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Abstract: This paper studies the application of beyond bound decoding method for high speed 

optical communications. This hard-decision decoding method outperforms traditional minimum 

distance decoding method, with a total net coding gain of 10.36 dB. 
OCIS codes: (060.2330) Fiber Optics Communications; (060.4510) Optical Communications 

 

1.  Introduction 

Optical links are currently experiencing a migration towards higher bitrates. For example, Optical access networks 

are now operating at 40G regimes [1], while short range systems are being developed for 400G regimes [2]. This 

incremental improvement in the capacity of the links is changing the paradigm of supported bit error rate (BER), 

which is moving from a 10
-12

 to a 10
-15

 levels [2]. This increment in the benchmark of supported BER requires 

improving the system performance in high speed optical fibers, from the class optics, the fiber itself and the digital 

signal processing algorithms. Forward Error Correction (FEC) plays a key role in this quest since it can provide 

extra gain to alleviate the technology pressure on the optical side of the system while supporting the signal quality 

levels. During the past several years, FEC has been integrated in various systems to obtain the desired performance. 

Foresight examples are studies of WDM Performance and Multiple-Path Interference Tolerance [3], and High-Speed 

1550 nm VCSEL [4]. Overall, it becomes utmost important to come up with FEC codes of higher gain and faster 

processing capability. 

In this paper we study beyond bound decoding method, employing the same code as proposed in [5]. Without 

changing the encoding structure, 0.36 dB more net coding gain (NCG) is achieved, with a total NCG of 10.36 dB. 

The pre-FEC BER of this 20% overhead hard decision code is 1.4·10
-2

 and it is above the theoretical threshold 

obtained by applying minimum distance decoding method. The solution proposed in this paper meets the technical 

requirements in terms of latency, complexity and gain for next generation optical networks.   

2.  Principle of Beyond Bound Decoding 

Product code with shortened BCH components for high speed optical communications was first studied in [5]. The 

component code is a shortened BCH code of length n ≤ 2·m – 1 as shown in Figure 1. The number of information 

bits in a row/column is denoted k. By inserting 2·m – 1 - n leading zeros, each row/column becomes a BCH 

codeword. 

At the decoding part, iterative decoding is employed for the product code. One iteration consists of decoding a 

product code horizontally once and vertically once. Each row/column is decoded by a component decoding method. 

In [5], the component decoding method is minimum distance decoding. In this paper, the component decoding 

method is beyond bound decoding. All returned error bits are checked to be within n bits of a received word or not. 

 

 

Fig. 1: Code Construction and Circuit Implementation Investigation 
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If not, decoding error is reported. It is called error position check later in this paper. To keep the encoding part 

untouched, the code of the same parameters are used in this paper as in [5], that is, n = 391 and m = 11. 

The component has minimum distance of eight. With minimum distance decoding, it only corrects up to three 

errors. Beyond bound decoding, which is studied in this paper, aims to correct up to four errors. The method is 

explained in [6]. The basic idea of decoding is to change the value of each bit and check whether the weight of 

errors is reduced. If so, the value of this bit should be changed, otherwise the original value is kept. A vector h = [h0 

h1 h2 h3]  is built to help with error weight change detection. The value h0 is an even parity check bit while h1, h2 and 

h3 are the opposite values of corresponding determinants of syndrome matrices. The construction of syndrome 

matrices follows the rule for BCH code. Table 1 shows the values of the vector h for different weight error patterns.  

Component decoding error is a practical issue in iterative decoding of a product code as introduced errors 

increase decoding iterations. These introduced errors may also possibly build a non-decodable error pattern together 

with existing errors. Therefore it is important to reduce component decoding error probability. An overview of 

component decoding error probability is shown in Table 1, where x means do-not-care.  

Vectors h’ and h’’ are calculated to help finding the reduction of error weights. After first flipping the value of 
one bit, the vector h’ is obtained in the same way h is obtained. For example, flip the value of bit 1 and the 

calculated value of h’ is denoted h
1’, as shown in Figure 1. Similarly, the vector h’’ is obtained after first flipping the 

values of two bits. For t ≤ 3, error correction is done by comparing h and h’. If the error weight is reduced, a 

candidate error bit is found. Flip all bits one by one and all error bits are returned. All received words in this case are 

decoded successfully without decoding error. For t = 4, most of errors should be corrected by beyond bound 

decoding. If the error weight is reduced to two by comparing h and h’’. two candidate error bits are found. Update 

the received word and decode it to find the other two candidate bits as discussed for t ≤ 3, which in turn builds a 

candidate pattern. A candidate pattern is wrong if it does not pass error position check. Notice that candidate four-

error patterns are not unique. To find all candidate patterns, the combinations of any two bits should be considered 

in the stage of calculating h’’. Multiple successful candidate patterns prevent a received word from being decoded. 

The probability of not being decoded can be theoretically calculated in this way. Flip one bit to build a five-error 

pattern and the decoding error probability is 0.116·10
-2

 as calculated for the case of t = 5. As there are n - 4 positions 

that may return wrong candidate error patterns and each pattern contains four error bits, the probability of not being 

decoded is 0.116·10
-2

·(n - 4)/4 = 11.2%. For t ≥ 5 and t is odd, the decoding error probability is explained in [5]. It 

can also be considered in the way of the probability that a random odd-number-error-pattern syndrome corresponds 

to a three-error pattern [8]. The value is (1/(3!))·(n/(2
m
-1))

3
 = (1/(3!))·(391/(2

11
-1))

3
 = 0.116%. For t ≥ 6 and t is 

even, it could be wrongly decoded with either a two-error pattern or a four-error pattern. The decoding error 

probability of a two-error pattern can be analyzed similarly to the case of t = 5 and it is much smaller. The decoding 

error probability of a four-error pattern is the probability of finding one and only one successful four-error pattern. It 

is (n/4)·(0.116·10
-2

)·(1-0.116·10
-2

)
(n-4)/4

 = (391/4)·(0.116·10
-2

)·(1-0.116·10
-2

)
(391-4)/4

 = 10.1%.
 

3.  Simulation Result of the Product Code 

The simulation results in Matlab are shown in Figure 2. Simulation results of 10 iterations with white Gaussian 

noise are shown for both beyond bound decoding method and minimum distance decoding method. The pre-FEC 

BER of the product code is around 1.4·10
-2

 by employing beyond bound decoding method. And this translates to 

10.36 dB NCG. As shown in Figure 2, there is 0.36 dB improvement in NCG compared to the value of employing 

minimum distance decoding method.  

Tab. 1: Component Decoding Error by Beyond Bound Decoding 
 

Error 

Weight (t) 

h0 h1 h2 h3 Decoding 

Success (%) 

Decoding 

Error (%) 

Comments on Decoding Error 

0 0 1 1 1 100 0 - 

1 1 0 1 1 100 0 - 

2 0 0 0 1 100 0 - 

3 1 x 0 0 100 0 - 

4 0 x x 0 88.8 - 11.2% not being decoded due to multiple 

candidate four-error patterns 

5,7,9,… 1 x 0 0 0 < 0.12 - 

others 0 - 100% not being decoded 

 

6,8,10,… 

0 0 0 1 0 < 0.12 two-error pattern 

x x 0 0 10.1 unique four-error pattern 

others 0 - 100% not being decoded 
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The theoretical threshold of applying minimum distance 

decoding method to this 20% overhead hard-decision FEC is 

1.3·10
-2

, aiming for an after-FEC BER of 10
-15

, as explained in [7]. 

The simulation shows a pre-FEC BER of around 1.1·10
-2

 in [5], 

which falls below the threshold when minimum distance decoding 

method is employed. In this paper the pre-FEC BER is around 

1.4·10
-2

, which is above the threshold due to stronger decoding 

capability to of beyond bound decoding method.  

The error floor of the product code in this paper is lower than 

the one in [5], as beyond bound decoding corrects more errors 

than minimum distance decoding does.  The error floor is < 10
-15

 

for BER at 1.4·10
-2

, also shown in Figure 2. 

4.  Circuit Implementation Investigation 

The circuit implementation investigation is also shown in Figure 

1, aiming for easy implementation and fast processing. Step 1 is to 

calculate the vector h. Syndrome storage costs 34 registers, so we estimate 100 registers in total and 8 clock cycles. 

Step 2 is to calculate h’. Actual values are h
1’, h2’ …, h

391’. After bit m (1 ≤ m ≤ n) is flipped, the obtained h’ is 

denoted h
m’. A flag is inserted if it shows an error weight reduction. If all flags indicate q (0 < q < 3) errors and there 

are q + 1 flags, the q + 1 flags associated positions reflect error bits. For example, suppose the errors are at bits r, s 

and u. Three flags are inserted after checking h’, at the positions of h
r’, hs’ and hu’, all indicating two errors. At this 

step, up to three errors will be corrected. We estimate around 10 registers and 8 clock cycles for each h
m’. And 391 

copies are required. Step 3 is designed to help finding four-error pattern. It calculates the value of h’’. Actual values 

are h
1-1’’, h2-1’’ …, h

391-1’’, h1-2’’, …, h
391-2’’, …, h

1-391’’, … and h
391-391’’. Here h

m-p’’ (1 ≤ m ≤ n, 1 ≤ p ≤ n) is the 

vector h’’ of h
m’ by flipping bit p in step 3. A flag is inserted if the error weight is reduced to two after flipping bit m 

and bit p. For bit m in step 2, if the number of associated flags in step 3 is three, m is an error bit. Otherwise bit m is 

left unchanged. The check of flags performs error position check. For example, suppose the errors are at bits r, s, u 

and v, each bit has three assoiciated flags, that is, flags h
r-s’’, hr-u’’, hr-v’’ for bit r, h

s-r’’, hs-u’’, hs-v’’ for bit s, h
u-r’’, 

h
u-s’’, hu-v’’ for bit u and h

v-r’’, hv-s’’, hv-u’’ for bit v. We estimate 1 register and 1 clock cycle to calculate and store 

the final value of error weight indication. Again 391 copies are required. In total the cost for a component decoder is 

100 + (10 + 1)·391 ≈ 4401 register bits and 17 clock cycles. A product code decoder includes 391 copies of a 

component decoder as well as an interleaver. This requires 391·4401 + 3912 = 1.85 M register bits. Considering 10 

iterations of a product code decoding, it takes 10·2·(17 + 1) = 360 clock cycles. The implementation is fast enough 

for FEC decoding in 100 Gb/s optical transmissions in an FPGA with a 250 MHz system clock. 

5.  Conclusion 

The application of beyond bound decoding is studied in this paper. A high NCG of 10.36 dB for a product code is 

obtained in the simulation while the circuit implementation investigation shows the fast processing capability of the 

code. Meanwhile it keeps the encoding part unchanged. These features meet the current development guides in high 

speed optical communication links, especially in optical access systems where solutions to reduce the complexity of 

the optical side are preferred, and in high capacity 400G links, where FEC codes provide more gain to support 

stricter requirements on BER.  
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