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Abstract - In this paper, the contact between bodies with elastoplastic behaviour is
studied. In order to solve the contact problem, a direct constraint technique is em-
ployed. Friction between the bodies is taken into account, and the materials may have
different elastoplastic properties. An initial strain BEM formulation is used to study the
elastoplastic problem. The material is assumed to obey the Von Mises yield criterion
with its associated flow rule. Two numerical examples are presented, to demonstrate the
efficiency of the proposed method.

Introduction

In engineering structures, the transfer of loads is usually achieved through contact. Where
contact exists at small regions, high values of tractions and/or stress concentrations may
occur, leading to the formation of localized plastic zones. It is of practical importance,
thus, to be able to analyse contact problems in which the possibility of elastoplastic
behaviour of the material is taken into account.
The BEM is particularly well suited to handle contact problems, since contact is inherent
to the boundaries of the bodies involved. BEM has been applied to elastic contact prob-
lems by many researchers, for example Andersson [1], Karami and Fenner [2], Paris and
Garrido [3] and Man, Aliabadi and Rooke [4]. The common feature of these formulations
is the use of a direct approach to the problem, where the solution is obtained explicitly
from equilibrium considerations and compatibility conditions, i.e., a direct constraint
technique.
The need to include elastoplasticity is important for some type of problems, and has
received attention from researchers using BEM, [5],[6].
In this paper, a direct constraint approach is used to solve the contact problem. The con-
tact areas are modelled using boundary elements with linear interpolation functions, and
quadratic interpolation functions are used everywhere else. An initial strain approach,
described in [7],[8] is employed to include the non linear behaviour of the materials, which
was extended to allow the domain discretization by linear internal cells, compatible with
the type of boundary elements used in the contact areas. The Von Mises yield criterion
and its associated flow rule is employed, [9].
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338 Boundary Element Method XVI

BE Formulation for Elastoplastic Problems

For an homogeneous body of domain Q, enclosed by a boundary F, the following integral
equation can be written for the displacement rate iij at a point z' G F:

(̂z',x)£̂ (x)rfQ(x), (1)

in which the variable x' is used to refer to the boundary of the body, and the variable x to
the domain; HJ , PJ are the displacement and traction rates respectively; e^ is the plastic
strain rate; p*j, u*j and cr*̂  are the fundamental solutions of elasticity. The symbol f-
indicates a Cauchy principal value integral, while c,-j is a constant that depends on the
geometry of the boundary at z' . Although no time-dependent effects are studied in this
paper, the rate notation is used to show that the magnitudes involved depend on the
loading history.
The following integral equation valid for the stress rates at an internal point z can be
obtained differentiating eq. (1) with respect to the coordinates of z, and applying the
generalized Hooke's law to the elastic part of the total strain rate tensor:

')- /
Jr

;WLW), (2)

in which %&, P*-^ and £*,£/ are the fundamental solutions, and the free term /^ re-
sults from the differentiation of the domain integral that appears in equation (1). After
discretizing the boundary and those areas of the domain where yielding is expected to
occur, and after a collocation procedure, equations (1) and (2) can be written in matrix
form as:

(3)

<r = G'p - H'u -f (D' + C')e&. (4)

The vectors u and p contain the values of displacement and traction rates at all boundary
nodes. Since equation (2) is only valid for internal points, the stress rates at boundary
points must be computed from different expressions (ref. [8]). The resulting coefficients
can be assembled into equation (4), and the stress rates at all points can be calculated
in a unified way. Equation (3) can be rearranged according to the boundary conditions,
which gives the final system of equations:

where y is the vector of the unknowns, and f is the elastic part of the right hand side
vector, which contains the contribution of the known boundary conditions.
In a similar fashion, equation (4) can also be manipulated to give:

<7 = -A'y+f' + D*£P, (6)

where D*=(D'+C'), A' contains the corresponding columns of H' and G'; and f' in-
cludes the contribution of the prescribed values.
Equations (5) and (6) are solved in an incremental way, therefore can be rewritten as

Ay = f +D(eP
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Boundary Element Method XVI 339

(7 = -A'y + f + D*(eP + A&P), (8)
where for a given load step, y, f , f and cr contain the accumulated values of tractions,
displacements and stresses; e^ represents the accumulated plastic strains up to but not
including the current load increment and A^P stores the increment of the plastic strains
due to this load increment, and must be determined through an iterative procedure.
Once convergence is achieved at all control points, these increments are added to the
total plastic strains, and a new load step is allowed.

Contact Problems

Solving a contact problem requires the determination of displacements and tractions that
arise within the contact zone. The size of such zone may also be unknown, and therefore
must be computed as part of the solution. In order to do this, a potential contact zone is
chosen in advance. Within this region, node-pairs (a,b) are defined. A direct constraint
technique (refs [1],[4]) is used here, in which compatibility and equilibrium conditions are
enforced at every node-pair. These conditions take the form shown in table (1) according
to any one of the three possible contact modes. Tractions and displacements in this table
are referred to in local coordinates, tangential and normal directions.
The first mode is separation, where the nodes a, b are not in contact, and thus tractions
in both directions are enforced to zero. In the presence of friction, two true contact
modes are possible, namely slip, in which the node-pair may undergo tangential relative
displacement, with the friction force opposing it, and stick, in which the relative dis-
placement of the node-pair is zero. Frictional behaviour is considered to obey Coulomb's
friction law, in which the tangential traction is related to the normal traction through
the friction coefficient p.

Separation

p?+p* = 0
P%+Pn = 0

Pt = 0
Pn ~ 0

Pt
Pn
Pf--
<

Slip

+ Pt = 0
+ Pn =0
t Wn = 0
-%*=0

Stick

P?+P? =
P%+Pn =
%?-%» =
<-< =

0
0
0
0

Table 1: Modes of contact

In order to solve the elastoplastic contact problem, it is necessary to write equation (7)
for all the bodies involved and couple them by enforcing the compatibility and equilib-
rium conditions described above. For example, for two bodies in contact, and using a
superscript for each of them:

*.

0

Contact

1
1
1 0
1

1
1 ^ 2
1
J

Conditions
y^

I
I
I

- -f-
(9)
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340 Boundary Element Method XVI

In order to compute the internal stresses, it is enough to write equation (8) for each body
separately.

cr* = -A'lyl + f* + D*l(eP* + A^P*) (10)

2,^/2 ^*2/.n2^ = -Â y' (11)
The contact modes at each node-pair are not known in advance, and in consequence
they are first set arbitrarily to slip . Equations (9), (10) and (11) are then solved for
the current load step, where the iterative procedure to determine AeP must be carried
out. Subsequently the assumed contact modes are checked, and if they are found to be
incorrect, they are updated and the system of equations is solved again, until no such
violations are detected. The solution of equation (9) requires the computation of the
inverse of matrix A. Inverting it every time the contact conditions change would be a
very expensive task. Special schemes, such as the Sherman- Morrison-Woodbury formula
(ref. [10]) can be used to obtain the inverse of a matrix, after small changes happen to
the original one. This is true for contact problems, where usually the contact area is
small compared to the boundaries of the bodies involved.

Numerical examples

Flat punch on an elastoplastic foundation

This is a conforming type of problem, where the contact area is known in advance.
However, in the presence of friction the partition between sticking and sliding zones
must be found iteratively.
Consider the geometry shown in figure (la), where the foundation has a width W and a
height H. The dimensions of the punch are w and A, respectively. The ratios between
them are assumed to be h/w — 2, H/W = 1 and w/W — 1/4. It is taken W — 160 mm.
Figure (Ib) shows the domain discretization, in the neighbourhood of the corner of the
punch. A uniform compressive load per unit thickness, to, is applied on the upper face
of the punch.

X,

h

H

W

a) Geometry

Figure 1: Flat punch

Both punch and foundation are assumed to have the same material properties: elastic
modulus E — 210 GPa; Poisson's ratio v — 0.3; yield stress ay — 196 MPa; plastic
modulus H' = 0 (elastic-perfectly plastic material). The friction coefficient between the
bodies is taken as p, — 0.2. The problem is considered under plane strain condition.
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Boundary Element Method XVI 341

This example is discretized using 85 boundary elements, of which 26 are linear, and 108
internal cells.
The first node to become plastic is the lower right corner of the punch (point A), and
the value of the load for which this happen (or load at first yield), is f<,y = 47.4 MN/m.
Figure (2) shows the distribution of normal contact tractions, normalized with respect
to toy • It can be seen that as the material near the edge of the punch yields, the traction
gradient decreases, and the maximum value is found towards the interior of the contact
zone. This fact has also been observed in ref[5]. Figure (3) shows the distribution of
tangential contact tractions, normalized with respect of (/̂ <>y). The partition of sticking
and sliding zones is found at x/w - 0.58 during all the loading process. The sticking
zone is situated between 0 < x/w < 0.58.

elastic)
elastoplastic
elastoplastic

0.00.0 0.2 0.4 0.6 0.8
Distance from centre x/w

1.0

Figure 2: Flat punch: Normal contact tractions

0.2 0.4 0.6 0.8
Distance from centre x/w

l.O

Figure 3: Flat punch: Tangential contact tractions

Perfect-fit pin in an infinite plate

This is still a conforming type of problem, because both contacting surfaces fit together
in the unloaded state. However, the size of the contact area is no longer known after the
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342 Boundary Element Method XVI

application of the load. The problem may also be classified as a receding type, because
the size of the contact area decreases as the applied load increases. Figure (4a) shows the
geometry of this example. A pin of radius R = 25 mm is embedded in a plate of semi-
width W and semi-height H. The ratios between them are H/W - I and W/R = 20,
the latter value is considered appropriate to model an infinite plate. Figure (4b) shows
the domain discretization of the area expected to yield. The plate is loaded in the x^
direction with a uniform traction per unit thickness, to.

X.,
J_L t,

Rigid pin

a)Geometry

Figure 4: Perfect fit pin in an infinite plate

The pin is supposed to be rigid, and the plate has an elastic modulus E — 73 GPa,
Poisson's ratio v — 0.33, yield stress ay — 380 MPa and a plastic modulus H' — 600 MPa.
The problem is analyzed assuming plane strain state. The discretization consists of 106
boundary elements, of which 72 are linear, and 240 internal cells.

4 8 12 16 20
Contact Angle © (degrees)

Figure 5: Normal tractions vs contact angle

The load at first yield is found to be toy — 130.7 MN/ni, and the node where the plastic
zone starts is point B. Figure (5) shows the distribution of normal contact tractions as
a function of the angle 0, normalized with respect to toY • The contact area develops
between —18.7° < G < 18.7*, and does not change significantly during the loading
process. The distribution of hoop stresses opg, also normalized with respect to toy, can

                                                             Transactions on Modelling and Simulation vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Boundary Element Method XVI 343

be seen in figure (6). The elastic response compares favourably with the analytical results
obtained in ref [11]. Finally the extent of the plastic zone for to - 1.3f<,y is shown in
figure (7). Also shown is the distribution of the equivalent plastic strain for the same
load. This results agree with those presented in refs.[6],[12].

(elastic)
(elastoplastic)
(elastoplastic)

-1.0 10 20 30 40 50 60 70 80 90
Angle 0 (degrees)

Figure 6: Hoop stresses vs angle

a) Plastic zone b) Equivalent plastic

Figure 7: Plastic zone for to = 1.3f<,y

Conclusions

A study of contact problem between elastoplastic solids has been presented. A direct
constraint technique is used to handle the contact problem, in which the equilibrium and
compatibility conditions in the contact zones are directly enforced. These conditions are
specified according to the contact mode existent at each node-pair, namely, separation,
stick or slip mode, and they are determined iteratively, since they are not kown a priori.
Frictional behaviour can be taken into account.
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344 Boundary Element Method XVI

The elastoplastic response of the material is solved by a BEM initial strain approach,
capable of handling elastic- perfectly plastic as well as work hardening constitutive rela-
tionships. The Von Mises yield criterion with its associated flow rule is adopted. Two
examples were presented in which good agreement with published results are shown.
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