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Application of Autoregressive  Spectral  Analysis  to 
Cepstral  Estimation of Mean  Scatterer  Spacing 

Keith A. Wear, Robert F. Wagner, Fellow, IEEE, Michael F. 

Abstract-The  problem of  estimation  of mean scatterer spacing 
in an object containing regularly spaced structures is addressed. 
An autoregressive (AR)  spectral  estimation  method (based  on 
Burg’s  algorithm)  is  compared with a conventional fast Fourier 
transform  (FFT)  based  approach for this task. Regularly  spaced 
structures produce  a periodicity in the  power spectrum of ul- 
trasonic backscatter. This periodicity is  manifested as  a peak in 
the cepstrum. A phantom was constructed for comparison  of the 
two  methods.  This phantom contained regularly spaced  nylon  fila- 
ments. In  addition, it contained  randomly positioned glass spheres 
that produced incoherent backscatter. In an  experiment in which 
this target was interrogated using broadband  ultrasound, the 
AR spectral estimate offered considerable  improvement  over the 
FIT when the analysis  gate length was  on the order of the 
structural dimension.  Advantages included improved resolution, 
reduction in bias  and variance of scatterer spacing  estimates,  and 
greater resistance to ringing artifacts. Data  was also  acquired 
from  human liver in vivo. AR spectral  estimates on human  data 
exhibited a  decreased  dependence on gate length. These results 
offer  promise for enhanced spatial resolution and accuracy in 
ultrasonic tissue characterization  and nondestructive evaluation 
of materials. 

U 
I. INTRODUCTION 

LTRASONIC  SCATTERING from the human  liver  has 
two  principal components.  One  component, which is 

highly coherent, is due to scatterers  (probably lobules or 
portal  triads) that are spaced at relatively regular  intervals. 
The other component, which is highly  incoherent, is due to 
more  randomly  situated  scatterers  (possibly  individual  cells) 

One  feature that has  been  successfully utilized in the char- 
acterization of diffuse  liver  disease is the  average spacing 
between scatterers associated  with the coherent component of 
the backscattered signal.  This parameter may be  derived from 
spectra of broadband  radio  frequency  (RF) signals  correspond- 
ing to backscattered  ultrasound.  Reflections from neighboring 
scatterers interfere  constructively  at  certain frequencies (for 
which  the  intervening  distance is equal to an integer  number 
of half wavelengths), in a manner similar to Bragg scattering. 
This effect is manifested  as  a set of peaks in the power 
spectrum.  The interscatterer spacing may  be computed from 
the  location of the  fundamental  peak or from the spacing of 
adjacent  harmonics. 

[11-[71. 
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Fellingham and Sommer [4] successfully used mean scat- 
terer spacing to differentiate  normal (mean=1.07  mm,  stan- 
dard deviation=0.16  mm, fourteen  subjects)  from cirrhotic 
(mean=1.48  mm, standard deviation=0.24  mm, 15 patients) 
liver. They  also had success in the spleen, differentiating 
normal subjects from  those with lymphoma.  Their algorithm 
was based on detection of peaks in the  autocorrelation of 
the power  spectral densities of RF signals.  Garra and co- 
workers [l] used mean scatterer spacing in their  multifeature 
classification of diffuse  liver  disease. 

Spectral estimates in the examples given  previously  were 
based on fast  Fourier  transforms (FFT’s) of digitized RF 
signals.  (The squared modulus of the FFT is often  referred to 
as the periodogram). However, the FFT has  severe  limitations 
in some  cases. In particular, if small  gate  lengths  are  used, 
the FFT exhibits  a  considerable compromise in resolution in 
the  frequency domain.  The  FFT may be expressed as the 
convolution of the true Fourier transform of the  signal  with 
the  Fourier  transform of the time  gate  function. Smaller  gates 
result in greater  distortion of spectral  estimates. This effect was 
negligible  for the gate lengths used by Fellingham  and Sommer 
[4] (1 cm) and Garra et  al. [l] (3 cm). If better  resolution than 
1 cm is desired,  however,  the FFT may be  inadequate. 

Autoregressive-moving  average (ARMA) techniques  for 
spectral  estimation  offer an alternative to the  periodogram 
[S]. Compared with  classical  techniques,  these methods can 
provide superior  spectral  resolution.  They have been applied 
in many fields, including  radar,  seismology. oil exploration, 
speech processing,  Doppler  ultrasound,  radiography, magnetic 
resonance spectroscopy, and stock  market forecasting [S]-[lS]. 
Their relative advantage  over the FFT increases  with  decreas- 
ing gate length. 

Some elementary  definitions  regarding ARMA models and 
scatterer spacing estimation is presented in Section 11. In 
addition,  the  technique of estimating scatterer spacing from 
the  cepstrum is discussed. In Section 111, data  acquisition 
and analysis methods and results  are  described for a  phantom 
experiment and for a human experiment.  Applications of these 
results in ultrasonic  tissue  characterization  are  discussed in the 
final section. 

11. THEORY 

A.  The ARMA Model 
An autoregressive-moving average  (ARMA) model  for  a 

sampled signal x[.] is given by [S] where the  first sum 
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corresponds to the  autoregressive (AR) portion 
P 4 

~ [ n ]  = - c n [ k ] z [ n  - k ]  + c b[k]u[n, - k ]  (1) 
k = l  k=O 

and the second corresponds to the moving  average (MA) 
portion. The term autoregressive refers to a  linear  sum of 
previous  (regressive) samples of the output  process itself 
(auto). The  MA portion is a filtered version of  an input 
sequence, u [ k ] ,  which is assumed to be a white  noise process 
with  mean zero and variance p .  The AR coefficients  are u[k]  
and the MA coefficients  are b[k].  By convention, b[O] = 1. 
The integers p and q are  referred to as the orders of the AR 
and MA  portions respectively.  For  a  pure MA model, p = 0. 
(That is, the first sum in (1) disappears). For a  pure AR model, 
p = 0. (Note that for  a pure AR model, the k = 0 term of the 
second summation remains). 

The  power spectral  density may be obtained  from the 
squared modulus of the Fourier  transform of (1). The power 
spectral  density of the input  white  noise sequence is p a t  where 
p is the  variance of u[k]  and At  is the sampling interval. 

where 
n 

k=l 

and 
9 

k = l  

The  exponentials arise  from applying the  Fourier  shift  theorem 
to the delayed samples of X[.] and U[.] in (1). For  a  pure AR 
model, L3( f) = 1. 

The  zeros of A ( z )  (where z = e - J 2 * f 4 t )  produce  poles in 
the complex z plane and therefore peaks in the power  spec- 
trum. Sharp peaks  in  a spectrum  corresponding to resonances 
from regularly  spaced  scatterers may be  attributed to poles 
in an AR model.  For  spectra containing  deep nulls, but no 
sharp peaks, Marple  recommends using  a  pure moving  average 
model [g, ch. 61. 

B. Determination of Autoregressive  CoeBcients 

The AR coefficients, a [ k ] ,  and the white  noise  variance, p ,  
may  be  obtained from the  autocorrelation sequence, ~ [ m ] ,  of 
the process x[.] [g]. A  set of linear equations that relate u[k]:  p, 
and ~ [ m ]  may be obtained by multiplying (1) by  its complex 
conjugate and then taking  the ensemble average. These  equa- 
tions  are referred to as the AR Yule-Walker normal  equations. 
Solution of this set of equations is expedited  by  application of a 
recursive  method  known as Levinson’s  algorithm [S]. If z[n] is 
a  Gaussian process and r[m] is known exactly, then the power 
spectrum obtained in this way is equivalent to the maximum 
entropy spectral estimate provided that the  Shannon-Burg 
measure of entropy is used  rather  than  the Gibbs-Jaynes 
measure [16]. This is the spectrum that is associated  with 
the  most  unpredictable  time series  consistent with the known 
values of the autocorrelation  function. In practice, ~ [ m ]  is not 
known  exactly but is estimated from measurements.  Solution 

of the Yule-Walker equations using an estimate for r[m]  ob- 
tained from  data  provides  a method for obtaining approximate 
values  for  the AR coefficients, and therefore an approximate 
power  spectral  density.  Another  method  for  estimating the AR 
coefficients,  known as Burg’s algorithm,  involves calculating 
a[k] directly from measurements of x[.] (without  estimation of 
the  autocorrelation sequence ? [ m ] ) .  This method is described 
in great  detail  elsewhere [g], [9]. 

C. Estimation of Scatterer  Spacing  Using  the Cepstrum 

Regularly  spaced structures produce peaks in the power 
spectrum of ultrasonic  backscatter.  Reflections from neigh- 
boring scatterers interfere  constructively at certain frequencies 
(for which the spacing is equal to an integer  number of 
half wavelengths). The  peaks occur at frequencies given by 
f = nc/2d where f denotes frequency, n is an integer, d is 
the  scatterer spacing, and c is the  speed of sound. The factor 
of 2 results from reflection imaging geometry. 

The quality of scatterer spacing  estimates is directly  related 
to spectral peak  detectability.  Other  characteristics of the spec- 
trum,  such as  center frequency, or full width half maximum, 
etc. are  relatively  unimportant for this  task. As discussed in 
Section 11-A, sharp peaks in the power  spectrum  (poles in the 
complex z plane) may be associated  with  the  autoregressive 
portion of the  model  (see (1x4). Hence, in this  study,  a  pure 
AR  model  was used for spectral  estimation. 

A  robust  method for  determining interscatterer spacing  is by 
identification of the location of the  peak in the cepstrum.  The 
cepstrum is defined as the Fourier  transform of the  logarithm 
of the power spectral  density [17]-[19]. A  periodicity in the 
spectrum (that  is,  a  set of equally  spaced sharp  resonances 
or a set of equally  spaced nulls) will  produce  a peak in 
the cepstrum.  The use of the cepstrum for  the  estimation 
of scatterer spacing in medical  ultrasonic  applications was 
introduced by Lizzi,  Fellepa, and co-workers at  the  Riverside 
Research  Institute [19]. They used the cepstrum to measure 
hepatic vessel  wall  thickness. 

The utility of the cepstrum may be  illustrated by the 
following  simple  example that is based on the  discussion by 
Oppenheim and Schafer [17, ch. lo]. Consider  a  process, ~ ( t ) ,  
which may be represented  as the convolution of an impulse 
response, p ( t )  (which  here  incorporates  the  electromechanical 
characteristics of the transducer,  diffraction, and attenuation), 
and  a  function that describes  tissue scattering, ~ ( t ) :  

s(t)  = p ( t )  * .(t). ( 5 )  

Consider  two identical  scatterers separated by a  distance d: 

T ( t )  = s ( t  + t o )  + s ( t  + t o  + 2 d / c )  (6) 

where c is the  speed of sound.  The power spectrum of the 
received signal  is then 

l X ( f ) 1 2  = lP(f)121S(f)1211 + e--j2rf(2d’c)12. (7) 

Taking  the  logarithm (the next step  toward  computing the 
cepstrum): 

1% l X ( f ) I 2  = 1% IP(f)I2 + 1% lS(f)I2 
+2 log 11 + e-J2xf(2d’c)  1 ,  (8) 
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The last term is periodic  with period equal to c/Zd.  Upon 
Fourier  transformation  (the final step toward computing the 
cepstrum)  this  periodicity  will  manifest itself as  a peak at 
t = 2d/c. Assuming that the transfer  function, P(f), and the 
frequency  dependent  backscatter, S ( j ) ,  do not vary  dramat- 
ically over  changes of frequency on the order of c / 2 d ,  their 
contributions to the cepstrum  will  be  confined to times  much 
smaller than 2d/c .  

111. EXPERIMENT 

A. Data  Acquisition 

In order to test the algorithm,  a custom phantom  was 
constructed. The phantom consisted of glass  spheres  (mean 
diameter = 75pm) embedded in agar. The number  density of 
the  spheres was 3 per mm’. The speed of sound in the phantom 
was measured to be  1540 m/s. Also present in the  phantom 
was a  grid of parallel nylon lines. The grid spacing  was 2.54 
mm.  Thus, the nylon lines  provided  coherent  backscatter  from 
regularly  spaced reflectors while the glass spheres provided 
incoherent  backscatter. 

The phantom was interrogated with an unfocused,  circular 
(0.5-in diameter) Panametrics A3029 transducer. The  center 
frequency was 2.25 MHz. The -20-dB bandwidth was  1.5 
MHz. A Panametrics 5052UA pulser  receiver was used. Re- 
ceived signals were  digitized at 25 Msamples/s using  a  LeCroy 
TR8828C transient  recorder. The transducer was oriented 
perpendicular to the  nylon  wires.  Forty  i2-lines were acquired 
from  different  locations  in the  phantom. 

The  spacing interval of 2.54 mm for the nylon lines 
produced  a  resonance at 0.3  MHz and harmonics at integer 
multiples of 0.3 MHz. Since  our system  transfer  function did 
not vary substantially over  changes of frequency on the order 
of 0.3 MHz, no system  response  correction was needed for 
our data. 

Human  data  was  acquired using a  clinical  Diasonics DS-20 
mechanical  sector scanner. A 3.5-MHz transducer  with  a 19 
mm diameter  aperture  and  full width half maximum (FWHM) 
bandwidth of approximately 1.0 MHz  was used.  Data was 
digitized at 22.1 MHz. A region of interest corresponding  to 
14  contiguous  sector lines,  each  approximately 3 cm in length 
was acquired from the human  subject. 

B. Data  Analysis 

Spectral  estimates as  functions of gate length  were  obtained 
as follows. Each of the 40 lines of RF (1024 points or  41 
ps @ 25  Msampleds, or 32  mm  for c = 1540 m/s) was 
partitioned along its length into  n equal  segments, 32/11 mm 
long, for n = 1 , 2 , 4 ,  and 8. A  spectral estimate (periodogram 
or  AR) was computed for  each segment.  The cepstrum was 
then obtained by taking the FFT of the logarithm of the 
spectral estimate. Scatterer spacing, for  each segment,  was 
then estimated  from  the  location of the cepstral  peak.  When 
searching for the cepstral  peak, the region in which the 
“ringing peak”  (discussed  later) was  expected  was  excluded. 
For each  value of n, 40n scatterer spacing  estimates were 
obtained. These  values were averaged, in order to estimate the 
mean  and  standard  deviation of the scatterer spacing estimator. 

Frequency (MHz) 
Fig. 1. The  average  periodograrn  obtained  from  40 lines of RF  from the 
phantom.  The  gate  length  was 32 mm. The  resonance  peaks  at 0.9 MHz, 1.2 
MHz, and 1.5 MHz correspond to harmonics of a  fundamental  resonance  at 
0.3 MHz. These  resonances  are  due to  regularly spaced parallel nylon wires 
in the phantom.  The  distance  between  adjacent  wires  was  2.54  mm. 

Periodograms  were  computed  as  the squared  modulus of 
the FIT. A  rectangular gating function was used. The  analysis 
described  above  was  also repeated using  a Hamming  window. 
While the Hamming window  reduced  ringing  artifacts, it 
degraded spectral resolution,  reduced  peak  conspicuity, and 
resulted in inferior  scatterer spacing  estimates. 

AR coefficients  were  obtained  using  Burg’s  algorithm. Soft- 
ware  included in [8] was used for the computation.  Equations 
(2) and (3) were then used to obtain  power  spectral estimates 
from AR coefficients. 

The  order  was  chosen  such that the model (1) spanned  a 
time  interval that corresponded to a  distance that was  slightly 
greater than the true scatterer  spacing. In this way, any degree 
of periodicity in the signal ~ [ n ] ,  due to the regularly spaced 
nylon  wires,  could  be reflected in the  coefficients, a[lc]. Thus, 
selection of a  value for p sets an upper bound for  the values 
of scatterer spacing detectable by this  method. For phantom 
data, the order  was 85 (2.6 mm). For human  data, the order 
( p  = 72) was chosen  such that spacings up to 2 mm could 
be detected. 

For  phantom  data,  corrections  for  diffraction and the trans- 
ducer  electromechanical  response  were not necessary  (for  the 
reasons  outlined in Section 11-C). For human  liver  data,  which 
exhibited  a  much  smaller  signal-to-noise  ratio  (SNR),  spectra 
were divided by the  spectrum acquired from a  planar  interface. 
Human  cepstra exhibited large values  corresponding to small 
(< 1 mm) spacings. These were due to the relatively  slowly 
varying  (in  frequency  domain)  contribution from frequency 
dependent scattering (S(f) in (8)). In order to enhance the 
cepstral  region of principal diagnostic interest (1-2 mm), 
human  liver spectral  estimates  were high  pass  filtered. 

C. Results 

Fig. 1 shows the average  periodogram from  40  lines of RF 
acquired  from the phantom.  Here the line length was chosen 
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Fig. 2. Average  periodograms of RF  data  obtained  from the phantom  for  four  different  gate  lengths (16 mm, X mm. 4 mm,  and 
2 mm). As the gate length is reduced,  three  effects  are  apparent: 1) the peaks  become  less  discernible, 2) estimated noise level 
increases,  and 3) ringing becomes  more  apparent.  (a) 16 mm. (b) 8 mm.  (c) 4 mm.  (d) 2 mm. 
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Fig. 3. AR  spectral  estimates  (obtained  using  Burg’s  algorithm) of RF data  from  the  phantom for four different  gate  lengths (16 
mm, 8 mm, 4 mm,  and 2 mm). For each  gate length greater than  the actual  scatterer  spacing (2.54 mm),  the  resonance peaks are 
more  conspicuous in the  AR spectral  estimate than in the corresponding  periodogram.  (a) 16 mm. (b) 8 mm.  (c) 4 mm.  (d) 2 mm. 

to be rather  long (1024 points or  41 p s  @ 25 Msamplesis, against  which to  compare subsequent  spectral  estimates. This 
or 32 mm for c = 1540  m/s).  This line  length  would be line  length  resulted in a convolution of the true spectrum  with 
impractical for imaging applications  or for  detection of small a sinc function  with  full width half maximum (FWHM) equal 
lesions. However, the corresponding periodogram is relatively to 0.03 MHz, therefore  having a small  impact on the spectral 
free from  truncation  artifacts  and can  serve  as a  standard estimate. 
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Fig. 4. Average  cepstra,  based  on  periodograms, for four different gate  lengths (16 mm, 8 mm, 4 mm,  and  2  mm).  The  peak 
at 2.54 mm is due  to the  regularly spaced  scatterers.  The  peak at 4 mm  for the 4  mm  gate  and the  peak  at  2  mm for the 2 
mm gate  are  due  to  ringing.  The  peak at 2.54 mm is easily  discernible at 16 mm  and 8 mm but is much  less  clear  at 4 mm. 
(a) 16 mm.  (h) 8 mm.  (c) 4 mm. (d) 2  mm. 

Harmonics at 0.9 MHz,  1.2  MHz, 1.5 MHz. 1.8 MHz, and 
perhaps 2.1 MHz are apparent. The fundamental at 0.3 MHz 
and the harmonic at 0.6 MHz  are lost in the noise.  From 
the  spacing  between  the  discernible harmonics, the scatterer 
spacing may be inferred. 

The reduction in peak  conspicuity at higher frequencies 
may be attributed to small  variations in the scatterer spacing 
d. The explanation for this is as  follows. Suppose a single 
irregular pair of scatterers are separated by d + Ad, rather 
than the average spacing in the resolution  volume, d.  For small 
variations ( A d / d  << l),  this  irregular  pair  produces an altered 
set of resonances that differ from the  original set (f = nc/2d)  
by an amount A f E ncAd /2d2 .  As the order  (n) increases, 
the separation (Af )  of the irregular  peaks from the main set 
of peaks increases and the degree to which the irregular  peaks 
reinforce the main peaks decreases. In this manner,  the rate of 
decay of the  resonances in the spectrum provides an indication 
of the width of the distribution of scatterer spacings in the 
resolution volume. 

In Fig. 2, the  effect of decreasing the gate  length on the 
periodogram is shown.  The  gate  lengths of 16, 8, 4  and  2 mm 
correspond to FWHM of the convolving  sinc function of 0.06. 
0.12,  0.23, and 0.47  MHz. As the gate length is reduced, the 
detectability of the peaks decreases. In addition, the estimate 
of the  noise  level  steadily  increases  from  about -35 dB at 
32 mm and 16 mm, to -30 dB at 8 mm, to -25  dB at 4 
mm, to -20 dB at 2 mm. At 4 mm, the noise level becomes 
commensurate with  the harmonic at 0.9 MHz. Finally,  ringing 
becomes more  apparent as the gate length  decreases. 

In Fig. 3, AR spectral estimates (based on  Burg's algorithm) 
are  shown  for  the  four  different  gate  lengths. At 16 mm, the 
fundamental  at 0.3 MHz  is discernible. In addition, harmonics 
throughout all the usable  system  bandwidth  are  apparent. As 
the  gate  length is reduced, the spectral  estimates  become 
somewhat degraded. However, for  each  gate  length greater 
than  the  actual  scatterer spacing (2.54  mm), the resonance 
peaks  are more discernible in the AR spectral  estimate  than 
in the corresponding periodogram.  Moreover, the estimated 
noise level remains low and  does not interfere  with the  three 
most  prominent  peaks at 0.9 MHz, 1.2 MHz,  and 1.5 MHz. In 
addition,  ringing is suppressed in the AR estimates. 

In Fig. 4, average  cepstra,  based  upon  periodogram spectral 
estimates, for the four different gate lengths  are shown.  The 
horizontal axes are  calibrated in distance rather than  time so 
that scatterer spacing may be read directly from the graphs. 
The main peak corresponding to 2.54 mm is clear at 16 mm 
and 8 mm,  somewhat  less  clear at 4 mm, and, of course, 
nonexistent at 2 mm. For  gate  lengths  greater than 5 mm (that 
is, 16 mm and 8 mm) a  small  peak at 5 mm,  due to interference 
from pairs of wires two intervals  apart, is apparent. There  are 
sharp,  narrow  peaks at 4 mm for the  4 mm gate  length  and at 
2 mm for the 2 mm gate  length that are  due to ringing. 

In Fig. 5, average  cepstra,  based  upon  autoregressive spec- 
tral estimates, for  the  four  different  gate  lengths are  shown. 
The peak  at 2.54 mm is more  discernible,  particularly for the 
4 mm gate  length. Of course, no ringing peaks are evident. 

Since scatterer spacing estimation entails nonlinear pro- 
cessing of spectra (in  particular,  peak  detection), one  cannot 
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Fig. S .  Average  cepstra,  based  on  autoregressive  spectral  estimates, for four  different  gate  lengths  (16  mm, 8 mm, 4 mm,  and 2 
mm).  The  peak at 2.54 mm is due to  the regularly  spaced  scatterers.  Note  that  at 4 mm,  this  peak  is  much  more  conspicuous than 
in the  periodogram-based  cepstrum (see Fig. 4). (a) 16 mm.  (b) 8 mm.  (c) 4 mm. (d) 2 mm. 
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Fig.  6.  Scatterer  spacing  estimates,  as  functions  of  gate  length,  for the two 
spectral  estimation  approaches  (a)  autoregressive  and  (b)  periodogram.  The 
horizontal  and  vertical  dotted  lines  correspond  to  the  true  scatterer  spacing 
(2.54 mm). I n  (b), the  dashed  curve  corresponds to estimates  made  using a 
Hamming  window  while the solid  curve  corresponds to estimates  made  using a 
rectangular  window.  The  two  methods (AR and periodogram  with  rectangular 
window) are asymptotically  unbiased.  However, at small  gate  lengths,  the 
periodogram  based  estimate  exhibits a larger  bias than  the AR approach. 

necessarily  expect the average scatterer spacing estimate to 
correspond to the  peak in the average cepstrum. In Fig. 6, 

! ; perioygram I I I I 

Periodogram with  Hamming Window 
: Autoregressive 

0 

2 3 4 5 6 r 8 

Record Length (mm) 

Fig. 7. Coefficients of variation  (standard  deviation  divided  by  the  mean)  as 
functions of gate length. 

estimates of scatterer spacing, as  functions of gate length, are 
shown for both spectral  estimation  methods. The horizontal 
and  vertical  dotted  lines  correspond to the true scatterer spac- 
ing in the phantoms (2.54 mm).  (The  lower curves illustrate 
why it is advisable not to use the Hamming window). Both 
methods (autoregressive  and  periodogram without  Hamming 
window) are  asymptotically  unbiased.  That  is, for sufficiently 
long gate lengths (> two  scatterer spacings), the estimates 
come very  close to the true value.  However, at small  gate 
lengths  (between one and  two  scatterer spacings), the AR 
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Fig. 8. Ceptra  from  human in  vivo liver  based on processing  with  four  different  gate  lengths (32 mm,  16  mm, 8 mm,  and 4 
mm)  using  the F R .  The  shape of the  cepstrum  exhibits  some  dependence on gate  length.  The  main  region of diagnostic  interest 
is between 1 and 2 mm.  (a) 16 mm. (b) 8 mm.  (c) 4 mm. (d) 2 mm. 
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Fig. 9. Cepstra  from  human in  vivo liver  based on 
4 mm)  using AR spectral  estimation.  Compared  with 
(a) 16 mm. (h) 8 mm.  (c) 4 mm.  (d) 2 mm. 
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processing with four  different  gate  lengths (32 mm, 16 mm, 8 mm,  and 
the FR-based  cepstra,  the  shape  exhibits  less  dependence on gate length. 

approach is much  more accurate. Finally,  as  can be seen in Cepstra computed from human  liver  data  are shown in Figs. 
Fig. 7, the AR estimates  exhibited  a  smaller  coefficient of 8 and 9, which  are FFT- and AR-based, respectively. The 
variation  (standard  deviation  divided by the mean) than the most  dominant  peak corresponds to a  scatterer spacing of 
periodogram-based scatterer  spacing estimates. approximately 1 mm. At small  gate lengths, the FFT-based 
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cepstra exhibit some variation. At 2-mm gate length,  peaks 
near 1.4 mm and 1.9 mm become  competitive with the peak 
at 1.0 mm, thereby complicating  scatterer spacing estimation. 
The AR-based  cepstra are much less  sensitive to  gate  length. 
From 16 mm down to 4 mm, the  AR-based  cepstra  are  virtually 
unchanged. At 2 mm gate  length, some artifacts arise but  the 
peak at 1.0 mm is more  discernible than in  the FFT-based 
case. 

IV. CONCLUSION 

In addition to randomly  positioned scatterers that produce 
incoherent  backscatter, the human  liver  possesses  scatterers 
that  exhibit some degree of regularity  and  consequently, 
partially  coherent backscatter. Average spacing between these 
scatterers  has  been  successfully  utilized, along with other 
features,  to differentiate  normal  from  diseased  liver. Studies 
reporting  this finding have concentrated on characterization 
of diffuse diseases [l], [3], [4]. Measurements have corre- 
sponded to average interscatterer spacing  over a  relatively 
large volume of tissue. They have been derived  from averages 
of periodograms obtained  from RF data  with  relatively  long 
gate lengths (1-3 cm). 

In this  paper, an algorithm  for  improved mean scatterer 
spacing estimation  has been proposed. It was tested on a 
phantom that contained  regularly  spaced  scatterers  with  known 
interscatterer  spacing. For this  target,  the AR spectral  estimate 
(based on Burg’s algorithm) offered considerable improvement 
over the  conventional  periodogram when the record  length was 
sufficiently small.  Advantages included  improved  resolution, 
reduction in bias and  variance of scatterer spacing estimates, 
and greater resistance to ringing  artifacts. In addition, noise 
was  suppressed. 

Often in estimation  tasks, it is possible to decrease bias 
at some  cost, usually an increase in variance of estimates. 
It is important to emphasize that this is not occurring  here. 
With the AR spectral  estimation  method,  a decrease in bias 
of scatterer spacing  estimates (Fig. 6) was accompanied by a 
decrease in variance (Fig. 7). The conventional  periodogram 
exhibits a  fundamental  resolution  limit  (due to the  finite 
window  duration) that leads to the  bias in scatterer spacing 
estimates. The  AR spectral estimate  does not exhibit  this 
limitation. This property is often  referred to as superresolution 

In  the phantom  experiment,  accurate  scatterer spacing  es- 
timation was possible  even  without corrections  for electro- 
mechanical effects,  diffraction, and attenuation. In human 
tissue, where  SNR is smaller, such  corrections  were  found 
to be  necessary. 

The level of spatial resolution at which the AR method 
outperformed the periodogram (< 5 mm)  is not essential for 
detection of diffused  diseases.  However, it would be essential 
for detection of a  small  lesion that is characterized  by  a 
difference in mean  scatterer spacing relative to the embedding 
tissue. In addition,  creation of images based on spectrally 
derived features (such as scatterer spacing) may be more 
feasible  with an AR approach. 
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