13 to 10000. However, the training epochs value

was set to be 600000 by Leu et al. [7], which is far beyond

other cases. Most values of the training epochs are lower than

1000, only in several cases are they beyond 1000. Besides, the

average value of the training epochs is 1534.

In summary, the determination of the learning rate and the

momentum coefficient should be determined together. The

magnitude orders of these two factors are always set to be

the same. Additionally, the initial training epochs can be set

to 1500 and then decided by the trial and error method.

Regarding the training algorithm, as shown in Fig. 5, the

BPA is the most commonly used algorithm in all the collected

FIGURE 4. The number of hidden neurons: a) one hidden layer; b) two
hidden layers; c) three hidden layers.

cases, and LMA is the second widely used one, followed by

LMBP, CGA, SCGA, PSO, RBF, ICA andGA. In conclusion,

BPA and LMA are used to train the ANNs in most cases.

However, because of the limitations of these two algorithms,

some optimization algorithms such as ICA, PSO, and GA

have been utilized to optimize the original ANNs to obtain

better prediction results.

Concerning the transfer function, as can be seen in

Fig. 6, the most commonly applied transfer functions are

TANSIG, LOGSIG, and PURELIN alternately. It can be

concluded that the SIG, TANSIG, and LOGSIG functions are

always applied in the hidden layers; however, the PURELIN

functions are always utilized in the output layers in the
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FIGURE 5. Percentages of training algorithms in the ANNs applied in the
tunneling field.

FIGURE 6. Percentages of transfer functions in the ANNs applied in the
tunneling field.

ANNs. Although the transfer functions should be deter-

mined by the specific situation of the real problems, it is

recommended that the SIG, including the TANSIG and

LOGSIG, can be firstly tried for the hidden layers, and

the PURELIN functions can be firstly tried for the output

layers.

B. PREDICTION ACCURACY OF ANN BASED MODELS

ANN-based models such as ICA-ANN, PSO-ANN are com-

pared with a bunch of methods, including data mining meth-

ods (such as SVM, RF), statistical methods (such as LMRA,

NMRA). Different prediction functions or methods are con-

ducted to estimate the accuracy of the models.

Concerning the prediction accuracy, different prediction

functions are introduced to compare the efficiency of different

methods. The most used prediction functions are R2, RMSE,

MSE, MAE, R, VAF, RRSE, RAE, and RRMSE. The corre-

sponding functions have been shown in Table 2.

According to the review results, the comparison results

between the ANNs and other methods are listed in Table 7.

It illustrates that when comparing the ANN models with the

optimized ANN models, most of the optimized ANN models

outperform the original ANN models [11], [56]. Moreover,

the advantage of optimized ANNs is not apparent when

TABLE 7. Comparison of ANNs and other methods.

the optimization algorithm varies. For example, in litera-

ture [30], [56], the performance of ANN optimized by ICA

is better than ANN optimized by PSO. However, in litera-

ture [39], an opposite conclusion is drawn: the performance

of PSO-ANN is better than that of ICA-ANN.

In addition, Table 7 demonstrates that the performance of

ANNs always outdoes that of statistical methods, including

MRA, LRM, SPSS, and MARS. Moghaddasi et al. have

obtained a similar conclusion before [20].

The performance of the ANFIS model is better than the

ANNmodel in two cases. Besides, the comparison can obtain

opposite results when comparing SVM with the ANNs.

However, the conclusion cannot be decided yet because of

a lack of datasets. Nevertheless, the abovementioned con-

clusions can provide a reference in the tunnel engineering

field.
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TABLE 8. The review results of 61 published papers.
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TABLE 8. (Continued.) The review results of 61 published papers.
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TABLE 8. (Continued.) The review results of 61 published papers.
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TABLE 8. (Continued.) The review results of 61 published papers.

VI. CONCLUSIONS AND FUTURE WORKS

This paper reviews the based-ANN models and optimized-

ANN models utilized in tunneling engineering problems.

The characteristics and modeling process of the ANNs are

described; the main ANN types are introduced. Additionally,

the application area of the ANNs in tunnel engineering is

divided into several fields, including tunneling-induced set-

tlement, the stability of underground structures, the perfor-

mance of roadheaders and TBMs, the prediction of geological

conditions, the prediction of overbreak, tunnel convergence

and so forth. The characteristics of these related references

have been discussed and the following major conclusions are

reached:

• The average percentage of the training set, validation set,

and test set is 74.7%, 3.94%, and 21.34%, respectively.

• In most cases, one hidden layer is capable of solv-

ing linear problems. Two hidden layers are enough to

solve nonlinear problems.More hidden layersmay cause

issues like huge calculation.

• The determination of the learning rate and the momen-

tum coefficient should be determined together. Themag-

nitude orders of these two factors are always set to be the

same. Additionally, the initial training epochs can be set

to 1500 and then decided by the trial and error method.

• It is recommended that the SIG, including the TANSIG

and LOGSIG, can be firstly tried for the hidden layers,

and the PURELIN functions can be firstly tried for the

output layers.

• BPA and LMA are used to train the ANNs in most cases.

However, the BPA may be trapped in local minima; this

kind of limitation calls for optimization. As a result,

algorithms such as ICA, PSO, andGA have been utilized

to optimize the original ANNs to obtain better prediction

results.

• Most of the optimizedANNmodels outperform the orig-

inal ANN models. The advantage of optimized ANNs

is not apparent when the optimization algorithm varies.

Additionally, the performance of ANNs always better

than that of statistical methods.

Note that this research has potential limitations. Depending

on the search criteria, there is no guarantee that all relevant

literature can be searched. Nevertheless, several suggestions

for future works can be proposed according to the review

results as follows: (1) it is recommended to set the ratio of

the training set to the test set to 3:1 in the tunneling-related

research. (2) The usage of optimization algorithms in the

ANN models is suggested in the future to prevent trapping in

local minima and obtain a better performance. There may be

differences between the performance of different optimized

ANN models such as PSO-ANN, ICA-ANN, GA-ANN, and

ABC-ANN. Thus it is meaningful to compare the perfor-

mance of different optimized ANNmodels applied in various

problems. (3) The data amount is one of the most critical

aspects of the application of ANNs.More data can bringmore

precision to the model. Therefore, big data and data mining

will lead to an application boom in the engineering field.

APPENDIX

See Table 8.
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