
Application of Bayesian
Hyperparameter Optimized Random
Forest and XGBoost Model for
Landslide Susceptibility Mapping
Shibao Wang, Jianqi Zhuang*, Jia Zheng, Hongyu Fan, Jiaxu Kong and Jiewei Zhan

College of Geological Engineering and Geomatics/Key Laboratory of Western China Mineral Resources and Geological

Engineering, Chang’an University, Xi’an, China

Landslides are widely distributed worldwide and often result in tremendous casualties and

economic losses, especially in the Loess Plateau of China. Taking Wuqi County in the

hinterland of the Loess Plateau as the research area, using Bayesian hyperparameters to

optimize random forest and extreme gradient boosting decision trees model for landslide

susceptibility mapping, and the two optimized models are compared. In addition, 14

landslide influencing factors are selected, and 734 landslides are obtained according to

field investigation and reports from literals. The landslides were randomly divided into

training data (70%) and validation data (30%). The hyperparameters of the random forest

and extreme gradient boosting decision tree models were optimized using a Bayesian

algorithm, and then the optimal hyperparameters are selected for landslide susceptibility

mapping. Both models were evaluated and compared using the receiver operating

characteristic curve and confusion matrix. The results show that the AUC validation

data of the Bayesian optimized random forest and extreme gradient boosting decision

tree model are 0.88 and 0.86, respectively, which showed an improvement of 4 and 3%,

indicating that the prediction performance of the two models has been improved.

However, the random forest model has a higher predictive ability than the extreme

gradient boosting decision tree model. Thus, hyperparameter optimization is of great

significance in the improvement of the prediction accuracy of the model. Therefore, the

optimized model can generate a high-quality landslide susceptibility map.

Keywords: landslide, random forest, XGBoost, Bayesian hyperparameter optimization, landslide susceptibility

mapping

INTRODUCTION

A landslide is defined as the movement of a mass of rock, earth, or debris down a slope (Cruden,
1991). Landslides are widely distributed around the world, especially in the areas with more active
geological activities. They are one of the most destructive geohazards and cause catastrophic
consequences. Landslides have brought significant loss to both the economy as well as people’s
lives worldwide (Huang and Fan, 2013; Froude and Petley, 2018). Therefore, an effective solution
that can reduce and mitigate the damage caused by landslide disasters needs to be urgently
developed. Previous studies have shown that landslide susceptibility mapping (LSM) can reduce
the risk of landslides and provide an essential basis and scientific support for decision-makers to
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deal with landslide disaster risk management and land use
policies (Fell et al., 2008; Nourani et al., 2014).

In the past 30 years, with the rapid development of geographic
information systems and computing technologies, various

modeling methods of landslide spatial analysis and LSM have
been proposed and widely used (Carrara et al., 2010; Reichenbach
et al., 2018). The LSMmethods can be divided into qualitative and
quantitative evaluation methods (Aditian et al., 2018). The
qualitative evaluation methods include landslide cataloging
and is knowledge-driven based on the empirical evidence of
experts to identify and analyze the geomorphology,
topography, and geological conditions of a specific area, thus,
being able to subjectively analyze the landslide susceptibility
within the area (Kayastha et al., 2013; Myronidis et al., 2016).
Therefore, the accuracy of the qualitative method primarily

depends on the experience and knowledge of the experts and
the quality and completeness of the collected landslide data. It is
only suitable for small-scale LSM. On the other hand, the
quantitative evaluation method establishes a statistical
probability model based on mathematical knowledge to
explore the relationship between landslides and influencing
factors (Yilmaz, 2009; Tsangaratos et al., 2016). Commonly
used quantitative methods such as frequency ratio (Huang
et al., 2015; Li et al., 2016), the weight of evidence (Ilia and
Tsangaratos, 2016), logistic regression (Ozdemir, 2011), and
naive Bayes (Tsangaratos and Ilia, 2016), have been widely

used in the LSM. In addition, machine learning has played an
important role in LSM. Machine learning can handle the
nonlinear relationship between the landslide effect factors
(Marjanovic et al., 2011; Peethambaran et al., 2020; Wang
et al., 2020). For instance, neural networks (Conforti et al.,
2014; Polykretis and Chalkias, 2018), support vector machines
(Xu et al., 2012; Sun et al., 2020), and decision trees (Nefeslioglu
et al., 2010; Chen et al., 2018), these algorithms have strong
robustness in overfitting and are suitable for nonlinear
relationships between variables. Early studies were mainly
based on a single model with limited accuracy and overfitting

to predict susceptibility. In order to avoid these problems, an
ensemble learning algorithm combining multiple decision trees is
proposed. In particular, the algorithm can handle data sets with
higher dimensions, more extensive data, as well as having
stronger generalization capabilities (Lee et al., 2012; Kalantar
et al., 2020). The ensemble learning algorithms include the
random forest (RF), gradient decision tree, and extreme
gradient boosting decision trees (XGBoost). Among them, RF
and XGBoost have been studied by numerous scholars in LSM
(Nguyen et al., 2017; Sevgen and Nefeslioglu, 2019; Sahin, 2020;
Can et al., 2021). In order to verify the effects of the two in

landslide susceptibility mapping RF, and XGBoost methods were
used to map landslide susceptibility and compare the reliability
and limitations of the two methods in this paper.

The model’s accuracy depends not only on the learning
algorithm but also on the hyperparameters set before the model
learning process. So, the purpose of optimizing the model is to
improve the accuracy of the model further. Previous studies have
used different models, model results to hyperparameter sensitivity,
and different sampling strategies to study landslide susceptibility

mapping (Yesilnacar and Topal, 2005; Nefeslioglu et al., 2008;
Catani et al., 2013). However, only a few scholars optimized the
model’s hyperparameters, such as the adaptive neuro-fuzzy
inference system optimized by genetic algorithms (Chen et al.,

2019). Sun et al. (2020a) developed an optimized RF method based
on the hyperparameters optimization using Bayesian algorithms.

In this study, the main purpose is to: 1) use the Bayesian
algorithm to optimize the hyperparameters of the RF, and
XGBoost models in order to obtain the optimal model; 2)
further discuss and compare the comprehensive performance
of the two optimization models; 3) provide an effective mapping
method for the susceptibility of loess landslides is proposed, and
the research results can serve as disaster prevention, mitigation,
and land use planning.

STUDY AREA

Wuqi County is located in the northwestern part of the Loess
District in Yan’an City, Shaanxi Province. The study area
measures 3,791.5 km2 and lies along longitudes 107°38′57″E to
108°32′49″E and latitudes 36°33′33″N to 37°24′27″N (Figure 1).
The climate is a semi-arid temperate continental monsoon

climate, with an average annual temperature of about 7.8°C.
There is less precipitation in the region, with a dry climate
and an average annual rainfall of approximately 483.4 mm.
Wuqi County is located in the hinterland of the Loess Plateau,
where precipitation is concentrated from July to September. The
altitude of theWuqi district is 1,199–1,772 m, and the elevation in
the northwest is higher than in the southeast. The area is defined
by having undulating beams, broken ground, rivers, ditches, and
ravines throughout the county. The ground surface in the study
area is covered by Quaternary Middle and Upper Pleistocene
loess with a large accumulation thickness. The Pre-Quaternary

strata are only exposed in deep-cut valleys and the lower part of
the steep undulating beams slope; however, the occurrence is
nearly horizontal. The exposed strata and lithology from old to
new are as follows: Purple sandstone of the Huanhe-Huachi
Formation (K1h) of the Lower Cretaceous; Sandy clay of the
Neogene Pliocene (N2), and Quaternary (Qp) eolian loess. Loess
with well-developed vertical joints, fissures, and large pores, easily
fail during times of precipitation (Wang et al., 2019). In addition,
fine-grained materials in the loess, such as clay, soluble salts, and
carbonates are quickly dissolved when exposed to water (Zhuang
et al., 2020). As a result, landslides frequently occur under the
effects of rainfall and engineering activity (Figure 2), which

seriously threatens the safety of the local people’s lives and
property. Therefore, it is crucial to evaluate the susceptibility of
landslides inWuqi County, which will help the local government to
take necessary disaster prevention and mitigation measures.

DATA PREPARATION

Data Usage
The susceptibility evaluation is based on the construction of the
landslide spatial database. Through a large number of field
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surveys, geohazards data collection, and remote sensing image
verification, the study area has identified 734 landslides. The
distribution of the landslides is shown in Figure 1. Landslides can
be divided into four types: landslides in the loess layer, landslides
at the interface of loess-red clay, landslides at the interface of red
clay-bedrock, and mudflow landslides in loess (Duan et al., 2011).
The landslide scales are large, medium, and small according to the
size of the slid body. The largest landslide volume is about 5.25 ×
105m3, and the smallest is 8,200 m3. In addition, the major

movement form of large-scale landslides is rotating landslide,
while small and medium-sized landslides are translation and
topples mainly. The data source is: 1) DEM data with a
resolution of 12.5 m is used to extract terrain and landform
related information such as altitude, slope, and topographic
relief; 2) national 1:2.5 million geological maps are used to
extract stratum lithology information; 3) vector maps of the
national road network and water system network are used to
extract road and water system distribution information; 4)

Landsat8 images with a resolution of 30 m are used to extract
vegetation coverage information on the ground; 5)the average
annual rainfall of the country in the past 30 years; 6) field
geological disaster survey data and Google Earth images are
used to determine the spatial distribution of the landslides.

Prepare Landslide Influencing Factors
The development of landslides results from the combined effect
of internal dynamic geological conditions and external

environmental factors (Huang, 2007; Peng et al., 2019).
Reichenbach et al. (2018) analyzed the research related to
landslide susceptibility evaluation from 1983 to 2016. They
found that 596 factors had been used for evaluations, and
these factors could be classified into five types: geology,
hydrology, landforms, land cover, and others. In this study, 14
landslide influence factors were selected for the landslide
susceptibility model according to the geological environment
conditions, landslide occurrence mechanism, and data

FIGURE 2 | Field photos of two loess landslides.

FIGURE 1 | The study area and spatial distribution of the landslides.
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FIGURE 3 | Landslide influencing factor maps. (A) Altitude, (B) Slope, (C) Aspect, (D) Curvature, (E) Topographic relief, (F) Surface roughness, (G) TWI, (H) HI, (I)

Lithology, (J) Average annual rainfall, (K) Distance to rivers, (L) NDVI, (M) Distance to roads, (N) Distance to villages.
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availability of the study area, including altitude, slope, aspect,

curvature, topographic relief, surface roughness, topographic
wetness index (TWI), hypsometric integral (HI), lithology,
normalized difference vegetation index (NDVI), average
annual rainfall, distance to rivers, distance to roads, and
distance to villages (Figure 3). Since the 14 factors are
represented on different intervals or scales, all factors are
converted into a grid with the DEM resolution (12.5 m ×

12.5 m) for unification. Simultaneously, the continuous factors
(altitude, slope, curvature, topographic relief, surface roughness,
TWI, NDVI, annual average rainfall, and HI) are classified using
the natural break point method. The remaining discrete factors

are classified using the original natural grouping. The
classification is shown in Table 1.

The terrain factors include altitude, slope, aspect, curvature,
topographic relief, surface roughness, TWI, and HI. The altitude
affects potential energy and stress distribution in the slope during
the development of a landslide, resulting in large potential
energies leading to a landslide (Zaruba and Mencl, 2014). The
slope directly determines the distribution of the slope stress,

surface runoff, and groundwater recharge and has an

important influence on the development of landslides (Varnes,
1984). The slope aspect determines the illumination time received
by the slope surface. There are differences in surface humidity,
vegetation coverage, and different slope aspects, which affect the
distribution of pore water pressure and the physical and
mechanical characteristics of rock and soil masses
(Pourghasemi et al., 2012a). Curvature indicates the degree of
distortion of a point on the slope surface, which has a certain
impact on the confluence of surface water and the migration of
landslides (Oh and Pradhan, 2011). Topographic relief is the
difference between the maximum altitude and the minimum

altitude within a 10 pixels radius, which describes the relief
characteristics of the terrain surface (Bui et al., 2016). Surface
roughness is a measure of the roughness and brokenness of the
ground (Eq. 1) (Pradhan et al., 2010). TWI is defined as a
function of the slope and the area contributed by the
upstream unit width orthogonal to the direction of the water
flow (Eq. 2). It quantifies the potential of the soil moisture content
and potential runoff capacity at various points in the basin. The

FIGURE 3 | continued.
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content and distribution of the soil’s moisture will affect the
condition of the slopes rock mass, soil, and vegetation, thereby
affecting the landslide (Pourghasemi et al., 2012b). HI reflects the
degree of erosion of a watershed by collecting statistics on the
altitude combination information of the watershed’s surface. It is

a geological model that reflects the development stage of the
watershed, an important indicator to reveal the morphology and
development characteristics of the watershed, and a key factor
affecting the erosion and slope evolution dynamics process (Singh
et al., 2008).

TABLE 1 | Influencing factor categories of landslides.

Factions Classification standard Type

Altitude/m <1,375; 1,375–1,449; 1,449–1,513; 1,513–584; 1,584< Continuous

Slope/° <9.81; 9.81–16.26; 16.26–21.93; 21.93–27.31; 27.31–33.79; 33.79< Continuous

Aspect F (–1); N (0–22.5; 337.5–360); NE (22.5–67.5); E (67.5–112.5); SE (112.5–157.5); S (157.5–202.5); SW (202.5–247.5);W

(247.5–292.5); NW (292.5–337.5)

Categorical

Curvature <−2.01; −2.02–−0.81; −0.81–0.56; 0.56–1.75; 1.75< Continuous

Topographic relief <31; 31–46; 46–60; 60–75; 75< Continuous

Surface roughness <1.05; 1.05–1.11; 1.11–1.18; 1.18–1.31; 1.31< Continuous

TWI <4.31; 4.31–5.46; 5.46–6.79; 6.79–9.03; 9.03< Continuous

HI <0.35; 0.35–0.6; 0.6< Continuous

Lithology Loess; mudstone and sandstone; red clay Categorical

NDVI <0.13; 0.13–0.16;0.16–0.20;0.20< Continuous

Average annual rainfall/mm <453;453–475;475–497;497< Continuous

Distance to rivers/m <200; 200–500; 500–1,000; 1,000–1,500; 1,500–2,000; 2,000< Categorical

Distance to roads/m <200; 200–500; 500–1,000; 1,000–1,500; 1,500–2,000; 2,000–2,500; 2,500< Categorical

Distance to villages/m <100; 100–200; 200–300; 300–400; 400–500; 500–600; 600< Categorical

FIGURE 3 | continued.
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Surface roughness �
1

cos(slope×π
180

) (1)

TWI � ln(As

β
) (2)

where ASis the specific catchment area (m2/m), β is slope angle in
degrees.

The geological factor is lithology and is the controlling factor
for the development of landslides. Lithology is the material basis
for the development of landslides. The lithology of different strata
affects the probability, scale, and shape of landslides due to the
hardness of the rock and the difference in rock mass structure. In
previous studies, lithology has also been used to evaluate the
susceptibility of landslides, especially in the loess areas (Chen
et al., 2017a).

Environmental factors include the average annual rainfall,
distance to rivers, and NDVI. Annual average rainfall refers to
the average rainfall under a long-term duration, which affects the

slope itself and the development of vegetation, surface runoff and
other factors, thus affecting the development of landslides (Sun
et al., 2020a). The distance to rivers is an important factor in
inducing landslides. The wet saturated water of the river acting on
the sliding area and part of the sliding body may reduce the shear
strength of the soil and weaken the layers, thus, reducing the
stability of the landslide (Hong et al., 2016). In addition, NDVI
represents the degree of coverage of surface vegetation; the impact
on landslides is reflected in the root consolidation of the
vegetation roots on the slope; thus, slowing down the erosion
and infiltration of the water flow (Ding et al., 2017).

The impact of human engineering activities on landslides is
complex and involves many forms, such as the construction of
roads and buildings, unreasonable impermeabilization and

drainage outlets (Luti et al., 2020). When building roads,
large-scale side slope excavation is required to change the
natural shape and stress of the original slope toe. As a result,
it is easy to form an empty surface, which has an unloading effect
on the slope, thereby reducing the stability of the slope and
leading to a landslide (Peng et al., 2014). The construction of
buildings will also induce landslides, such as building houses,
factories, mining, and other engineering activities, often requiring
excavation of slopes and deep pits, damaging the surrounding
mountains and reduce the overall stability above the slope (Sun
et al., 2020b).

METHODOLOGY

In the present study, using Bayesian hyperparameters to optimize
RF and XGBoost models for landslide susceptibility mapping,
there are four main stages: 1) generating a list of landslides and
landslide influencing factors; 2) training and validation data
preparation, correlation analysis of impact factors; 3) using

Bayesian hyperparameters to optimize the two models and
susceptibility mapping; 4) validation and comparison of the
two models (Figure 4).

Training and Validation Data Preparation
In the evaluation of landslide susceptibility, when advanced
machine learning algorithms are used for modeling, a data set
consisting of positive samples (landslides) and negative samples
(non-landslides) is required to train and validate the model. In
this paper, a single pixel in the center of each landslide area is
selected as the landslide data (Atkinson andMassari, 1998). There

are 734 landslides in the study area, divided into two parts, 70%

FIGURE 4 | Flowchart of the research methodology used to provide the landslide susceptibility map.
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(514) of the landslide data were randomly selected for training the
model. In contrast, the remaining 30% (220) were used to validate
the model. When selecting non-landslides, the landslide points
were first buffered by 1 km to reduce the error, and 734 non-
landslide points were randomly selected in the area outside the
landslide point buffer zone. Similarly, the non-landslide points
were randomly divided into two parts, one part was used for
model training (70%, 514 non-landslides), and the other part was
used for validating (30%, 220 non-landslides).

Correlation Analysis of Influencing Factors
In statistics, multicollinearity will occur when multiple variables
are deeply linearly related in a multiple regression model, leading
to inaccurate estimation of regression results (Bui et al., 2016).
There are manymethods to quantify multicollinearity, such as the
Pearson correlation coefficient method (Ahlgren et al., 2014). The
Pearson correlation coefficient can reflect the degree of linear
correlation between two variables. Its value ranges from −1 to 1.
−1 means that the two variables are completely negatively
correlated, 1 means that the two variables are completely

positively correlated, and 0 means that they are not correlated.
In this study, the Pearson correlation coefficient was used to
detect the correlation between the two influencing factors of
landslides. If the value is greater than 0.5, it indicates a high
correlation (Hong et al., 2020).

The Pearson correlation coefficient method was used for
correlation analysis of 14 factors in the study area, and the
results are shown in Figure 5. The figure shows that the
correlation coefficients between slope and topographic relief

are 0.61, and that between slope and surface roughness is 0.94,
both of which are greater than 0.5, indicating a high correlation.
Therefore, the topographic relief and surface roughness factors
are excluded during the modeling of the landslide susceptibility,
and the remaining 12 factors will be selected for landslide
susceptibility evaluation.

Landslide Susceptibility Models
Random Forest
Random forest is one of the most practical algorithms in bagging
ensemble strategies and was proposed by Breiman in 2001
(Breiman, 2001), which can be applied to classification,
regression, and unsupervized learning. This algorithm has
been widely used in many fields and shows excellent
performance. Random forest is a combination classifier, which
is composed of decision trees as the basic model. Each decision
tree is trained with independent data sets; finally, the prediction
result is obtained through voting or averaging. Random forest
uses an autonomous bootstrap method for resampling. The
method randomly extracts n (2/3 of the total sample) samples

from the entire sample set with replacement to form a new
training set. By training the new sample set, independent
decision trees are built, and the trained n decision trees are
combined into a forest. Each unextracted (1/3) sample is
called out-of-bag data, which estimates the error inside each
tree. It is used to evaluate the model performance to prevent over-
fitting. The random forest model can rank the importance of
various factors according to the Gini coefficient. The calculation
formula of the Gini index is as follows:

FIGURE 5 | Pearson correlation coefficient results. V1 Altitude; V2 Slope; V3 Aspect; V4 Curvature; V5 Topographic relief; V6 Surface roughness; V7 HI; V8 NDVI;

V9 Average annual rainfall; V10 Lithology; V11 Distance to roads; V12 Distance to rivers; V13 Distance to villages; V14 TWI.
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G � p(s) × p(m) (3)

Where G is the Gini index, which represents the probability that a
randomly selected sample will be classified incorrectly in the
sample set. p(s) is the probability of a sample being selected; p(m)

is the probability of the sample being misclassified. The smaller
the G, the smaller the probability that the selected sample in the
set will be classified incorrectly, in other words, the higher the

purity of the set. Conversely, the lower the purity of the set.

XGBoost
The XGBoost algorithm is an ensemble learning algorithm that
integrates multiple decision tree models to form a bigger powerful
classifier and is improved by gradient boosting decision trees
(Chen and Guestrin, 2016). The core idea is to fit the residual of
the previous prediction by learning a new function each time,
thereby calculating the score corresponding to each node
according to the sample characteristics. The sum of all the
scores is the predicted value of the sample. which is

Yi � φ(xi) � ∑k
k�1

fk(xi), fk ∈ F (4)

Where yi is the predicted value of the model, xi is the category
label of the i sample, k is the number of trees, and f k is the k-th
tree model. The XGBoot algorithm is used to learn k trees. When
the loss function of the tree is the smallest, the model is the
optimal model, and its prediction accuracy is also the highest,
which can be expressed as

obj(t) � ∑n
i�1

l(yi,Yi) + Ω(f (t)) (5)

Ω(f (t)) � cT +
1

2
λ∑T

j

ω2
j (6)

Where obj(t) is the value of the loss function; l(yi,Yi) is the
training error;Ω(f(t)) is the complexity of the entire tree; T is the

total number of nodes in the leaves; c is the division degree of the
nodes to prevent overfitting; ω is the leaf node vector modulus; λ
is the regularization coefficient. In the learning process, the
objective function is used to characterize whether the
algorithm at this time is optimal. XGBoost uses an algorithm
to traverse the division points of all features. If the objective
function after splitting is greater than that before splitting and
exceeds the set threshold, it can be split. Stop splitting when the
weight and maximum depth exceed the set threshold to prevent
overfitting, and constantly find the appropriate learning function
in the split. The condition function for judging the split is

Gain �
1

2
[ G2

L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)
2

HL + HR + λ
] (7)

Where
G2
L

HL+λ
is the score of the left node after the node is cut;

G2
L

HR+λ
is

the score of the right node after the node is cut; (GL+GR)
2

HL+HR+λ
is the

score after cutting; Gain is the condition function for judging
whether to split, if Gain>0, then the split is performed, otherwise,
the split is not performed.

Bayesian Optimization
The optimization of hyperparameters of machine learning
algorithms is crucial in modeling and affects the model’s
accuracy. However, the Bayesian optimization algorithm can
quickly obtain the optimal value and is widely used to
determine the optimal hyperparameter value of the model
(Klein et al., 2016; Stuke et al., 2020). The Bayesian algorithm
uses prior knowledge in the Gaussian process (GP) and has strong
robustness. The algorithm only needs input and output data. It
fits the posterior distribution of the objective function by
increasing the number of samples, thereby realizing the
hyperparameter optimization of the model and obtaining the

optimal solution. First, assuming a collection function based on
the prior distribution. Then, a new sampling point is used to test
the objective function every time, using this information to
update the prior distribution of the objective function. Finally,

FIGURE 6 | RF and XGBoost hyperparameter optimization (MSE).
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a check is performed on the global distribution given by the
posterior distribution to find the most likely value. Usually, the
probability model used for Bayes is GP because GP can easily
calculate the predicted distribution of the target.

When GP is used as the basic model, assuming that the
objective function f(x) being optimized is randomly sampled
from GP, it can be expressed as f(x) ∼ GP(m(x),k (x,x’)),
where k (x, x’) represents the covariance function, and m(x)
represents the mean function. The intrinsic characteristics of the
objective function f(x) (such as smoothness, additive noise, and
amplitude) are specified by the covariance function k (x, x’), and
the output result is the covariance of f(x) and f(x’). In the general
Gaussian model, the probability of each feature needs to be
calculated and then accumulated. In the multivariate Gaussian
probability model, it is necessary to construct a covariance matrix

and use the probability values of all eigenvectors. The GPmodel is
as follows:

P(x) �
1

(2π)
n
2|cov|

1
2

exp( −
1

2
(x − μ)Tcov(x − μ)−1) (8)

where μ (a mean), and cov (a covariance) are as follows:

μ �
1

n
∑n
i�1

xi (9)

cov �
1

n
∑n
i�1

(xi − μ)(xi − μ)T (10)

Model Performance and Validation
In landslide susceptibility mapping, it is essential and necessary to
validate the model’s performance (Wang et al., 2020). The receiver
operating characteristic (ROC) curve is also a common method to
test the accuracy of the evaluation of landslide susceptibility. The
ROC curve is an indicator of continuous variables of data
specificity and sensitivity (Bui et al., 2020). The area under the
ROC curve (AUC) represents the accuracy of the model. When the
AUC value is closer to 1, it indicates that the model’s prediction
accuracy is higher. At the same time, the confusionmatrix accuracy
(ACC), recall, precision, and F-measure (F1) are used to evaluate

the predictive ability of the landslide model. The calculation is as
follows:

ACC �
TP + TN

TP + FP + TN + FN
(11)

Recall �
TP

TP + FN
(12)

Precision �
TP

TP + FP
(13)

F1 �
2 × TP

2 × TP + FP + FN
(14)

Where TP (True Positive) and TN (True Negative) are the
numbers of correctly classified landslides, FP (false positive)
and FN (False negative) are the numbers of landslides
incorrectly classified. For ACC, recall, precision, and F1, these
values are between 0 and 1. With these values increasing, the
model performance is better.

RESULTS AND DISCUSSION

Bayesian Optimization RF Model
The RF model contains five hyperparameters, n_estimators,
min_samples_split, max_depths, max_features, and bootstrap.
n_estimators represent the number of decision trees;
min_samples_split is the minimum number of samples to be
split; max_depth is the maximum depth of the tree; max_features
is the maximum number of features. The sample selection uses
repeated sampling with replacement, so the bootstrap value is true.
The Bayesian algorithm optimizes the remaining hyperparameters,
and the hyperparameter value of each iteration is obtained. The
mean square error (MSE) is selected tomeasure themodel’s accuracy

during hyperparameter optimization. As shown in Figure 6, the
range of MSE under different hyperparameters is 0.259–0.361. After
many hyperparameter optimization trainings in this study, the best
parameters of the model (minimumMSE value) appeared before 30
iterations. After 30 iterations, the mean square error varied slightly,
and the accuracy of the model could not improve anymore.
Therefore, when performing hyperparameter optimization, the
number of iteration times was choosenas 50, and the minimum
MSE is 0.259 for the ninth iteration. The optimal hyperparameters
are: [n_estimators:1,417, max_depths: 293, max_features: 6,
min_samples_splits: 3].

Using the optimized hyperparameter values above 70% of the
training samples, the RF is modeled and trained. The selected 12
factors are input into the optimized random forest model, and the
landslide susceptibility index (LSI) of the study area is 0–1. It was
divided into five levels using the natural break method
(Figure 7A), which were respectively very low (0–0.215), low
(0.215–0.372), middle (0.372–0.579), high (0.579–0.796), and
very high (0.796–1). The area percentages of each
susceptibility area class were 30.01, 24.59, 16.37, 15.05, and
13.99%, respectively. Figure 7A shows that the very high and
high landslide susceptibility areas in Wuqi County are mainly

distributed along rivers and valleys with severe soil erosion. The
low susceptibility areas are mainly distributed in high altitude
areas with less human engineering activities, which conform with
the distribution of historical landslides.

Bayesian Optimization XGBoost Model
The XGBoost model contains five hyperparameters including,
n_estimators, max_depths, learning_rate, gamma, and booster.

Among them, n_estimators represent the number of decision
trees; max_depths is the maximum depth of the tree;
learning_rate is the shrinkage step used in the update process
to prevent overfitting; gamma specifies the minimum loss
function drop required for node splitting; booster indicates the
booster parameters. The booster uses a tree-based model that
is set to “gbtree.” The remaining hyperparameters are optimized
via the Bayesian algorithm, and the hyperparameter value of
each iteration is obtained. The XGBoost model performs
hyperparameter optimization and 50 iterations. As shown in
Figure 6, the MSE ranges from 0.256 to 0.499. At the 16th
iteration, the MSE is minimal, and the model performs best. The

hyperparameters are: [n_estimators: 668, max_depths: 3,
learing_rate: 0.14, gamma: 0.1].
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Using the optimized hyperparameter values above and 70% of
the training samples, the XGBoost model is modeled and trained.
The selected 12 factors are input into the optimized XGBoost
model, and the LSI of the study area is 0–1. It was divided into five
levels using the natural break method (Figure 7B), which were
respectively very high (0.674–1), high (0.558–0.674), middle
(0.455–0.558), low (0.372–0.455), and very low (0–0.372). The

area percentages of each susceptibility area class were 13.90,
16.75, 23.55, 24.80, and 21%. Among them, the distribution
results of very high and high prone areas are in good
coherency with those predicted by the XGBoost model, which
conforms with the distribution law of historical landslides.

Model Validation and Comparison
To evaluate the performance of the two models, the AUC value of
the ROC curve was used to validate the training success power

and prediction accuracy of the RF and the XGBoost model. The
AUC of the training data set indicates the success ability of the
model, and the validating data set represents the model’s
predictive ability. As shown in Figure 8, the AUC values of
the training data set of the RF and the XGBoost model are 0.98
and 0.97, respectively. The AUC values of the validating data set
are 0.88 and 0.86. From the AUC values of the training data set, it

can be seen that the models optimized by the two Bayesian
algorithms show a good fit (success power). However, the success
ability of the RF model training data is higher. Similarly, both
optimized models have a higher predictive ability, while the RF
model has a higher prediction accuracy. In addition, the ACC,
recall, precision, and F-measure (F1) of the confusion matrix are
used to validate the validating data set of the two models. The
results are shown in Table 2. All indicators show that the RF
model and the XGBoost model optimized by the Bayesian

FIGURE 7 | Landslide susceptibility maps. (A) RF model, (B) XGBoost model.

FIGURE 8 | ROC curves of the RF and the XGBoost models. (A) the training data, (B) the validating data.
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algorithm show a better fit and higher prediction accuracy.
However, from the overall indicators, the training and
prediction of the RF model are better than the XGBoost

model. Therefore, in the application of this research, the RF
model optimized by the Bayesian algorithm has a higher
predictive ability than the XGBoost model.

The two models were compared to the frequency ratio
quantitative analysis based on the predicted landslide
susceptibility zoning map and historical landslides. When the
frequency ratio is greater than 1, the area is prone to landslides,
and the higher the frequency ratio, the greater the possibility of
landslides. Calculating the distribution of the landslides in each
susceptibility grade, the frequency ratio was calculated (Table 3).
The results show that the very high susceptibility of the RF model

has 414 landslides, accounting for 56.40% of the total landslides.
The very high susceptibility of the XGBoost model has 406
landslides, accounting for 55.31% of the total landslides. There
are eight landslides in the very low susceptibility areas of the RF
and the XGBoost model, accounting for 1.09% of the total
landslides. However, the area of very low susceptibility
(30.01%) of the RF model is larger than that of the XGBoost
model (21.00%). The frequency ratio shows that the very high
(4.03) and high (1.62) susceptibility areas of the RF model are
larger than the very high (3.98) and high (1.59) frequency ratios
of the XGBoost model; the very low (0.04) susceptibility area of

the RF model is smaller than the very low (0.05) of the XGBoost
model. The above statistical results show that the susceptibility
evaluation results of the RF model and the distribution of
landslides are more reasonable than the XGBoost model.

A common practice in landslide susceptibility studie is to
compare (two or more) different models in terms of AUC, but the
difference in the susceptibility map cannot be observed.
Therefore, the method of Xiao et al. (2020) is used to compare
the susceptibility map before and after optimization. Subtract the

not optimazed susceptibility rate from the optimized one, and the
two results are shown in Figure 9. The range of RF_BO-RF value
is −0.544–0.668 (Figure 9A), the value of XGBoost_BO-XGBoost

is −0.955–0.914 (Figure 9B), and the value of the map was broken
at −0.20 and 0.20. Figure 9 compares the susceptibility maps of
the two models before and after optimization. It can be observed
that the difference of RF_BO-RF is small and there is no obvious
distribution law, while the difference of XGBoost_BO-XGBoost is
large. The overestimation (0.25–0.914) of XGBoost_BO-XGBoost
is mainly distributed in the valley (low elevation areas), the
underestimation (−0.955–−0.25) is distributed in ridges (high
elevation areas). There are two reasons for the large difference
between XGBoost_BO-XGBoost. On the one hand, it may be due
to the over-fitting of the not optimized XGBoost model during

training, which makes the error of the susceptibility map
predicted by the not optimized model larger. Another reason
may be that the factors of elevation and distance to rivers are
related to the overestimation and underestimation of landslide
susceptibility. In addition, we can also observe that RF is quite
robust even without hyperoptimization, while XGBoost seems to
have a higher need of optimization, as the not optimized version
seems affected by relevant and systematic differences, driven by
some thmatic layers.

Model Optimization
The hyperparameters of machine learning algorithms impact
model accuracy (Rong et al., 2020; Sam et al., 2020); however,
in previous studies, the determination of better performing
hyperparameters is more often selected by trial-and-error
methods and grid search (Chen et al., 2017b; Pham et al.,
2019). This method may miss the best parameters, consume
much time, and significantly reduce accuracy and efficiency. For
this reason, to quickly find the best hyperparameters, the
Bayesian optimization algorithm can make up for the

TABLE 2 | Confusion matrix of the RF and the XGBoost models.

Model\Parameters TP TN FP FN ACC

(%)

Recall

(%)

Precision

(%)

F1

RF 175 177 45 43 80.00 80.28 79.55 79.91

XGBoost 166 179 53 41 78.41 80.19 75.80 77.93

TABLE 3 | Statistical results of the frequency ratio of the RF and the XGBoost models.

Model Landslide susceptible

zones

Area of

zones

Number of

landslides

Landslides

percentage

FR

RF Very high 13.99 414 56.40 4.03

High 15.05 179 24.39 1.62

Middle 16.37 97 13.22 0.81

Low 24.59 36 4.90 0.20

Very low 30.01 8 1.09 0.04

XGBoost Very high 13.90 406 55.31 3.98

High 16.75 196 26.70 1.59

Middle 23.55 92 12.53 0.53

Low 24.80 32 4.36 0.18

Very low 21.00 8 1.09 0.05
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shortcomings of low accuracy and efficiency by obtaining the best
hyperparameters of the model. The algorithm fits the posterior
distribution of the objective function by increasing the number of

samples, input, and output data, to realize the hyperparameter
optimization of the model and obtain the best parameters. The
results before and after the hyperparameter optimization of the

FIGURE 10 | ROC curves. the RF models (A) before and (B) after hyperparameter optimization; the XGBoost models (C) before and (D) after hyperparameter

optimization.

FIGURE 9 | Two comparison maps. (A) RF_BO-RF, (B) XGBoost_BO-XGBoost.
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RF model and the XGBoost model are shown in Figure 10. Both
the AUC of the RF model training data before and after
optimization was 0.98, and the AUC of the validating data
before and after optimizing by Bayesian algorithm are 0.84
and 0.88. The AUC of the training data before the XGBoost
model is optimized is 1.0, and the validating data is 0.83. The
AUC of the training and validating data after Bayesian algorithm

optimization (XGBoost_BO) are 0.97 and 0.86, respectively. The
results of the above two optimization models show that the model
optimized by the Bayesian algorithm has a good fit on training,
and the prediction accuracy has also been improved. Meanwhile,
from the AUC of the training data before and after optimizing the
XGBoost model, it can be observed that the optimization of the
hyperparameters can prevent the overfitting problem. Therefore,
the model’s fit and prediction performance can be increased to a
certain extent. As a result, the results of the landslide
susceptibility evaluation are more accurate and reliable using
the Bayesian algorithm to optimize the hyperparameters.

Besides the model’s own parameters that affect the accuracy of
the model, there are also landslide sampling strategies. There are
many sampling methods for landslide presence data, for example,
Seed cell, Scarp, Point, and fuzzy C-means clustering (Che et al.,
2012; Alimohammadlou et al., 2014). They have been successfully
applied to landslide susceptibility mapping. Yilmaz (2010)
compared the influence of scarp, seed cell and point sampling
strategy on landslide susceptibility mapping, and the results
showed that the Scarp sampling strategy gave the best results
than the point, whereas the scarp and seed cell methods can be
evaluated relatively similar. Dou et al. (2020) compared the

predictive capabilities of four types of samples were extracted
from the polygon shapes, i.e., samples of landslide scarp, centroid
of scarp, samples of landslide body and centroid of body,
respectively. The order of predictive power is in the following
order: landslide scarp > landslide body > centroid of scarp >

centroid of the body. Therefore, the landslide sampling strategy
also has a greater impact on the predictive ability of the model. In
the future research, not only the influence of the model
parameters, but also the influence of the landslide sampling

strategy should be considered. In addition, the number of
landslide samples will also affect the evaluation results of
susceptibility. Sufficient landslide samples can make the
trained model more stable and the predicted results more
accurate. In this study, the landslide data used comes from
geological hazard surveys in the field, geohazards data
collection and remote sensing image verification. In this

process, recent individual landslide disaster data may be
missed, making the list of landslides not very complete.
Therefore, interferometric synthetic aperture radar (InSAR)
technology can be used to identify recent landslides in future
research (Zhao et al., 2019), to make up for the shortcomings of
difficulty in collecting recent landslide data, and to make the
evaluation results more reliable.

Importance of Influencing Factor
The occurrence of landslides is controlled by multiple influencing
factors as well as the differences in how each factor affects the

occurrence (Wu et al., 2020). Therefore, it is necessary to study
the importance and mechanism of each influencing factor, which
can provide guidance for predicting and preventing landslide
disasters. In this study, the RF model with high prediction
performance was used to analyze the importance of the
influencing factors. Based on the “Gini coefficient” of the RF
model, the contribution of the 12 factors in the study area to the
occurrence of landslides was obtained. As shown in Figure 11, the
importance of the 12 factors in descending order are altitude
(0.229), lithology (0.178), average annual rainfall (0.134), distance
to rivers (0.122), HI (0.059), slope (0.057), TWI (0.052), NDVI

(0.051), distance to roads (0.045), aspect (0.030), distance to
villages (0.023), and curvature (0.020).

The importance of the influencing factors obtained from the
RF model found that altitude, lithology, average annual rainfall,
and distance to rivers are important factors affecting
the occurrence of landslides in the study area. According to
the distribution of landslides in different altitude ranges, the
frequency ratio map (Figure 12A) is obtained. The frequency
ratio at the altitude of 1,199–1,375 m is highest at 2.91, and the

FIGURE 11 | Importance of influencing factors based on the RF model.
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frequency ratio gradually decreases with an increase in altitude. In
addition, 65% of landslides occur in areas where the altitude is less
than 1,449 m. Human engineering activities are intense in low
altitude areas, vegetation coverage is small, slopes are severely
disturbed, and landslide disasters occur frequently. Relatively the
high-altitude area has fewer human engineering activities and
fewer landslides. The results of the analysis of the influence of
rivers on landslides are shown in Figure 12B. There are 361
landslides within 200 m from the river, the frequency ratio which
is up to 2.45. In addition, the frequency ratio gradually decreases

as the distance from the river increases. At the same time, 83% of
landslides occur within 500 m from the river. This is due to long-
term running water where both riverbanks have been severely
eroded and scoured. As a result, the natural stress and shape of
the slope have been destroyed, and slopes are liable to instability.
The landslides in the study area are mainly loess and loess-
bedrock dual structure landslides. However, many research
results show that rainfall is the leading reason forloess
landslides and plays a decisive role in loess landslides (Wang
et al., 2014; Peng et al., 2015). A large amount of rainfall will
soften the soil and affect the surface runoff to cause the erosion of

the slope surface, reduce the stability of the slope, and make the
slope prone to instability. Therefore, rainfall plays an essential
role in the occurrence of landslides in Wuqi County, which is
consistent with the importance of the RF model’s influencing
factors.

CONCLUSION

In this study, the Bayesian hyperparameter optimization RF and
XGBoost models were used for landslide susceptibility mapping.
Wuqi County, where landslide disasters are relatively frequent, is
where the research was conducted. Both optimized
hyperparameter models were evaluated and compared, and the
importance of the landslide influence factors was analyzed and
concluded as follow:

1) The validating data AUC of the RF and the XGBoost models
optimized based on the Bayesian hyperparameter
optimization are 0.88 and 0.86, respectively, which are 4
and 3% higher than before. The training data shows a high
degree of fit. Therefore, the use of the Bayesian algorithm to
optimize hyperparameters can improve the fit of the two
models and the performance of prediction to a certain extent;

2) In this study area, both optimized models have higher
accuracy for landslide susceptibility mapping. However, the
RF model has a better fit and a higher predictive ability than

the XGBoost model.
3) According to the analysis of the landslide influencing factors

in the study area, it was found that altitude, lithology, average
annual rainfall, and distance to rivers are the main influencing
factors that affect the occurrence of landslides.
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