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ABSTRACT 

The customized usage of tool inserts plays an imperative 
role in the economics of machining operations. Eventually, 
any in-process defects in the cutting tool lead to 
deterioration of complete machining activity. Such defects 
are untraceable by the conventional practices of condition 
monitoring. The characterization of such in-process tool 
defects needs to be addressed smartly. This would also 
assist the requirement of ‘self-monitoring’ in Industry 4.0. 
In this context, induction of supervised Machine Learning 
(ML) classifiers to design empirical classification models 
for tool condition monitoring is presented herein. The 
variation in faulty and fault-free tool condition is collected 
in terms of vibrations during the face milling process on 
CNC (Computer Numerically Controlled) machine tool. The 
statistical approach is incorporated to extract attributes and 
the dimensionality of the attributes is reduced using the J48 
decision tree algorithm. The various conditions of tool 
inserts are then classified using two supervised algorithms 
viz. Bayes Net and Naïve Bayes from the Bayesian family. 

1. INTRODUCTION 
A cutting tool is presumed to commit high persistence, 
strength, and most important repeatability in the machining 
operation (Grzesik 2017). The systematic usage of cutting 
tool executes an imperative role in the economics of 
machining operation. Thereby, any defect in the cutting tool 
leads to deterioration of complete machining activity. The 
consequences such as poorer surface finish, a discrepancy in 
the dimension of workpiece, substantial power consumption 
of drive, discontinuance of machining process, etc. are 
dominating and unendurable (Roth, Djurdjanovic, Yang, 
Mears, and Kurfess 2010). The choice of conservative input 
factors (Depth of cutting, Speed of machining and table 
feed) which satisfies the utmost cutting conditions is the 

primary and irreplaceable step to initiate the machining. 
However, this may not address the dynamics in the 
machining and corresponding effects such as excessive 
vibrations, temperature, noise, and power consumption 
leading to in-process failure of tools (Engin and Altintas 
2001). Also, as far as the current cutting tool market 
scenarios are concerned, highly advanced metallurgical 
solutions and several analytical and numerical studies 
merely endure the dynamics of the machining process 
(Drori 2015). Thus, the experimental approach aimed 
particularly for monitoring tool condition and random 
dynamics serves to be the most realistic (Daneshmand and 
Pak 1986, Dan and Mathew 1990, Maj, Modica and Bianchi 
2006). 

The process of experimental condition monitoring 
commences with the acquisition of signals which describes 
the change in behavior of machine component. The 
vibration developed during the machining is considered as 
the commendable directive of association between the 
health of a tool, deviations in accuracy and surface finish of 
job. The machining vibrations are deliberated as most 
instructive, reactive, intent, self-explanatory, and 
trustworthy as compared to other signals such as 
temperature, noise, spindle load, and power consumption 
(Mohanraj, Shankar, Rajasekar, Sakthivel and Pramanik 
2020). Also, the instrumentation involved in vibration 
acquisition is considerably less; an accelerometer as a 
sensor and a data acquisition system (Dimla and Lister 2000, 
Dimla 2000, Zhou and Xue 2018). Thus, the study dealing 
with the assessment of vibrations evolved during milling in 
order to report resultant cutter health is presented herein. 
Hakan, Ali, Sadettin, and Ersan (2016) used statistical 
parameters to examine the relation of machining parameters, 
respective tool conditions, and associated vibration 
experimentally. The estimate of the tool wear and 
corresponding work-piece roughness was presented with the 
intention of predictions. Cuka and Kim (2017) investigated 
the correlation between machining speed and tool life using 
frequency response functions. It is proved that by 
monitoring machining speed, the tool life is extended and 
interruptions due to failure are avoided. The study presented 
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by Zhou and Xue (2018) & Zhang, Lu, Wang, Li (2018) 
also includes the multi-sensor approach for milling tool 
condition monitoring but acts unsuitable for on-board fault 
identification as the complexity of instrumentation and 
signal processing is a concern. Ong, Lee, Jit, and Lau (2019) 
estimated wear rate and respective roughness of work in 
CNC end milling. The image processing was used to 
highlight the descriptor of wear zone and hence further used 
for prediction. Torabi, Li, Lim, and Peen (2016) presented a 
fault diagnosis of the tool by examining time-frequency 
changes in end milling operation. The learning model was 
developed to provide a prediction on the status of the 
process by adapting to variations. The study presented by 
Dilma (2002) analyzed the tool wear and showed that 
catastrophic failure occurs if the magnitude of nose wear 
becomes greater than or equal to 200 microns. Conversely, 
notch wear grows linearly when the machining starts and 
retained unaffected for rest of the tool life. Shiba (2003) 
presented the use of piezoelectric vibrators to identify the 
smallest variation in vibration response when the cutting 
tool is damaged. The time-domain plot of vibration response 
is an appropriate tool to inspect errors rising while 
machining to determine the deterioration level of a cutting 
tool (Siddhpura & Bhave 2008). In the experiment carried 
by Balla, Sarcar, and Satish Ben (2010) a vibrometer was 
used to capture the signal and observed an increase in the 
amplitude of displacement with the progression of wear for 
finding the association between flank wear, surface 
roughness with cutting tool vibrations. Narayanan and 
Namboothiri (2010), performed nonlinear time series 
analysis for the vibration involved during machining and 
found that the phase space trend along with the correlation 
dimension compute got increased as flank wear increased. 
Ming, Jiawei, and Dinghua (2016) examined the relation 
between cutting forces and the deviation in thickness of the 
chip removed. It has projected that dramatic change in the 
direction of cutting forces causes excessive vibrations at the 
exit of the cutter. 

The traditional condition monitoring implicates the study 
and analysis of tool condition with the aid of manual super-
vision which has left out of favor in the boom of artificial 
intelligence (AI). A study presented by Surendar and 
Elangovan (2017) used the M5P tree, regression tree (RT), 
and multiple linear regression (MLR) algorithms for 
predicting the roughness of the workpiece. The vibration 
response in terms of statistical features was extracted with 
the help of Principle Component Analysis (PCA). In the 
investigation of classification accuracy, when histogram and 
statistical attributes were served to classifiers, it was found 
that statistical attributes yield more accuracy i.e. 86.34% 
than histogram attributes as 73.61% (Elangovan, 
Ramachandran, and Sugumaran 2010). Sambayi (2012) 
showed four features i.e. kurtosis, RMS (Root mean square), 
crest factor and peak are most appropriate to classify 
vibration signals of different drill conditions. But later, it 
was noted that as the peak is a non-averaging statistical 

attribute hence not appropriate in concern of stochastic 
response of the tool. At last, the superior results were 
obtained considering kurtosis and crest factor. 
Jegadeeshwaran and Sugumaran (2015) used the best first 
search method in attribute evaluator for examining the 
influence of several attributes on classifier efficiency. It is 
based on Greedy hill climb augmentation to discover the 
attribute subsets space using the principle of back-tracing. In 
this study, the supervised subset evaluator (CfsSubsetEval) 
has been used for the feature selection study. It is observed 
that when nine features were selected, the classification 
algorithm provides the maximum classification accuracy. 
Hence using supervised subset evaluator (CfsSubsetEval), 
the top nine features were selected for classification. 
CfsSubsetEval not only considers prognostic aptitude of the 
individual attribute but also redundancy degree between 
them to evaluate the significance of attributes subset. In the 
final step, the features exhibiting less inter-correlation were 
selected. Madhusudana, Kumar, and Narendranath (2016) 
presented an experimental investigation for failure 
prediction of milling cutter based on J48 tree and K star 
classifier with the histogram features approach. A classifier 
‘K star’ from the family of Lazy algorithms was utilized for 
categorization of the tool conditions. The study presented by 
Bohara, Jegadeeshwaran, and Sakthivel (2017) exhibits the 
classification of tool condition in turning performed on a 
traditional lathe using J48 and random tree classifiers. Since 
single carbide coated insert was employed, a study 
involving multi-insert tool and possible failure conditions 
can’t be correlated. Also, tool failure conditions such as 
nose and notch wear were not considered. Recently, another 
research presented by Patange and Jegadeeshwaran (2019) 
incorporates machine learning scheme for monitoring health 
of milling tool considering 5 different tree-based algorithms 
separately and comparative study is presented amongst 
them. The highest accuracy achieved was 90% and the time 
consumed for constructing the model was 8.6 seconds 
which is considerably higher. 

The designing and training of Bayesian classifiers for multi-
point tool inserts differ from other machining operations. 
The machining by milling is different from shaping and 
turning, in the sense that material in milling is removed by a 
rotatory cutting tool. It consists of multiple cutting edges 
revolving around a fixed axis hence known as ‘multi-point 
tool’. The milling process provides intermittent cutting, with 
each tooth producing chips of variable thickness. This is an 
inherent difference between turning, shaping, and milling 
because, in turning and shaping, there is a continuous chip 
production. Moreover, the milling tool bears vertical as well 
as sideways thrust produced during machining. Thus as far 
as training of vibration signature evolved due to the 
engagement of multi-point tool inserts is considered, the 
application of the Bayesian family has not been reported 
yet. The current research proposes a vibration-based tool 
condition monitoring framework capable of fault 
classification considering the Supervised Machine Learning 
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approach. It is also learned that the studies on health 
monitoring of cutting tools have been reported for a 
conventional lathe (Elangovan et al., 2010, Painuli, 
Elangovan and Sugumaran 2014, Elangovan 2011, 
Elangovan, Sugumaran and Ramachandran 2011, Shewale, 
Mulik, Deshmukh 2018, Nalavade, Patange, Prabhune 2018) 
and conventional milling machines (Cuka et al., 2017, Zhou 
et al., 2018, Zhang et al., 2018, Ong et al., 2019, Torabi et 
al., 2016). The literature showcasing the health monitoring 
in the intention for finding faults in multi-point tool insert 
employed in computer numerical controlled milling 
machines in small/medium scale industry need to be 
explored to meet the requirements of Industry 4.0 (Fink, et 
al. 2020).  

The research gap is stated herein: 

 The traditional approach of the selection of various 
levels and combinations of input parameters is process 
characterization and arbitrarily comments about tool 
health are derived from the same study. However 
beyond that there exist unknown moments resulting in 
in-process faults and need to be explored. The 
characterization of such faults and corresponding 
vibrations are not mapped with the tool condition.  

 The study reported by M. Elangovan et al. (2010) 
demonstrated the use of Bayesian classifiers for 
monitoring the health of cutting tools in turning 
operations where the tool consisted of the only single 
insert. The study of multi-point tool inserts needs to be 
undertaken to examine vibration signatures. Another 
study presented by Karandikar et. al. (2015) 
demonstrated the use of cutting force to train Bayesian 
classifiers. As far as training of vibration signature 
evolved due to the engagement of multi-point tool 
inserts is considered, the application of the Bayesian 
family has not been reported yet. 

 The previous study published is only confined to the 
application of classifiers for the study of data 
distributions to propose the classification. However, the 
use of the learner’s output to classify the blind datasets 
has not been previously addressed. 

The unique contributions and innovations of the current 
study are: 

 Demonstrates a real-time multi-point tool insert fault 
classification scheme 

 Characterization of data sets generated for unknown 
moments of vibration evolved from in-process tool faults 
(i.e. wear at nose & flank and notch wear) 

 Design and training the Bayesian family algorithms for 
classification of tool inserts fault and its validation 
considering test data set 

 Classification of predefined classes for blind data sets 
based on learner’s output 

2. DETAILED EXPERIMENTATION 

2.1. Experimentation arrangement 
The experimentation arrangement (Figure 1) comprises of a 
Computer Numerically Controlled Milling machine, an 
accelerometer (Model PCB 352c33), and a data acquisition 
system (National Instruments Inc. Model 9234). 

 
Figure 1. The schematic of the experimentation arrangement 

The Mild Steel workpiece is machined using a face milling 
cutter of four inserts (coat of carbide) where the single level 
of the input parameter is selected as: 

1. Spindle speed = 1200 revolutions per minute,  
2. Feed = 50 mm/min,  
3. Cut Depth = 0.35 mm. 
The parameters were estimated using the formula as per the 
technical tool selection manual provided by Komet. The 
KOMET GROUP is a global technology leader for metal 
cutting tools and effective, high-precision solutions in the 
areas of drilling, bore machining, reaming, threading, and 
milling (Kom Guide 2016). The technical tool selection 
manual provided by Komet is thus commonly referred to 
while selecting machining parameters. 

The typical parameters in milling operations are depth of 
cutting, machining speed and table feed. Its choice based on 
the type of operation to be performed, the material of the 
workpiece, the diameter of the cutter, and standard feed per 
tooth.  

The cutting speed can be calculated by, 

Vc = (π × Dm × N)/1000           (1) 

where Dm = Diameter of cutter = 40 millimeters, N = 
Spindle speed = 1200 revolutions/minute 

By substituting these values in equation 1, we get, 
machining speed = Vc = 150.72 meters/minute 

Now, table feed is calculated by, 

Vf = Fz × N × z           (2) 
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where Fz= Standard feed per tooth for cast-iron workpiece = 
0.01 millimeters/tooth, Z = Number of inserts 

By substituting these values in equation 2, approximately 
we get, feed = Vf = 50 millimeters/minute 

Lastly, cut depth was selected as 0.35 millimeters. 

The procedure stated above is adopted for selecting the best 
choice of depth of cutting, machining speed and table feed 
according to workpiece material and standard catalog. For 
cast iron workpiece and face milling operation the possible 
ranges of these parameters are (Kom Guide 2016): 

Machining speed = 110 – 180 meters/minute 

Feed = 30 – 80 millimeters/minute 

Depth of cut = 0.2 – 0.5 millimeters 

Here a total of 5 machining operations were performed with 
the same level of machining parameters and with different 
tool conditions specified in Tables 1 and 2. The three most 
commonly occurring wear conditions namely flank, nose, 
and notch are considered in the study. 

Insert/Operation No. 1 2 3 4 5 
Insert i N N N N N 
Insert ii N N N N FW 
Insert iii N N N N NSW 
Insert iv N FW NSW NTW NTW 

Table 1. Insert conditions for machining 

Operation No. Category label 
1 4N 
2 3N_1D_1 
3 3N_1D_2 
4 3N_1D_3 
5 1N_3D_1_2_3 

Table 2. Insert conditions & operation category label 

where N: Normal, FW: Flank wear, NSW: Nose wear, 
NTW: notch wear 

2.2. Tool faults considered 
The tool wear is nothing but gradual progressive removal of 
material with molecular or atomic subtractive mechanisms. 
Most commonly three kinds of deterioration occur namely 
wear at flank & nose and notch wear (Figure 2). The 
elementary theoretical mechanism for these tool inserts 
deterioration is discussed here: 

Flank wear is a prevalent style of tool wear due to its 
constant progression and is easy to identify. As the name 
implies, it is wearing off the flank face due to harsh abrasion 
through the hard workpiece. It is usually observed in the 
removal of steels, cast iron with the abrasives such as iron 
carbide and non-metallic additives. Flank wear can largely 

be attributed to a mechanical process initiated when primary 
particles are released from the tool face by a temperature-
dependent process. As these primary particles are released 
and travel down the flank, they scour its surface and in the 
process release secondary particles by abrasion. These 
secondary particles also act similarly to further abrade the 
rest of the flank. Progressively, this process results in a wear 
land being formed on the flank. Flank wear grows faster for 
higher depth of cut, feed, and machining speeds. Higher 
cutting forces resulting from a 0.5-0.6 mm dimension of 
flank wear causes severe tool damage. Abrasion by 
fragments of the built-up edge is one of the reasons behind 
flank wear caused due to excessive friction in the tool-
workpiece interface (Bermingham, Palanisamy, and 
Dargusch 2012). 

Notch wear is observed because of the oxidation of primary 
and sub-tool-tips, otherwise harsh abrasion. It is favorable 
for work materials that possess high work hardening and 
creates higher cutting edges heat, i.e., nickel-base super-
alloys, titanium, and non-magnetic stainless steel (gamma-
iron). It causes the insert to wear quickly in the cutting zone. 
The local stress concentration may also cause notching. As a 
result of the compressive stress along the cutting edge – and 
lack of the same behind the cutting edge – the insert is 
particularly stressed at the depth of the cut line. This region 
develops a thin work-hardened layer that can originate a 
groove. A groove or notch develops in a region that 
undergoes work-hardening. Oxide layers on a workpiece 
also contribute to notch wear because these are hard and 
abrasive (Bermingham, Palanisamy and Dargusch 2012). 

  

Normal/Defect-free  Flank wear 

  
Notch wear Nose wear 

Figure 2. Faults considered 

Nose wear is nothing but dulling of cutting edge observed 
due to the weak deformation resistance of an insert with 
excessive heat generation during machining. By providing 
this nose radius the carbide inserts are strengthened to 
withstand the high cutting force created during the cutting 
operation. If not provided, edge frittering takes place at the 
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nose causing scratch marks on the component. Nose wear is 
rounding off a sharp radius due to mechanical and thermal 
effects. The excessive chip population causes rubbing of the 
tool over the workpiece increasing the temperature and 
leads to wear of the nose radius (Bermingham, Palanisamy 
and Dargusch 2012). 

2.3. Data acquisition 
The accelerometer used in the study is single-axial. The 
vibration evolved during machining transferred on either 
side, i.e., on a tool spindle or a workpiece side. However 
intending to record tool fault signatures, any change in 
spindle motion needs to be detected; hence locating the 
accelerometer near to a tool spindle is necessary. It is 
learned that the vibration with vertical components (Z-
direction) is best responsive to tool wear than the other two 
axes (Dimla and Lister 2000). Hence the piezoelectric 
accelerometer was directly attached to the spindle holder 
(frame) vertically with the help of sticky material. This 
location of the accelerometer will ensure that most of the 
vibration signals collected by the accelerometer come from 
the tool and will be least affected by other components of 
the CNC Milling machine. The data acquisition system 
(DAQ) is employed to acquire a time-domain response. 
According to the Nyquist proposition, the signal sampling 
was carried out at frequency of 20 kHz. In this study, 250 
samples describing all tool conditions are selected. This 
means each tool condition is described by 50 samples. Each 
sample constitutes of 12000 data points of the acquired 
vibration signal. 

The vibration signal depicted in figure 3(a)–(e) respectively 
plotted considering a single sample of each configuration. 
Each sample consists of 12000 data points and is collected 
for 0.6 seconds. For machining activity 1-5, the 
corresponding time dependent graphs exhibit characteristic 
variation in the acceleration. The time-domain graph depicts 
the periodic and cyclic nature of vibration signals 
corresponding to the instantaneous influence of fault on the 
process. This typical behavior of the vibration signature is 
necessary to be understood by a learner while studying the 
influence of faults on the process involving multi-point 
cutting tools and is evident when one observes the time-
domain graph. The time-based features such as skewness, 
standard deviation, standard error, etc. can sufficiently 
classify the tool condition as evident from the decision tree 
algorithm. Hence the initial study is carried out using time-
domain signals which require no mathematical computation 
additionally and are easy for real-time monitoring. The fault 
diagnosis studies using the time-domain analysis reported 
that the features extracted from the time-dependent signal 
alone are capable of mapping insert failures to the vibrations 
evolved during the tool-workpiece interface (Rubeo and 
Schmitz 2016, Liu, Kothuru and Zhang 2020, Aralikatti et 
al. 2020, Alamelu and Jegadeeshwaran 2020). 

 
Figure 3 (a). Time-domain plots for operation 1 with class 

‘4N’ 

Different tool configurations involved in machining reflect 
the distinct change in vibration signals. In order to quantify 
this analog-type signal and show accurate difference 
between tool conditions, descriptive statistics & ML 
algorithms are deployed and presented in further sections. 

 
Figure 3 (b). Time-domain plots for operation 2 with class 

‘3N_1D_1’ 

 
Figure 3 (c). Time-domain plots for operation 3 with class 

‘3N_1D_2’ 
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Figure 3 (d). Time-domain plots for operation 4 with class 

‘3N_1D_3’ 

 
Figure 3 (e). Time-domain plots for operation 5 with class 

‘1N_3D_1_2_3’ 

3. MACHINE LEARNING FRAMEWORK  

3.1. Attributes extraction  
The change in vibration signal reflects the significant 
statistical information about corresponding tool insert 
conditions. Statistical attributes were estimated for data 
collected from the time-dependent response of the vibration 
signal for all 5 machining operations. Here total of 16 
attributes such as (1) Standard Error, (2) Minimum value, 
(3) Range, (4) Maximum value, (5) Shape factor (6) Count, 
(7) Skewness, (8) Summation, (9) Standard Deviation, (10) 
Variance, (11) Mode, (12) Median (13) Kurtosis, (14) 
Impulse factor (15) K-factor (16) Mean were estimated from 
the coding. The mathematical expressions for statistical 
attributes are given in Annexure A. The pseudo-code in 
Python is presented in Annexure B. 

3.2. Attributes selection 
The dimensionality of the attributes is reduced with the help 
of a decision tree (J48). This stage is considered to be an 

important phase as it suggests the best distinct features 
amongst overall descriptive statistics set from training data 
and thus decides the accuracy. Feature selection using a 
decision tree (J48) is easy, computes negligible time, and 
exhibits appropriate results. The principle of ‘information 
gain’ and ‘entropy reduction’ is used in the decision tree 
classifier. It discretizes the instances first and then exhibits 
binary structured framework comprising homogeneous 
instances. It is constructed in form of primary root, various 
nodes, leaves, and branches. The top-down ordinance assists 
the classification of classes. This means the induction starts 
at primary root to ends at leaves via different divisions. The 
primary root defines the best significant attribute, every 
interior node defines a test on a feature, every branch 
describes a result of the trial and each terminating node 
(leaf) describes a class. All existing attributes in a tree are 
deliberated to be key attributes among others (Kingsford 
and Salzberg 2008, Jankowski and Jackowski 2014). 

3.3. Attributes classification  
Several other algorithms like Support Vector Machine, 
Perceptron, Lazy, Trees, Regressions, and Artificial Neural 
Networks can be utilized; provided that superior accuracy 
and less computation time are attained. The ‘Bayesian 
family classifiers’ performs with superior efficiency and in 
addition to that, consumes lesser period to construct the 
model.  Thus ‘BayesNet and NaiveBayes’ classifiers are 
chosen for this investigation. It is the family of ‘supervised-
probabilistic based’ algorithms are popularly called as 
Bayesian network classifiers works on the principle of 
‘Bayes’ law’ with robust liberal assumptions amongst the 
attributes. Naive Bayes develops the model which allocates 
instances category characterized as vectors of attributes 
mined from a certain predetermined finite set. The 
assumption made is that the magnitude of a specific attribute 
is not depending on any other attribute in the same category. 
Bayes law is a ‘condition-based rule’ apparently trusting the 
indication that expected to be classified, and mathematics 
that illustrates confidence about the indication to be 
presented with (Friedman and Geiger 1997, Wiggins, Saad 
and Litt 2008).  

Theoretically, naive Bayes is a model where the condition to 
be categorized is characterized by,  = ( , , … . . , )                                         (3) 

where ‘z’s are several attributes, which allocates to output 
condition possibilities. (    , , … . . , )                                                (4) 

for each of m probable output category Ct   

Eventually, for the larger number of samples and attributes, 
constructing this model on probability formulation is 
unattainable hence seems to be the drawback of this 
approach. Hence this necessitates reconstructing the model 
to achieve an attainable model.  
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Using Bayes’ law, the conditional probability can be 
decomposed as (   ) = [ ( ) (   ) ]/ ( )                        (5) 

Simply speaking the above formulation is regarded as 

Prediction = (Past*Probability)/Proof-mark 

On careful observation, it is learned that the denominator 
remains constant as it is independent of Ct  and attribute 
magnitude v  is also already provided. The value of the 
numerator is considered to be equivalent as of probability 
model ( , , , … . . , )                                                 (6) 

Reformulating this by utilizing chain law for recurrent 
presentations of the characterization of uncertain 
probability, ( , , , … . . , )  

= ( , , … . . , , )                                                  (7) 

= (   , … . . , , ) ( , … . . , , )                (8) 

= (   , . . , , ) (   , . . , , ) … …  … ( , . . , , )             (9) 

= … … … … … … … … … … ….                                              (10) 

= (   , … . . , , ) (   , … . . , , ) … … (   , ) (    ) ( )                         (11) 

Here the assumption of naive condition appears as it 
assumes that all attributes ‘V’ are communally non-
dependent, conditional on the class Ct . With this, (   , … . . , , ) = (    )                        (12) 

Therefore, the combined approach gives a model which can 
be stated as, (   , … . . , ) ∝ ( , , … . . , )  

= ( ) (    ) (    ) (    )……. 

= ( ) ∏ (    )                                          (13) 

Therefore, with this assumption, the categorization of Ct is, 

= (   , … ,  ) =  (  ) ∏ (    )   (14) 

where, evidence  = ( ) = ∑ ( ) (    )  

is a scaling factor dependent only on v1…..vz otherwise, 
remains constant if attribute values are known (Elangovan et 
al., 2010, Karandikar et. al. 2015). 

4. RESULTS AND DISCUSSION  
Stepwise result of machine learning scheme i.e. statistical 
attribute extraction, selection, and classification is discussed 
here. The time-domain response of acceleration as depicted 
in Fig. 3(a)–(e) differs for each machining operation as a 

result of various defective tool configurations. Figure 3 (a) 
is recorded corresponding to a healthy condition and evident 
that the amplitude of vibrations is less and uniform in 
nature. Figure 3(a)–(e) depicts the periodic and cyclic nature 
of vibration signals corresponding to the instantaneous 
influence of fault on the process. It is very challenging to 
quantify variation between the classes due to the analogs 
nature of the plots; hence descriptive statistics 
demonstrating the signal are extracted and explained in with 
the help of illustrative graphs. 

It can be witnessed in figure 4 (a) to (e) that the variation of 
standard error, range, K factor, and skewness exclusively 
differs for healthy tool conditions over faulty conditions. 
The variation of the mean for healthy conditions matches 
other faulty conditions in a few instances. This is because of 
the configurations of tools considered for each operation 
and inherent faults. Along with this the variation of standard 
error, range, K factor, and skewness notably differs for tool 
condition ‘1N_3D_1_2_3’ as this configuration involves 3 
faulty inserts. The visualization of this graph provides a 
general overview of classification. However, to quantify the 
classification, the Bayesian family algorithms are designed 
and trained. The results are discussed herein. 

 
Figure 4 (a). Class wise variation of standard error 

 
Figure 4 (b). Class wise variation of Mean 
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Figure 4 (c). Class wise variation of Range 

 
Figure 4 (d). Class wise variation of K factor 

 
Figure 4 (e). Class wise variation of Skewness 

The second step is attribute selection. Here, all 16 attributes 
of 250 samples (50 samples per class) are applied to the 
decision tree algorithm, and structure is exhibited in figure 
5. 

The attributes displayed in the framework of decision tree 
created using the J48 classifier are served to be ‘most 
distinctive’ in a set of all extracted features i.e. only 5 
attributes i.e. ‘Standard error, Mean, Range, K-factor and 
Skewness’ and hence used for classification. The tree 
consists of 9 leaves and 17 sub-divisions in size. The 
interpretation of the decision tree is given here. In a case 
where ‘standard error’ is larger than 0.003523 and ‘range’ is 
smaller than or equivalent to 4.829225, then all 50 samples 
of tool condition ‘3N_1D_2’ i.e. nose wear are correctly 
classified.  

 
Figure 5. Dimensionality reduction using decision tree 
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But when ‘range’ is greater than 4.829225 and ‘k-factor’ 
is lesser than/equivalent to 1.408548, at that moment 49 
samples of tool condition ‘1N_3D_1_2_3’ i.e. 3 
defectives are correctly categorized. Likewise, other 
classes are categorized. The further description is self-
explanatory. Now the last step is attribute classification. 
The result classification of attributes with respect to 
various conditions/classes /categorize of tool condition is 
explained here. 

The detailed performance of classifiers is elaborated using 
various terms like Recall, Precision, True Positive (TP) 
rate, Receiver Operating Characteristics (ROC) region, 
and False Positive (FP) rate. Simply stated, true positive 
represents % of truly recognized samples, and false-
positive represents the % of wrongly identified samples. 
A perfect classification model must yield the TP rate near 
to unity and the FP should be null. The ratio of TP rate to 
all the samples in the category is represented by 
‘Precision’. ROC tells about how the model has 
performed overall. The detailed class-wise performance 
for BayesNet is shown in Table 3. 

True  
Positive  

False  
Positive  Precision ROC Tool  

Condition 
0.98 0 1 1 4N 
0.84 0.035 0.857 0.974 3N_1D_1 
0.98 0.005 0.98 1 3N_1D_2 
0.86 0.04 0.843 0.975 3N_1D_3 

1 0.005 0.98 1 1N_3D_1_2_3 

0.932 0.017 0.932 0.99 Weighted  
Average 

Table 3. Tool condition-wise performance for BayesNet 

The accuracy of the BayesNet classifier is found to be 
93.2% under 10 fold cross-validations. The misperception 
matrix for BayesNet is shown in figure 6. The 
performance of a model is presented by the misperception 
matrix (Popularly called a ‘confusion matrix’) in a most 
significant way. The elements placed in the central 
diagonal of this matrix exhibit correctly classified 
elements whereas elements placed in non-diagonal 
locations exhibit wrongly classified samples. The 
misperception matrix demonstrates that for tool condition 
‘4N’ where four inserts are normal, 49 samples placed 
properly under ‘All defect-free’ and 1 sample wrongly 
placed under condition ‘3N_1D_2’ (i.e. 1 with nose 
wear). Next to that, for condition ‘3N_1D_1’ (1 is worn 
flank and 3 are normal), 42 samples placed properly under 
actual condition ‘3N_1D_1’, whereas 8 samples wrongly 
placed under condition ‘3N_1D_3’ (notch wear) 
condition.  

This confusion matrix can be explicitly used to 
understand further categorization w.r.t. the rules stated 
above. The validation of this experiment can be examined 
from the Misperception matrix, as it was created based on 

the 10 folds cross-validation. The comparative study 
reveals that the BayesNet algorithm yields more accuracy 
(93.2%) than the NaiveBayes algorithm (88.8%). Also, 
the time consumed for training the model for the 
BayesNet algorithm is 0.7 seconds and the NaiveBayes 
algorithm is 0.2 seconds. 

Predicted class   

A B C D E  

A
ctu

al
 cl

as
s 

Tool Condition 
49 0 1 0 0 A 4N 
0 42 0 8 0 B 3N_1D_1 
0 0 49 0 1 C 3N_1D_2 
0 7 0 43 0 D 3N_1D_3 
0 0 0 0 50 E 1N_3D_1_2_3 

Figure 6. Misperception matrix for BayesNet algorithm 

The naive Bayes algorithm yields a classification 
accuracy of 88.8%. The misperception matrix for 
NaiveBayes is represented in figure 7. 

Predicted class   

A B C D E  

A
ctu

al
 cl

as
s 

Tool Condition 
42 0 0 0 8 A 4N 
0 39 0 11 0 B 3N_1D_1 
0 0 49 0 1 C 3N_1D_2 
0 9 0 41 0 D 3N_1D_3 
0 0 0 0 50 E 1N_3D_1_2_3 

Figure 7. Misperception matrix for NaiveBayes algorithm 

The previous section presented a classification using K-
fold cross-validation mode. In this mode, the predictor has 
an unfair advantage, as they were chosen in 1st based on 
all of the samples. Leaving samples out after the variables 
have been selected does not correctly mimic the 
application of the classifier to a completely independent 
test set, since these predictors ‘have already seen’ the left 
out samples (Hastie T., Tibshirani R. and Friedman J. 
2009). To test the robustness of the classifier to a 
completely independent test set with no labels is 
considered. Thus the current section presents the 
application of the learner’s output to classify the blind 
datasets. Figure 8 shows the framework for class 
prediction used in this study. The pseudo-code for the 
predictor model is presented in Annexure C. 

 
Figure 8. Framework for classification of blind data 
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To demonstrate the convergence of the trained model for 
classifying blind datasets adequate trials (500 runs) have 
been undertaken. In this test, 100 samples per each class 
were fed to the classifier model as blind data. The 
misperception matrix depicted in figure 9 presents the 
result and is self-explanatory. The trained model was 
deployed towards predicting the class for blind datasets 
and the results showcased a high convergence rate (i.e. 
442/500 samples correctly predicted giving accuracy of 
88.4%). Hence the same trained model can facilitate the 
prediction of a class within explicit domains. 

Predicted class   
A B C D E  

A
ct

ua
l c

la
ss

 

Tool Condition 
95 0 2 0 3 A 4N 
0 88 0 2 10 B 3N_1D_1 
0 0 85 6 9 C 3N_1D_2 
0 0 4 88 8 D 3N_1D_3 
0 4 4 6 86 E 1N_3D_1_2_3 

Figure 9. Misperception matrix for classification of blind 
datasets 

5. LIMITATIONS & FUTURE SCOPE 
The framework presented herein limits itself to the tool 
condition classification study for vibration signatures 
collected considering fixed machining factors. Any 
variations in the depth of cut, feed & speed, will affect the 
tool condition and thus the trained Bayesian classifier 
may categorize the tool class equivalent to whichever of 
the pre-defined categorize. Due to alteration machining 
parameters, the model may come across different phases 
of faults within a class and thus results in 
misclassification. To avoid this, the training consisting of 
different levels of machining parameters and phases of 
faults – a generic model can be investigated; that would 
increase the accuracy of classification. Testing of the 
algorithm against varying CNC parameters in addition to 
the varying damage conditions requires further 
experimentation & data expansion and be pursued in near 
future. However based on the framework presented 
herein, one can easily adopt advanced experimentation 
and training of data. 

6. CONCLUSION 
A novel machine learning framework for cutting tool 
inserts monitoring on CNC milling based on vibration 
analysis was successfully investigated. The statistical 
approach is incorporated to extract attributes. The 
dimensionality of the attributes is reduced using the J48 
decision tree algorithm. The various conditions of tool 
inserts are then classified using two supervised algorithms 
viz. BayesNet and NaiveBayes from the Bayesian family 
and accuracy of 93.2% and 88.88% were achieved 

respectively. This framework illustrates the supervisory 
methodology to be more competent and can be effectively 
implemented to assure higher productivity and ultimately 
to enhance tool-machine life. Also, it serves as the most 
appropriate scheme on-board fault diagnosis. The training 
model as a descriptor and a data fusion scheme can be 
incorporated for future correspondence to make machine 
tools self-intelligent pursuing generalizability and 
repeatability. 

ANNEXURE A: 
The mathematical expressions for descriptive statistical 
attributes: 
Sr. 
No. Attribute Mathematical Expression 

1 Kurtosis It is an estimate of the ‘tailedness’ of the 
probability distribution of a real-valued 
random variable. ( + 1)( − 1)( − 2)( − 3) − ̅
− 3( − 1)( − 2)( − 3) 

2 Standard 
Error 

Standard Error is a measure of the deviation 
of the sample means from the population. 
The standard error of a sample statistic is an 
estimate of the standard deviation of the 
sampling distribution of that sample 
statistic. It helps you to find out confidence 
intervals for that statistic at different 
significance levels. 1− 2 ( − ) − ∑[( − ̅)( − )]∑( − ̅)

3 Maximu
m value 

It is the highest data point value. 

4 Skewness It defines the inclination of the spread of 
data on either side. ( − 1)( − 2) − ̅

 

5 Minimum 
value 

It is the lowest data point value. 

6 Range It is an estimate of subtraction between 
maximum and minimum values of data 
points. 

7 Count It is an estimate of the number of data 
points in each sample. 

8 Summati
on 

It is an estimate of the sum of all feature 
values for each sample. 

9 Variance It is the expectation of the squared deviation 
of a random variable from its mean. n ∑ x − (∑ x)n(n − 1)  

10 Standard 
Deviation 

It is a measure of the amount of variation or 
dispersion of a set of values. ∑ − (∑ )( − 1)  

11 Mode It is an estimate of the number which occurs 
most frequently in a set of data points.  



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

11 

12 Median  It is an estimate of the middle value 
segregating the higher and lower splits of a 
data set. 

13 Mean It is an estimate of the average (arithmetic) 
of a set of data points. ̅ =  + + +  … … +  

 
14 Impulse 

factor  
The impulse factor estimates the impact 
created by considering the ratio of 
maximum value and average value.    ̅  

15 K-factor  The K-factor is a product of root mean 
square value and maximum value. + + + … … +       

16 Shape 
factor 

The shape factor is the ratio of root mean 
square value and average value. + + + … … +  ̅  

ANNEXURE B: 
The pseudo-code is for computing statistical attributes in 
Python: 

import glob as glob 
import pandas as pd 
import numpy as np 
import scipy.stats as ss 
from scipy import stats 
path = r'C:\Users\HP\Desktop\Python\4N' 
filenames = glob.glob(path + "\*.xlsx") 
def stat(DataFrame, name): 
    x = df.iloc[:,0] 
    a = np.mean(x) 
    b = np.median(x) 
    c = stats.mode(x).mode[0] 
    d = ss.kurtosis(x) 
    e = ss.skew(x) 
    f = np.std(x) 
    g = np.var(x) 
    h = ss.sem(x) 
    i = np.amax(x) 
    j = np.amin(x) 
    k = np.sum(x) 
    l = np.ptp(x) 
    m = np.sf(x) 
    o = np.imf(x) 
    p = np.kf(x) 
    n = np.stde(x,50) 
    R1 = pd.DataFrame({'File Name': [name[31:-5]], 'Mean':[a], 
'Median':[b], 'Mode':[c], 'Kurtosis':[d], 'Skewness':[e], 'Std 
Dev':[f], 'Var':[g], 'STd Err':[h], 'Max':[i], 'Min':[j],'Sum':[k], 
'Range':[l], 'Shape factor':[m], 'Impulse factor':[o], 'K factor':[p], 
'stde':[n]}) 
    R1.set_index('File Name') 
    return R1 
all_data = pd.DataFrame() 
for f in filenames: 
    df = pd.read_excel(f) 

    mdf = stat(df, f) 
    all_data = all_data.append(mdf, ignore_index = True) 
all_data.to_excel 
('C:/Users/HP/Desktop/Python/4NOutput.xlsx',sheet_name = 
"sheet 1") 

ANNEXURE C: 
The predictor model used for classifying blind data: 

Std error <= 0.003523 
|   Mean  <= 0.01088: 3N_1D_3 (45.0/4.0) 
|   Mean  > 0.01088 
|   |   Mean  <= 0.012361 
|   |   |   Std error <= 0.003452 
|   |   |   |   Skewness  <= -0.017343 
|   |   |   |   |   Std error <= 0.003241: 3N_1D_1 (3.0/1.0) 
|   |   |   |   |   Std error > 0.003241: 3N_1D_3 (3.0) 
|   |   |   |   Skewness  > -0.017343: 3N_1D_1 (17.0/2.0) 
|   |   |   Std error > 0.003452: 3N_1D_3 (3.0) 
|   |   Mean  > 0.012361: 3N_1D_1 (29.0) 
Std error > 0.003523 
|   range <= 4.829225: 3N_1D_2 (50.0) 
|   range > 4.829225 
|   |   k factor <= 1.408548: 1N_3D_1_2_3 (49.0) 
|   |   k factor > 1.408548: 4N (51.0/1.0) 
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