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This paper presents an approach for automatic classification of pulsed Terahertz (THz),
or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security
applications. T-ray classification systems supply a wealth of information about test sam-
ples and make possible the discrimination of heterogeneous layers within an object. In
this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regres-
sive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse
data is presented. Two example applications are examined — the classification of normal
human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identi-
fication of six different powder samples. A variety of model types and orders are used to
generate descriptive features for subsequent classification. Wavelet-based de-noising with
soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For
classification, a simple Mahalanobis distance classifier is used. After feature extraction,
classification accuracy for cancerous and normal cell types is 93%, whereas for powders,
it is 98%.

Keywords: Terahertz; Auto Regressive Moving Average (ARMA); Yule-Walker Algo-
rithm; Prony’s Method; Soft Threshold Wavelet Shrinkage De-noising; Discrete Wavelet
Transform (DWT); Wavelet Packet Transform (WPT); Mahalanobis Distance Classifier.
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1. Introduction

The terahertz (THz) part of the electromagnetic spectrum lying between the

microwaves and infrared (100GHz–10THz) is of significant importance to the bio-

logical sciences because complementary information to traditional spectroscopic

measurements on low-frequency bond vibrations, hydrogen bond stretches and tor-

sions in liquids and gases may be obtained. The vibrational spectral characteris-

tics of bio-molecules which lie in this range (wavenumbers between 3.33–333cm−1)

make T-rays a promising sensing modality for clinical diagnosis. Since THz pho-

tons (or T-rays) have significantly lower energies (e.g. only 0.04meV at 100GHz)

than other radiation used for medical diagnosis such as X-rays, it has been consid-

ered by many as non-invasive. Although nonlinear interactions between biological

tissue and coherent THz radiation have been predicted by Fröhlich1 and experi-

mentally verified by the careful work of Grundler and the analysis by Kaiser2 in

the 1990s, the widely held view at the moment is that any measurement technique

that operates at THz frequencies should be considered as non-invasive. Such a con-

clusion is based on assumptions that in the linear absorption processes involved

when THz pulses interact with biological tissue, the Gibbs free energy conveyed

in the THz light beam is insufficient to drive chemical reactions. For example, the

molar energy at a frequency f of 100GHz would be given from E = Nhf where

N = 6.023 × 1023 mol−1 (Avogadro’s number) and h = 6.626 × 10−34 Js (Planck’s

constant), the calculated value of only E = 0.04 kJmol−1 is so low (approximately

100 times lower than the amount of molar energy required for ATP hydrolysis) that

for most practical purposes, we may assume that the interference with biochemical

processes would be minimal.

Other advantages of performing imaging based on the optical properties of bio-

logical tissue with THz radiation are the better penetration length than infrared

light, and lower scattering. Organ differentiation on the basis of tissue water content

using microwave transmission or reflection measurements is impractical because the

diffraction limited minimum spot size for a free-space beam is too large to avoid

beam spillover around most tissues and organs. From a technological point of view,

THz imaging needs to compete with positron emission tomography (PET) imag-

ing, which has picomolar sensitivity but poor spatial resolution and magnetic reso-

nance imaging (MRI) that offers millimolar sensitivity with high spatial resolution.

Indeed, a diffraction limited imaging system operating at 1THz would have a spa-

tial resolution of 300µm which should be considered sufficient for many biomedical

applications. Since the human body is 70% composed of water, a large part of the

energy in the excitation pulse is attenuated, rendering advanced signal processing

techniques for de-noising and feature extraction, an integral part of the work.

Recent advances in T-ray sources and detectors have made it possible to image

opaque objects, and discriminate tumor cells from normal tissue.3 While much

effort has been devoted to improving the signal to noise ratio and repeatability

of measurements as well as reliability in the function of the spectrometers, the



Application of Auto Regressive Models of Wavelet Sub-Bands 553

further processing of THz transients has only recently received some attention in

the literature.4,5 T-ray classification relies on observing changes in pulse ampli-

tude, phase as well as dispersion characteristics of the tissue under study. The

non-stationary nature of time-domain pulses obtained in T-ray spectrometry justi-

fies their decomposition in the wavelet domain as it can provide better de-noising.

Furthermore, compared to Fourier-based techniques, a wavelet decomposition of the

experimental signal can provide better time-frequency localization characteristics6

facilitating subsequent classification tasks.

This paper introduces a novel parametric modeling procedure to the wavelet-

decomposed T-ray transient signals that improves feature extraction and classifica-

tion. The success of the proposed algorithm in classifying human bone osteoblasts

(HBO) against human osteosarcoma cells (HOS) as well as at differentiating

between six types of powder samples is discussed. The choice of biological sam-

ples is made on the basis that there have been suggestions that THz transient

spectrometry can be used for the early detection of cancerous tissue (the con-

trast mechanism being the enhanced blood circulation in the cancerous tissue).

The reported work complements previous work in classifying basal cell carcinomas

(a form of skin cancer), which has been conducted by researchers at the University

of Cambridge and TeraView Limited.7 It needs to be emphasized that the rationale

for picking bone cancer cells is that techniques for culturing bone cells on a Petri

dish are well-established and readily accessible. Our positive results with T-ray

detection of cancerous bone cells will motivate future research to explore other

classes of cancer cells. The motivation for using THz pulse transients for extract-

ing information on densities, thicknesses and number of absorber molecules per

unit volume in different powder samples stems from the fact that substance detec-

tion is an increasingly important area in the pharmaceutical (drug polymorphs and

isomorphs8–10) as well as security industries (e.g. fingerprinting of explosives and

illicit drug detection11,12). Our goal is to demonstrate a feature extraction method-

ology that is non-specific to the data sets in hand. This is of significant importance

to the THz community as data driven classifiers prohibit proper inter-comparison

between results obtained in different labs and therefore preclude the development

of standards, guidelines and specifications that could be adopted by the biomedical,

pharmaceutical as well as security sectors, which are envisaged to become emerging

markets for THz-transient spectrometers.

In this sense, the requirement that our proposed algorithm should perform well

in two very different classification tasks represents a departure from previous THz

works presented in the literature. Section 2 briefly described the principle of tera-

hertz imaging and the related hardware used to generate the experimental data sets

whereas Sec. 3 provides the methodology used to perform the classification tasks.

Section 4 presents the results from a Mahalanobis distance classifier and discusses

issues related to the proposed feature extraction method. Section 5 highlights the

important aspects of the work and provides directions for future research.
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2. THz Spectroscopy and Imaging

The time-resolved THz spectrometer used in the reported studies utilizes a short

coherence length infrared source (centered at around 800nm) to generate a sub-100

femtosecond duration pulse train with repetition frequency of around 80MHz. Each

infrared pulse, is split into separate pump and probe beams. The pump beam is

used to excite an optical rectification crystal, which acts as a T-ray emitter, and

the T-rays produced (duration around 200 fs) are collimated and focused onto a

sample by a pair of parabolic mirrors. The T-rays emerging from the sample are

re-collimated by another pair of mirrors, before being combined with the probe

beam in a T-ray detector crystal. As a result, the sample modified T-ray and the

probe beams propagate through the THz detector crystal co-linearly. The pump

beam, which is also transmitted through a chopper, travels through an optical

delay stage that is modulated accordingly so that the pump and probe beams

arrive at the detector in a time-coincident manner. By moving the delay line

though the zero path difference of the two arms of the interferometer, the cross-

correlation of the optical and THz signal is obtained. The electro-optic detector

crystal produces an output which is proportional to the birefringence observed

from the interaction of the THz pulse with the time-coincident infrared pulse

replica within the crystal. This output is proportional to the T-ray response of

the sample and this signal is measured with the use of an optical photodetec-

tion scheme. A lock-in amplifier is also used to demodulate the signal, this avoids

1/f (flicker) noise problems, which are present in this detector-limited measure-

ment scheme. Terahertz pulsed imaging (TPI) is achieved by performing a 2D

raster scan after translating the sample in both the x and y directions while

keeping it at the focal plane of the parabolic mirrors. A typical setup13 is shown

in Fig. 1.

A further advantage in using THz pulses instead of infrared as a measurement

modality is the fact that the wavelengths are longer, and noise due to the motion of

the translation stage is sufficiently small compared to the wavelength permitting the

extraction of phase information. A limitation of current measurement techniques is

the low power per spectral bin and consequently, the small signal to noise ratio in the

measured complex insertion loss of the sample. It has previously been shown that

a combination of wavelet transform techniques and statistical models can mitigate

the effects of noise and extract effective features (frequency-dependent dispersion,

attenuation and phase delay properties of the sample) for classification.14 Normal

human bone (NHB) osteoblast cells were obtained from patients and cultured from

small pieces of trabecular bone for four to six weeks to obtain a confluent culture.

Human osterosarcoma (HOS) cells were cultured from an immortalized cell line. The

confluent culture was obtained within one week. A 25ml polystyrene flask with flat

bottom was used to culture the cells under a 5% carbon dioxide environment and a

temperature of 37◦C. In order to perform T-ray imaging, the rectangular flasks were

tipped and placed in the T-ray (x−y) translation stage. A T-ray image was obtained
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Fig. 1. Illustration of a femtosecond laser-based T-ray functional imaging system based on a
pump-probe configuration. PD = infrared photodiode; P1, P2 = polarizers; ITO = indium tin
oxide coated beam splitter.

at ten different positions to provide spectroscopic data, with a distance interval of

50µm. The above procedure was performed for each of the three flasks — normal

cells, cancerous cells and the container with media solution — and iterated a further

five times until 50 pixels of T-ray responses were obtained for all three flasks.15

This was regarded as a sufficient amount of data for a verification of classification

effectiveness for different cells. For the powder sample classification experiment,

six different powdered substances are used: sand, talcum, salt, powdered sugar,

wheat flour, and baking soda with thicknesses of 2, 3 and 4mm. The variations in

thickness enabled investigation in thickness-independent classification. A seventh

set of measurements of an empty sample holder was used as a reference to provide a

background spectrum. The sample holder consisted of two teflon blocks separated by

a translation-stage based control mechanism. This guaranteed a consistent powder

density. A similar T-ray pulse imaging system is used to record the THz transients.

The teflon sample holder was mounted on an x−y translation stage. Since teflon is

dispersionless and has a very low absorption coefficient at THz frequencies, there

is minimal distortion of the T-ray pulse as it propagates through the holder. A 2D

T-ray image of the sample was obtained via a raster scan; such an image allowed

the effects of different scattering paths and minor variations in powder thickness

and density to be observed. The data in this paper is obtained from a truncated

raster scan with measurements taken from 50 co-linear locations, or pixels (with a

spacing of 100µm). The integration time of 30 minutes per sample corresponds to

an integration time of 36 seconds per pixel.
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3. Wavelet De-noising, Parametization and Classification

3.1. Wavelet de-noising

Fourier transformation of the TPI data described in the previous section provides

the frequency dependent characteristics of a target sample. The sampled T-ray

transients are a function of discrete time, to which the Discrete Wavelet Transform

(DWT) is applied. To realize the DWT, simple digital filter banks are utilized in

a recursive structure to calculate wavelet transform coefficients of T-ray signals.

Formally, the representation of signals with their wavelet transform coefficients is

known as a multi-resolution analysis (MRA). The theory undelying MRA allows

a systematical method for constructing (bi-)orthogonal wavelets16 and leads to

the fast wavelet transform (FWT, also known as Mallat’s algorithm).17,18 In prin-

ciple, wavelet-based techniques are very well suited to studies of non-stationary

time-domain data sets, highlighting the variability of features at different time-

frequency scales.6,19 The main concern about the current T-ray TPI measurements

is its corruption by different types of noise which limit the practical usefulness of

this mode of imaging. One of the main problems is the distortion of the T-ray pulse

as it propagates through the optical system as well as the sample. As a result, the

received T-ray signals are strongly dependent on the acquisition conditions, and

similar samples may produce variations in the measured signals in different por-

tions of the image.14 In order to keep image acquisition within realistic timescales,

a short integration time per pixel is adopted as common practice, this makes the

choice of the THz-transient de-noising process critical for the correct interpretation

of TPI data. The use of perfect reconstruction quadrature mirror filter banks has

been extensively discussed by Vaidyanathan20 for the purpose of de-noising and

generating bases of compact support. The works of Vetterli and Kovacevic21 as

well as that of Strang and Nguyen22 further complemented the above, elaborat-

ing more on sub-band coding, Sherlock and Monro23 discussed how to apply FIR

filters of arbitrary length to describe the space of orthonormal wavelets, further

parameterizing the wavelet coefficients at each decomposed level, and Tuqun and

Vaidyanathan24 proposed a state-space approach to the design of globally opti-

mal FIR energy compaction filters. Since, in our work, there is no requirement for

adopting an algorithm with a perfect reconstruction property, as our ultimate goal is

feature extraction and classification, our constraints are more relaxed compared to

those use d in filtering or signal compression applications. Divine and Godtliebse25

suggested that for feature exploration purposes, it is possible to assume station-

arity over some time interval and smooth the wavelet spectrum along the time

axis using an auto regressive (AR) model. Recently, Paiva and Galvão26 also dis-

cussed a wavelet-packet decomposition tree algorithm that establishes frequency

bands where sub-band models are created. Both approaches propose the model-

ing of the approximation and detail wavelet coefficients in order to further extract

statistically significant features and a similar approach is adopted in our work.

A typical de-noising procedure consists of decomposing the original signal using



Application of Auto Regressive Models of Wavelet Sub-Bands 557

the discrete wavelet packet transform (DWPT) or the discrete wavelet transform

(DWT),19,27–29 thresholding the detail coefficients, and reconstructing the signal

by applying the appropriate inverse transform (IDWT or IDWPT, respectively). In

our work, we adopted (i) the bior6.8 (DWPT) and (ii) the db20 (DWT) wavelet

families for de-noising after comparing the classification results obtained using the

following: db1, db8, db20, sym1, sym2, sym4, sym8, sym12, coif2, coif5, bior1.1,

bior2.8 and bior6.8, and adopting a three-level decomposition. These wavelets are

chosen as representatives for general classes of orthonormal, non-orthonormal and

bi-orthogonal wavelets, respectively. For the de-noising of femtosecond THz tran-

sients, a three-level decomposition is usually sufficient3 and unnecessary computa-

tional load associated with more decomposition levels can be avoided. The Stein’s

Unbiased Estimate of Risk (SURE) and the “heuristic” SURE methods6 are used

separately to estimate the soft threshold parameter (λS) for the cancer and powder

classification experiments, respectively.

3.2. Formulation of Wavelet transform and heuristic SURE

thresholding

In our work, each time domain signature corresponding to data from a single pixel

was represented by a data vector x of length J , where the nth element of x, denoted

by xn, represents the measured signal at the nth sampling instant. The filter bank

transform can be regarded as a change in variables from RJ to RJ performed

according to the following operation

wm =

J−1
∑

n=0

xnvm(n), m = 0, 1, . . . , J − 1 (3.1)

where wm is a transformed variable and vm(n)ǫR is a transform weight. It proves

convenient to write the transform in matrix form as:

w1×J = x1×JVJ×J (3.2)

where x = [xi : i = 0, 1, . . . , J − 1] is the row vector of original variables, w is the

row vector of new (transformed) variables and V is the matrix of weights. Choosing

V to be unitary (that is, VTV = I), the transform is said to be orthogonal and

it therefore consists of a simple rotation in the coordinate axes (with the new

axes directions determined by the columns of V). As described in the wavelet

literature, the discrete wavelet transform can be calculated in a fast manner by

using a finite-impulse-response (FIR) filter bank structure. In this filter bank, the

low-pass filtering result undergoes successive filtering iterations with the number

of iterations k chosen by the analyst. The final result of the decomposition of data

vector x is a vector resulting from the concatenation of row vectors ck and dk

(termed respectively approximation and detail coefficients at the kth scale level) in
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the following manner:

w = [ck|dk|dk−1| · · · |d1] (3.3)

with coefficients in larger scales (e.g. dk,dk−1,dk−1, . . .) associated with broad fea-

tures in the data vector, and coefficients in smaller scales (e.g. d1,d2,d3, . . .) asso-

ciated with narrower features such as sharp peaks. Let h[0], h[1], . . . , h[2N − 1] and

g[0], g[1], . . . , g[2N −1] be the impulse responses of the low- and high-pass filters H

and G, respectively. Assuming that filtering is carried out by circular convolution,

the procedure for generating the approximation coefficients from the data vector

x consists of flipping the filtering sequence and moving it alongside the data vec-

tor. For each position of the filtering sequence with respect to the data vector, the

scalar product of the two is calculated. Dyadic down-sampling is then performed

to generate coefficients c[i]. The detail coefficients d[i] are obtained in a similar

manner by using the high-pass filtering sequence. Filtering in the wavelet domain

consists of changing some of the above elements of w by applying soft thresholding

so that a new vector wf is produced and then applying the inverse transform. A

soft threshold operation with threshold λs is employed:

wf (x, λs) = sgn(x)max(0, |x| − λs). (3.4)

A soft threshold has better continuity6,30 than hard thresholding, while at

the same time, provides shrinkage of the wavelet coefficients dominated by noise.

The nonlinear shrinking of coefficients in the wavelet domain is a non-parametric

method. We adopt the heuristic Stein’s Unbiased Risk Estimate (SURE)30 algo-

rithm, which is estimated adaptively at each wavelet decomposition level k. This

operates on detail coefficients dk. Each detail coefficient dk is composed of elements

of the signal df as well as superimposed noise ηk, so that dk = df k
+ ηk.

The Sure approach assumes a vector µk = (µk[i] : i = 1, . . . , n) of length

n = 2−kJ , where dk[i] ∼ η(µk[i], 1) is multivariate normal observations with that

mean vector. The soft threshold estimator µ̂ of µ is given from µ̂ = µ̂(dk) =

dk + g(dk) with gk = (gk[i])n
i=1, a function from Rn into Rn. Assuming that

gk(dk) is weakly differentiable, Stein’s method calculates the energy loss ||µ̂ − µ||

in an unbiased fashion using the following

E ‖ µ̂k(dk) − µk ‖2= n + E{||gk(dk)||2 + 2∇ · gk(dk)} (3.5)

where ∇ · gk ≡
∑

i
∂

∂dk[i]gk[i] E ‖ µ̂
(λs

k
)

k (dk) − µk ‖2.

By applying Stein’s results6,31 at the kth decomposition level, we have

SUREk(λ
s
k;dk) = n − 2 · #{i : |dk[i]| < λs

k} +

n
∑

i=1

min(|dk[i]|, λs
k)2, (3.6)

where µ̂k denotes the soft threshold estimator µ̂k[i](λ
s

k
)(dk) = ηs

λk
(dk[i]). Thus

the threshold λs that minimizes SUREk(λs
k;dk) is obtained.30 Here, # means the

number of the coefficients that are smaller than the threshold of noisy signals.
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The de-noised T-ray signal in the wavelet domain can be re-written as

wf = [cf k
|df k

|df k−1| · · · |df 1]. (3.7)

3.3. AR and ARMA parametization of wavelet coefficients

3.3.1. AR model parameter estimation

In the subsequent wavelet decomposition, we represent the new approximation and

detail coefficients with c̄ and d̄, respectively. At every level k of this new decom-

position, we perform firstly autoregressive (AR) and then moving average (MA)

modeling of the coefficients. We use the forward linear prediction32,33 at the kth

wavelet transform step given by the linear difference equation in the time domain:

ˆ̄c
AR

k [n] = −ak[1]c̄k[n − 1] − ak[2]c̄k[n − 2] − · · · − ak[P ]c̄k[n − P ] + wk[n] (3.8)

where ˆ̄c
AR

k [n] represents the current prediction of wavelet approximation coefficients

through AR modeling, and P represents the prediction order of the model. The

modeling residual wk[n] is assumed to be a white Gaussian process. The least-

squares form of the Yule-Walker equation is used to estimate the corresponding

AR model parameters:32,34

Rc̄k
ak = [Sk 0]T (3.9)

where, Rc̄k
is the covarianace matrix of the data, ak = [ak[0], . . . , ak[P ]]T is the

vector of the AR model coefficients and Sk is the minimum sum of squared errors.

The data vector c̄k of the autocorrelation method is determined by the selection of

the end points as nI = 0, nF = Ns+P −1, and Ns is selected to be the length of the

detailed wavelet coefficient at the kth wavelet transform level, with Ns = n = 2−kJ .

The prediction error variance (PEV), which is used for validation purposes of

AR model, is calculated as

σ2
εk,P =

1

nF − nI + 1
Sk. (3.10)

It should be noted that the prediction error variance is the theoretic criterion for

any AR/ARMA model order selection task. It measures the precision of a model’s

predictions. The measurement errors are reduced by the model fitting process if the

PEV is less than 1, while any errors in the data measurements are multiplied if the

PEV is greater than 1. It is desirable for PEV to be close to zero, in which case,

the predictive power of the model will be more accurate. This is a crucial first step

to estimate the model parameters.35

3.3.2. ARMA model parameter estimation

An ARMA model is a combination of AR and moving average (MA) models.

The MA model at the kth wavelet decomposition level, based on approximation
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coefficients c̄k is developed from the following difference equation:

ˆ̄c
MA

k [n] = c̄k[0]wk[n] + bk[1]wk[n − 1] + · · · + bk[Q]wk[n − Q]. (3.11)

The MA prediction output ˆ̄c
MA

k [n] is seen as a sum of weighted average of the past

Qk input samples of a white noise process wk(n). The full ARMA model can be

obtained by combining both AR and MA models, as below:

Pk
∑

i=0

ak[i]c̄k[n − i] =

Qk
∑

j=0

bk[j]wk[n − j] (3.12)

where, ak[0] is normalized to 1.

The MA parameters are estimated by Durbin’s method, which is an improve-

ment of the basic Prony method that assumes that ˆ̄ck[n] = c̄k[n] for n =

0, 1, . . . , Ns − 1, setting Ns = Pk +Qk +1 with Pk = Qk. The idea behind Durbin’s

method is to turn an MA modeling problem into a set of two normalized and sig-

nificantly over-parameterized AR modeling problems denoted by A and B and to

consequently solve them (i.e. adopting the condition Ns > Pk + Qk + 1). The pur-

pose of this over-parameterization process is to facilitate the solution. In our work,

the order of AR model (Pk) is selected to be five times the MA model order Qk

(Pk = 5Qk) as this has been found to provide a good fit.32 Then the Yule-Walker

matrix equation of the ARMA model is partitioned as:

[Rc̄kB
Rc̄kA

]Tak = [bk ekA]T (3.13)

where bk = [bk[0] · · · bk[Q]]. Here ekA is the prediction error that is defined as

ekA = c̄k[n]− ˆ̄ck[n], with n = 0, 1, . . . , Ns − 1. The related AR coefficient vector ak

is determined from minimizing SkA = |ekA|
2 and observing that [Rc̄kA

]ak = eAk

is equivalent to the Yule-Walker equations for the AR model in Eq. (3.9). The

difference between the two formulations lies in the calculation of MA parameters

bk. Instead of forcing bk to match the left side of the equation [Rc̄kB
]ak = [bk]

in Eq. (3.13), Durbin’s method considers the existence of an error term of this

equation. A higher order AR model is used as a substitute for an MA model. It

is worth noting that (i) the coefficient vector ak is obtained from the solution of

the Yule-Walker equation normalized by the gain — first item of AR coefficients,

before substituting Sk with unity in Eq. (3.9) and (ii) we use the coefficient vector

ak, derived from setting Pk = 5Qk, to construct the data matrix that provides the

new coefficients of AR modeling with the MA model order Qk. Durbin’s method

guarantees the stability of the ARMA model eliminating windowing effects.

3.4. Feature extraction

The objective of feature extraction is to isolate the relevant features mentioned ear-

lier from the T-ray signals to improve classification performance. Feature matrix cal-

culations, assuming AR, MA and ARMA models of different order, are performed.
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The averages of the modeling coefficients are computed over the three decomposi-

tion levels of the wavelet transform employed on each dataset. The model coefficient

averages are then joined to produce feature vectors with a dimension equal to the

number of subbands in the wavelet decomposition. The feature vectors obtained

from two different AR orders, and MA orders are combined, respectively, to form

the final AR and MA feature matrices. The ARMA feature matrix is obtained by

combining two different orders of AR and MA vectors together. The extracted AR

and MA feature vectors are calculated at each decomposition level k from

〈aP∗

k 〉 =
1

P ∗

P∗

∑

i∗=1

ak[i∗], where 2 ≤ P ∗ ≤ 7 (3.14)

〈aP
k 〉 =

1

P

P
∑

i=1

ak[i], where 3 ≤ P ≤ 8 (3.15)

〈bQ∗

k 〉 =
1

Q∗

Q∗

∑

j∗=1

bk[j∗], where 2 ≤ Q∗ ≤ 7 (3.16)

〈bQ
k 〉 =

1

Q

Q
∑

j=1

bk[j], where 3 ≤ Q ≤ 8 (3.17)

where 〈aP
k 〉, 〈a

P∗

k 〉, and 〈bQ
k 〉, 〈bQ∗

k 〉 denote the averaged value (DC value) of AR

and MA model coefficients at different model orders. The new feature matrix using

the AR modeling procedure is given from

DCAR
k = [〈aP∗

k 〉|〈aP
k 〉], where P ∗ ≤ P . (3.18)

A similar procedure is adopted for the MA modeled datasets

DCMA
k = [〈bQ∗

k 〉|〈bQ
k 〉], where Q∗ ≤ Q. (3.19)

Finally, we obtain new feature matrices combining the coefficients from both the

AR and MA modeling procedures

DCARMA

k = [〈aP∗

k 〉|〈bQ
k 〉]. (3.20)

This combination aims at improving the generalization ability of the classification

process.

The complete procedure for calculating DCARMA

k is depicted in Fig. 2. The

implementation used in this paper is motivated by a desire to obtain fixed length

feature vectors to facilitate comparison. Since various AR/ARMA model orders

are used, this naturally leads to a varying number of model coefficients, and hence

affect the dimensionality of the extracted feature vectors. Averaging the AR/ARMA

coefficients — transforms the varying dimension of AR/ARMA model coefficients

to a fixed number of dimensions. Another parameter that can affect the feature

matrix length is the number of decomposition levels in wavelet transforms. Varying

k, leads to a different number of sub-bands. Figure 3 illustrates the preprocessing

steps as well as the adopted feature extraction algorithm.
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3.5. Classification

The classification is realized using a Mahalanobis distance classifier.36 The Maha-

lanobis distance is defined as the distance from the mean value of the pointed class

to a given point, where the given class is normalized by the different training vectors

along the different directions.36 For a given class, m, the distance from a feature

matrix DCl
k to the class mean αm, is defined as

ρm(X) =

√

(DCl
k − αm)TC−1(DCl

k − αm) (3.21)

where C is covariance matrix of the feature vectors, DCl
k with l = 1, 2, 3 repre-

senting the averaged coefficients matrix related to AR (l = 1), MA (l = 2), and

ARMA (l = 3) modeling of wavelet approximation coefficients at three decomposi-

tion levels, that is, DC1
k being DCAR

k , DC2
k being DCMA

k , DC3
k being DCARMA

k .

In practice, the covariance matrix is estimated from the training vectors. During

classification, the minimum Mahalanobis distance from feature vector DCl
k to each

class center αm is used to assign the appropriate class label.

4. Results and Discussion

4.1. Wavelet preprocessing

Figure 4 illustrates the performance of wavelet de-noising, after adopting the WP

SURE de-noising procedure for both normal (NHB) and cancerous cells (HOS)

after performing de-convolution to eliminate the features due to the container.

The background reference signal is used for the de-convolution processing, which

isolates the TPI sample response from that of the container. The de-convolution

procedure is performed by dividing the respective Fourier transforms of the sample

0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3

4
x 10

−8

Time (ps)

T
H

z
 A

m
p

lit
u

d
e

 (
a

.u
.)

normal cells

tumor cells

holder

0 2 4 6 8 10 12 14
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−8

Time (ps)

T
H

z
 A

m
p
lit

u
d
e
 (

a
.u

.)

normal cells

tumor cells

holder

(a) (b)

Fig. 4. Comparisons of the time domain signals related to a single pixel of T-ray CT images for
a normal cell (NHB) and a cancerous cell (HOS) together with the empty container (holder) (a)
before and (b) after employing WP SURE de-noising of bior6.8 wavelet.
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signature with that of the background time domain signatures that corresponds to

signal pixel.

The comparisons of the signals in the time domain are performed for one pixel

of normal and cancerous cell responses together with their containers before and

after employing WP SURE de-noising. The effectiveness of wavelet package SURE

soft threshold shrinkage de-noising is demonstrated in the three visually separable

T-ray pulsed responses of Fig. 4b, in comparison with the original measured T-ray

signals of Fig. 4a.

4.2. Classification of NHB and HOS cells

For the classification of cancer cells, the averages of two different orders of AR

coefficients are extracted for use as features. Wavelet transform depths of 2 and 3

are compared, and the biorthogonal spline wavelet of order 6.8 is used to compute

the discrete wavelet packet transform. A Mahalanobis distance classifier is trained

using a portion of the T-ray responses corresponding to each of the three classes —

cancer cells, normal cells and the reference signals — then the remainder of the

pixel responses are classified. The resultant classification accuracy is used to mea-

sure performance. In addition, error prediction covariance at different orders of AR

modeling and the different levels of wavelet transform are calculated and employed

as another metric for comparison.

Table 1 shows squared error variances of seven orders of AR model correspond-

ing to the approximation coefficients generated using a bior6.8 wavelet family with

three levels of wavelet decomposition on an arbitrarily chosen T-ray response. The

columns of this table correspond to the AR model order, while the rows correspond

to the levels of DWPT prior to calculating the AR models. Data are scaled by a

factor of 10−16, demonstrating very successful modeling. AR models are practically

error-free as a result of the limitations of our computation hardware. Similar obser-

vations can be made for values in Tables 3 and 4. It can be seen that the value

of the error variance decreases with increasing AR order. Increasing the DWPT

depth tends to increase the value of the error variance. The absolute error variance

spans over two orders of magnitude, demonstrating that the choice of number of

decomposition levels and the AR model order adopted can have a significant effect

on the validation process of the model.

Table 1. Squared error variances of AR models fitted to DWPT sub-bands using cell samples
(results scaled by a factor of 10−16).

DWPT depth AR model order

2 3 4 5 6 7 8

1 0.01155 0.00767 0.00759 0.00722 0.00426 0.00318 0.00316
2 0.1596 0.1403 0.0763 0.0685 0.0512 0.0480 0.0435
3 0.2202 0.2032 0.2013 0.2011 0.2010 0.2010 0.2010
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Table 2. Percentage classification accuracy of T-ray pulses traveling through cell samples. The
range of AR model orders considered is 2 to 8; three levels of DWPT with a bior6.8 wavelet are
used throughout. Above the diagonal of this table are results from Method (A); below the diagonal
are results from Method (B). The values in bold show the best and worst performances.

AR order AR order

2 3 4 5 6 7 8

2 88.9 91.7 90.3 91.7 87.5 87.5
3 90.6 90.3 93.1 86.1 87.5 88.9
4 87.7 90.6 83.3 88.9 84.7 87.5
5 87.0 90.6 84.1 86.1 80.6 87.5
6 87.7 90.6 87.7 84.8 86.1 84.7
7 87.7 86.2 86.2 83.3 82.6 79.2

8 87.0 85.5 84.8 84.1 86.2 71.7

Table 2 shows the classification accuracy results obtained from two classification

methods, which are labeled Method (A) and Method (B) for notational simplicity.

In Method (A), the classifier is trained using half of the pixel responses (chosen

in an arbitrary manner) for the three data classes (normal, cancerous cells and

reference TPI responses), and tested by the remaining half of the pixel responses.

In Method (B), a leave-one-out (LOO) error estimator is used. The leave-one-out

estimator uses the Mahalanobis distance classifier which is trained using a randomly

selected set of N − 1 responses, out of a total of N responses for the three classes

and tested by the remaining response. The procedure is repeated N times to obtain

the average classification accuracy. In the experiments, all pairwise combinations

of AR orders are considered, which implies a total of
( 7

6

)

= 42 combinations.

From Table 2, it can be seen that the classification accuracies obtained were in the

79.2% to 93.1% range for Method (A) and 71.2% to 90.6% range for Method (B).

Considering the results in Tables 1 and 2 together, it can be observed that there is a

trade off between the classification accuracy and model complexity. Combinations

of lower-order AR models generally outperformed combinations with high-order

models. The best classification accuracy is achieved by performing a combination

of the features generated from AR models of orders 3 and 5. The classification

results after adopting the LOO method reaches 90.85%.

4.3. Classification of powder samples

In the powder classification experiment, the responses are obtained from samples

of different thicknesses: 2, 3 and 4 mm. All the data from the six-classes of powders

plus the background reference signal at thicknesses of 2 and 4mm are used to

train the classifier, and all the data of powder samples at a thickness of 3mm are

used to test the classifier. After wavelet de-noising using the SURE procedure, a

db8 discrete wavelet transform (DWT) is applied to the de-noised powder data.

Subsequently, ARMA modeling is performed to extract the relative feature matrix.

The performance of Durbin’s algorithm for ARMA modeling is characterized by
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Table 3. Squared error variances of ARMA fitted to DWT sub-bands on T-ray signals of powder
samples (scaled by a factor of 10−17).

DWPT depth ARMA model order

2 3 4 5 6 7 8

1 0.2405 0.1397 0.1337 0.1147 0.0948 0.0935 0.0797
2 4.458 2.854 1.280 0.976 0.674 0.673 0.660
3 32.09 32.06 26.97 26.93 24.35 24.06 23.06

Table 4. Squared error variances of ARMA obtained from three different methods: correlation,
Prony’s and Durbin’s, as applied on powder samples.

Method Correlation Prony’s Durbin’s

Minimum value 0.3399 × 10−19 0.3581 × 10−4 0.797 × 10−17

Maximum value 0.1153 × 10−16 0.0115 0.3209 × 10−15

the squared error variances. These results are presented in Table 3. The correlation

method allows the lowest error variance among the methods investigated, shown in

Table 4. The error variance of Durbin’s method is much lower than the basic Prony’s

method, though a little higher than that of the correlation method. However, the

low variance achieved by the correlation method comes at a cost of a larger model

order (AR only).

The ARMA model produces features that separate the classes quite effectively.

The classification accuracy in Table 5 improves by at least 3% over either AR or

MA models alone, as illustrated in Tables 6 and 7, respectively. Compared to the

correlation and normal Prony’s methods used to fit an AR or ARMA model, that

produced a maximum classification accuracy of 96% and 95%, respectively, Durbin’s

algorithm improves the maximum classification accuracy by 2%.

Figure 5 shows the scatter plots of the feature vectors for 700 random samples

at thicknesses of 2 and 4mm. In order to better understand the learning vectors and

show a better grouped dataset for each powder sample, we choose the second- and

fifth-order ARMA model at three levels of wavelet decomposition to generate the

scatter plots. The seven classes (comprising the six powder samples and a reference)

Table 5. Percentage classification accuracy of several powder samples, obtained using an AR
modeling matrix.

AR order AR order

3 4 5 6 7 8

2 88.8 75.9 96.1 92.7 95.0 92.7
3 85.4 89.1 88.8 81.8 96.9
4 88.2 96.6 85.2 96.9
5 81.2 75.6 86.0
6 75.9 91.3
7 75.63
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Table 6. Percentage classification accuracy of several powder samples, obtained using an MA
modeling matrix.

MA order MA order

3 4 5 6 7 8

2 84.9 84.9 81.5 84.9 85.2 84.0
3 85.7 78.7 72.0 77.0 79.8
4 73.4 79.8 80.1 81.0
5 72.0 81.0 79.3
6 70.6 77.9
7 73.1

Table 7. Percentage classification accuracy of several powder samples, obtained using an ARMA
modeling matrix.

AR order MA order

3 4 5 6 7 8

2 95.8 98.0 96.1 95.5 96.6 96.9
3 85.7 88.0 87.4 85.2 83.8
4 92.6 92.4 92.7 89.9
5 81.2 80.1 82.1
6 77.0 84.3
7 78.2
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Fig. 5. Scatter plots showing the learning vectors for discriminating powders with the thickness
of 2 and 4mm, corresponding to (a) second order AR model and (b) fifth order of MA model,
over three steps of wavelet transform.

in Fig. 5a, which uses AR model coefficients, are grouped together, although the

class populations show some degree of overlap. The scatter plot in Fig. 5b, which

uses MA model coefficients, is not clearer than the case with the AR model coeffi-

cients. However, it is found that the combination of the two model coefficients to

generate an ARMA feature matrix at the two specified orders actually led to good

classification performance, with classification accuracy of 96%.
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The ARMA classification experiments are performed on a computer equipped

with a 2.4GHz Pentium 4 CPU. The average time spent classifying the six-classes

powdered samples and their reference is 51.2 seconds for 42 runs, or 1.2 seconds

per run. It is therefore feasible to use this ARMA modeling algorithm to perform

real-time classification of pulses.

5. Conclusion and Future Work

The use of an orthogonal transform such as the wavelet transform is well justi-

fied for decomposing the time-domain signals obtained using a THz-transient spec-

trometer. De-noising in the wavelet domain is isometric to de-noising in the time

domain so the adopted methodology is appropriate to applications where legislation

of the proposed algorithm is necessary. The adoption of SureShrink thresholding

is also appropriate as it is smoothness adaptive (the level-dependent thresholds

are arrived at after regarding the different resolution levels of the transform as

independent multivariate normal estimation problems). The further modeling of

the wavelet coefficients to produce new feature vectors has been shown to produce

new feature vectors rich in information content irrespective to the morphology of

the samples. The use of Durbin’s algorithm in estimating the ARMA coefficients

at each decomposition level yielded small error variances ensuring that features

present in the wavelet domain are not lost with this modeling process. The classi-

fication performance obtained for both the cellular samples as well as the powder

samples using the Mahalanobis distance classifier is encouraging and provides fur-

ther motivation to use more elaborate data-driven schemes in future work such as

multi-layer perceptrons or support vector machine classifiers. It is worth noting,

however, that classification work using an SVM classifier scheme without adopt-

ing a wavelet decomposition step, but using four-dimensional feature set based on

amplitude and phase data has had a 89% success rate, at correctly classifying cancer

cells.37

The adoption of a THz imaging system in a histopathology lab for the identifi-

cation of cancerous cells, in conjunction with our classification methodology which

is capable of differentiating between small differences in the transmission proper-

ties of the samples under study, is expected to provide significant advantages as

current techniques are laborious, expensive and the results obtained are subjec-

tive to human interpretation. A further advantage of the adopted methodology

is that it can be implemented in real-time so that measurements obtained with

Terahertz-pulse imaging systems by practitioners from other disciplines can be dis-

played directly as feature maps in a manner that is transparent to the user. The work

described will lead to the further proliferation of THz transient spectrometers in the

biomedical, security and pharmaceutical technology sectors. The ultimate aim of

our work is to achieve heterogenous layer classification in a three-dimensional space

based on T-ray tomographic imaging. Work is ongoing to transfer the classification
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methodology developed in this work to results from in vivo and ex vivo cancer cells

that must be discriminated in situ through a number of heterogeneous layers. More

recent work from our lab38 in 3D tomographic classification of homogeneous layers

has demonstrated that such goals can be achieved.
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