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�e requirement of the road services and transportation network development planning came into existencewith the development
of civilization. In the modern urban transport scenario with the forever mounting amount of vehicles, it is very much essential
to tackle network congestion and to minimize the travel time. �is work is based on determining the optimal wait time at tra	c
signals for the microscopic discrete model.�e problem is formulated as a bilevel model.�e upper layer optimizes the travel time
by reducing the wait time at tra	c signal and the lower layer solves the stochastic user equilibrium. So
 computing techniques
like Genetic Algorithms, Ant Colony Optimization, and many other biologically inspired techniques prove to give good results for
bilevel problems. Here this work uses Bat Intelligence to solve the transport network design problem.�e results are compared with
the existing techniques.

1. Introduction

Nowadays the ever more increasing number of vehicles
creates a challenge in the modern urban transportation
scenario. For a road network with n number of junctions,
there are 2n possible networks. �us, �nding an optimal path
is an important criterion for tra	c optimization problem. But
in many cases there is a limitation or unavailability of road
junction or it is also possible that at a particular instance of
time a particular link which seems shorter is unavailable or
highly contested. Another pro�table way to put up with it
can be optimizing the wait time at tra	c signals. �is will not
only save the priceless time of vehicle users, but also reduce
congestion, improve road safety, and smooth the progress of
medical emergencies and industrial needs.

�e need for the transport and road network planning
came on track with the expansion of civilization. Abdullaal
[1] formulated a solution to vehicular equilibrium network
design problem by means of the Hooke-Jeeves’ technique
with continuous variables. In the year 1985 Yosef She� [2]
illustrated a ow pattern all the way through an urban net-
work as an upshot of two competing systems. �e user of the

system, say drivers, passengers, or pedestrians, struggles to
travel in a way that breaks down the incompatibility coupled
with the transportation system. Also, this incompatibility
associated with the travel time is inconsistent and depends
somewhat on the usage of the transportation system.

Allsop [3] designed mutually consistent (MC) tra	c
signal settings and tra	c assignment for a medium size road
network. Heydecker [4] recommended a linear constraint
approximation model and solved the bilevel problem as a
constraint optimization problem.

It is not comprehensible a priori which path through the
network has the shortest travel time.We can conclude that the
responses of the vehicle user can be predicted not dictated.
Biologically inspired techniques have proven to give good
results in such scenarios. �e nature provides a wide range
of inspiration in many unusual forms, sizes, and attributes.

Ceylan and Bell [5] integrated GA, tra	c assignment
(evaluation using TRANSYT), and tra	c control (with min-
imization solved using the Path Flow Estimator (PFE)), and
GATRANSPFE was developed to solve network design prob-
lem and its performance was put side by side with mutually
consistent (MC) solution using numerical examples. �e
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Figure 1: An intersection of the network showing an O-D pair connected by a 3-way and a 4-way junction. �e green arrows denote the
signal values.
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Figure 2: Bilevel model for tra	c network determination problem.

performance index (PI) was improved by 34% over the

MC solution of the problem in 75th generation. Koh [6]
used di�erential evaluation for bilevel continuous network
design problem. Ozgur Basken and Sonar Haldenbilen [7]
developed an ACO Reduced Search Space (ACORSS) to �nd
better signal timing in the signal setting problem of a bilevel
model for tra	c optimization problem. Hu Hui [8] solved
urban transportation equilibrium network design problem
using bilevel programming, and it was solved using PSO and
FrankWolfe.�e algorithm was found e�ective and took less
iteration to give a better solution in comparison to Simulated
Annealing. S. Srivastava and S. K. Sahana [9, 10] designed
a Discrete Evolutionary Model to reduce the waiting time
of vehicles at tra	c signals within the urban transportation
system using level Stackelberg game model 5 test networks
with 12, 16, 20, 24, 28 nodes designed using Petri Net.
�e proposed hybrid technique was solved for optimizing
wait time at tra	c signals and for SUE. Hybrid algorithm
outperformed ACO and GA. Canteralla et al. [11, 12] and
many others have previously proposed a discrete model,
but most of them were macroscopic simulation models. �e
proposed model works on the level of sections within a road
network and hence can take care of various microscopic
tribulations.

Xin-She Yang [13–15] proposed a metaheuristic method,
the bat algorithm (BA), inspired by echolocation behavior
of bats for continuous constrained optimization problems.
BA was found to be more powerful than Particle Swarm
Optimization, Genetic Algorithms, and Harmony Search
due to its robust parameter control features and frequency
tuning abilities. BA proves to give good results for many
optimization problems. Kiełkowicz and Damian Grela [16]
used BA for nonlinear optimization problems. Abatari et al.
[17] proposed a BA inspired method to solve the Optimal
Power Flow (OPF) problem. Yassine Saji et al. [18] used BA
to solve discrete traveling salesperson problem.

�is paper is organized into 5 sections. �e �rst section
introduces the paper and discusses some related work. Sec-
tion 2 gives problem formulation. Section 3 discusses the bat

algorithm. Section 4 presents the research methodology and,
last, Section 5 discusses 3 test cases and their solution using
BA.

2. Problem Formulation

�e road network can be taken as a directed graph G= (N,
a), where ‘N’ is the set of nodes; i.e., the road junctions ‘a’
is the links connecting the junctions as shown in Figure 1.
For each pair of origin and destination (O-D) there is a
nonnegative travel demand, drs. �e road network can be
taken as a strongly connected graph, where each node “i” is
reachable by another node “j” by following the directed path
of the network N.

We assume that the links connecting nodes have a travel
time function ta, for assigned rate of ow xa. �e objective
is to choose a proper link of set to travel from origin
to destination and also to reduce the tra	c delay at each
junction. �e continuous network design model is chosen
with budget constraints for the link capacity expansion. Both
the objectives are interdependent and can be formulated as a
bilevel problem. �e upper level is responsible for reducing
the travel time of the assigned traveler. �e lower level is the
tra	c assignment model which estimates the traveler ow.
�e model is shown in Figure 2.

�is model can be formulated mathematically as shown
below for both the layers.

Upper Level Function

min T (y) = ∑
�∈�
∑
�∈�(�)
���� (��) + daya

Such that, ∑ ���� ≤ 

(1)

whereA is the set of all links a in the network N. x(y) gives the
user equilibrium ow, which is estimated from lower level of
the model for the assigned value of link capacity y.

ca is construction cost for link a and B is the budget.
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Table 1: A comparative analysis of best, average, and worst solution for all the 5 networks.

12 Nodes 16 Nodes 20 Nodes 24 Nodes 28 Nodes

ACObest 62.25 256.82 443.10 480.03 596.50

GAbest 70.15 222.25 338.03 459.54 541.21

ACO-GAbest 75.40 218.29 332.10 421.29 542.15

BAbest 64.81 212.21 320.21 430.31 538.10

ACOworst 90.14 265.02 443.00 480.27 569.17

GAworst 110.21 259.17 450.41 485.17 560.11

ACO-GAworst 85.01 242.33 421.36 479.33 542.65

BAworst 122.02 273.36 465.22 511.25 588.17

ACOavg 92.14 215.65 425.39 465.14 560.34

GAavg 103.21 245.24 425.37 438.54 540.74

ACO-GAavg 87.27 220.14 414.26 450.94 528.28

BAavg 93.12 242.94 399.58 465.79 561.16

Sonar waves 

emitted by the 

bat

Echo of sound wave 

re�ected back to 

the bat

Wavelength

Distance from the pray

Figure 3: Echolocation behavior of the microbats.

Lower Level Function

min∑
�∈�
∫
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Such that, ∑�� = �	 �� ≥ 0

∑

�
∑����	 = xa ∀��	 =
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{
{
1; �� � ∈ �
0;

(2)

where f is the ow on path k and r-s are the nodes on the path
connecting O-D pair.

3. Bat Algorithm

Bat algorithm is an innovative technique proving to give
better solution than many popular traditional and heuristic
algorithms [9, 10] for solving complex engineering problems.
Bat algorithm is based on the echolocation of microbats.
Echolocation (echolocation) is a fascinating sonar wave
emitted by the microbats; it helps them �nd prey and, in
somemagical ways, they are able to discriminate the di�erent
kinds of obstacles or danger on the way towards the prey in
complete darkness. An illustration is shown in Figure 3.

�e bats emit loud ultrasonic sound waves and listen to
the echo that reects back from the surrounding objects. �e
bat algorithm uses some idolized rules for simplicity.

(1) Bats use echolocation to sense prey, predator, or any
barriers in the path and distance.

(2) Bats y with a velocity vi and position xi. �ey have
frequency f and loudness ai to reach their prey. �ey
can adjust the frequency of pulse emission r.

(3) As they get close to the prey, pulse increases and
loudness decreases.

Figure 4 presents a ow diagram of bat algorithm.

4. Research Methodology

�e projected method for solving the TNDP is based on
bilevel model. Figure 5 presents a generalized solution
technique used for the problem. �e upper layer objective
function is solved using bat algorithm and the obtained
solution is further used to optimize the lower layer.

�e frequency of bats [Qmin,Qmax] = [0,n]where n is the
number of nodes in the network. Pulse rate and loudness ri
and ai vary within the range [0, 1].
5. Results and Discussion

�is paper considers 3 sets of test cases. 1st one is taken
from [9, 10]. In this paper 5 networks are taken. �e budget

constraints are not considered in this test case. 2nd test case
works on a 16-link problem adapted from [20]. �e 3rd test
case is based on Sioux Falls problem adapted from [20, 21].

5.1. Test Case 1. Five test cases were adapted from [9, 10]
corresponding to �ve di�erent networks with following spec-
i�cations: 12-node network, 4 intersections; 16-node network,
6 intersections; 20-node network, 8 intersections; 24-node
network, 10 intersections; 28-node network, 12 intersections.
Figure 6 shows a 12-node network showing signal values.
Figure 7 shows 16-, 20-, 24-, and 28-node networks.

�e termination condition for BA is taken as 100 itera-
tions. �is termination condition was set up by experiment
on several run time results. Intersections were implemented
using Origin-Destination nodes with extra features like wait
time at signal, signal values, travel time on the link, positional
information on the links attached, and other delays.

�ere were certain assumptions made to simplify the
implementation, maintaining the integrity of the problem.
Every Origin-Destination pair in the chosen networks is
connected through at least one intersection. Lower layer
statistics were generated randomly to simulate its function as
an input to the upper layer. Table 1 shows the results obtained
for the objective function value (OFV) in test case 1.
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Figure 4: Bat algorithm.

�e results for BA are weighed against ACO, GA, and
hybrid ACO-GA [9, 10]. Figure 8 shows the best solution
for the algorithms. BA establishes the best results compared
to the other three for 12, 16, and 20 nodes, but for 24
nodes and 28 nodes ACO and Hybrid algorithm outperform
BA.

Figure 9 presents the worst performance of all the
four algorithms. It was observed that the hybrid algorithm
performs the best among the algorithms. In most of the cases
BA gives the worst solution in comparison to the other 3
algorithms.

Figure 10 presents the average solution for ACO, GA,
hybrid ACO-GA, and BA. It was observed that the hybrid
ACO-GA outperforms ACO, GA, and BA. �e average wait
time for BA is found to be higher than the other techniques
despite the fact that it gave the best solutions in comparison
to the rest of the techniques in many cases.

�e ranges of all the four algorithms, ACO, GA, hybrid
ACO-GA, and BA, are put side by side in Figure 11. It can
be observed that BA explores the highest range of solution
sets.

Table 2: Travel demand scenario.

Demand from
node 1 to 6

Demand from
node 6 to 1

Total
demand

Case 1 5 10 15

Case 2 10 20 30

5.2. Test Case 2: 16-Link Network. Several researchers have
tested the performance of continuous network design prob-
lem on multiple networks. A widely used 16-link network
with 6 nodes is adapted from Suwansirikul et al. [20].�e test
network is shown in Figure 12.

�e continuous network design problem is executed for
3 test cases with di�erent demand scenarios for the given
network. �e travel demands are shown in Table 2.

�e 16-link network problem is estimated using several
techniques like traditional H-J, EDO, SA, and CS by di�erent
researchers as mentioned in Table 3. A comparative analysis
of BA in both demand scenarios is given in Tables 4 and 5.
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Table 3: Techniques and references of the test case 2.

Technique Acronym References

Modular In-core Nonlinear Optimization System MINOS Suwansirikul et al. [19]

Hooke-Jeeves algorithm H-J Abdulaal and LeBlanc [1]

Equilibrium Decomposed Optimization EDO Suwansirikul et al. [19]

Simulated Annealing algorithm SA Friesz et al. [20]

Cuckoo Search Algorithm with Lévy Flights CS Ozgur Baskan [21]

Particle Swarm Optimization PSO Hu Hui [8]

Bat Algorithm BA �is paper

Table 4: Solution of demand scenario 1 for TNDP.

MINOS H-J EDO SA CS BA

y1

y2

y3 00 1.2 0.13

y4

y5

y6 6.58 3.00 6.26 3.16 5.1894 3.18

y7

y8

y9

y10

y11

y12

y13

y14

y15 7.01 3.00 0.13 5.45

y16 0.22 2.80 6.26 6.724 7.6016 7.21

OFV 211.25 215.08 201.84 198.10 199.32 199.21

No. of UE Assignment 54 10 18300 3 72

Table 5: Solution of demand scenario 2 for TNDP.

MINOS H-J EDO SA PSO CS BA

y1

y2 4.16 5.40 4.88 4.61 4.61 0.25

y3 9.86 8.18 8.59 10.174 9.89 9.94 8.89

y4

y5

y6 7.17 8.1 7.48 5.77 7.3 7.38 8.66

y7 .26 0.24

y8 0.59 0.9 .85 0.59

y9

y10

y11

y12

y13

y14 1.32 3.14 1.54 1.3152 0.86

y15 19.34 8.1 0.26 14.58

y16 .85 0.85 12.58 17.2786 20 20 16.08

OFV 557.14 557.22 540.74 528.497 523.38 522.39 521.68

No. of UE Assignment 134 12 24300 1160 4 130
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Figure 5: Flowchart for the tra	c signal optimization problem using bat algorithm.

Table 6: Techniques and references of test case 3.

Technique Acronym References

Hooke-Jeeves algorithm H-J Abdulaal and LeBlanc [1]

Simulated Annealing algorithm SA Friesz et al. [20]

Gradient Projection method GP Chiou [22]

Genetic Algorithm GA Mathew and Sarma [23]

Cuckoo Search Algorithm with Lévy Flights CS Ozgur Baskan [21]

Harmony Search HS Ozgur Baskan[24]

Arti�cial Bee Colony ABC Ozgur Baskan[24]

Di�erential Evolution DE Ozgur Baskan[24]

Bat Algorithm BA �is paper

5.3. Test Case 3: Sioux Falls Network. A more realistic

data for road network is adapted from the city Sioux
Falls, South Dakota, situated in the USA. �e network

is much more complex and appealing to the researchers
working on the transport network problem [20–24]. It con-

sists of 24 nodes and 76 links connecting them. Figure 13

shows the adapted network from [20]. �e test data are
adapted from [20]. Table 6 shows the techniques adapted
for comparative analysis of BA and their corresponding
references.

�e results for Sioux Falls network is shown in Table 7.
Figure 14 shows convergence of BA for Sioux Falls network.
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Figure 6: A 12-node test network with 4 intersections showing the signal value of 5 di�erent phases.

Table 7: Comparative analysis of TNDP for Sioux Falls network.

H-J SA GP GA CS HS ABC DE BA

y16 3.8 5.38 4.86 5.17 5.09 4.44 5.91 5.15 4.18

y17 3.6 2.26 4.89 2.94 1.35 1.29 1.95 1.65 2.14

y19 3.8 5.45 1.86 4.72 6.45 5.46 4.86 5.89 3.85

y20 2.4 2.33 1.52 1.76 2.29 2.30 1.75 1.29 2.33

y25 2.8 1.27 2.71 2.39 2.90 0.64 2.54 2.58 0.84

y26 1.4 2.33 2.71 2.91 2.05 2.71 2.98 1.69 0.84

y29 3.2 0.41 6.245 2.92 3.67 4.15 3.69 3.32 3.58

y39 4.0 4.59 5.03 5.99 5.22 3.67 3.77 5.11 3.00

y48 4.0 2.71 3.75 3.63 3.42 4.90 3.02 3.26 3.01

y74 4.0 2.71 3.5 4.43 4.87 4.38 4.91 4.50 4.76

OFV
BEST

81.77 80.87 82.71 81.74 81.51 81.83 81.78 81.60 81.31

OFV
AVG

81.97 82.02 81.76 82.98

OFV
WORST

84.67 85.19

No. of UE Assignment 108 3900 9 77 36 27 32 23 140

6. Conclusion

�e simulation work was carried out for various sizes of
multiple networks for variant test cases and a number of
times. As per the results of test case 1, it can be concluded
that BA explores a wide range of solution set and gives better
results than GA, ACO, and hybrid ACO-GA. Although the
hybrid ACO-GA outperforms ACO, GA, and BA for average

solution. BA was compared on a 16-link problem in test case
2. In the 1st demand scenario BA outperformed MINOS, H-J,

and CS. �ough SA gave a better result than BA, the number
of UE assignments solved was multifold higher than BA. In

the 2nd demand scenario BA outperformed all the compared

techniques, though CS gave a near result in less number of

UE assignments.
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Figure 7: 16-, 20-, 24-, and 28-node test network.
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In the third test case, BA is compared with H-J, SA, GP,
GA, CS, HS, ABC, and DE. For the best solution of the
objective function value, BA outperforms all the mentioned
techniques. For the average value among HS, ABC, and DE,
BA gives the higher objective function value. �e range of
solution for BA seems to be on the higher side. A value of
worst solution for HS is given which is better than the worst
solution of BA. In future more improvements can be carried

out on the proposed algorithm and can be implemented to
give a much better solution

Data Availability

�e data used to support the �ndings of this study are

available from the corresponding author upon request.
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