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Application of Bifurcation Theory to the High-Angle-of-Attack 
Dynamics of the F -14 
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Bifurcation theory has been used to study Ihe nonlinear dynamics of the F-14. An 8 degree-of-freedom model 
that does not include the control system present in operational F-14's has been analyzed. The aerodynamic 
model, supplied by NASA, includes nonlinearlties as functions of the angles of attack and sideslip, the rotation 
rate about the velocity vector, and the elevator deflection. A continuation method has been used to calculate 
the steady states of the F -14 as continuous functions of the elevator deflection. Bifurcations of these steady states 
have been used to predict the onset of wing rock, spiral divergence, and jump phenomena that cause the aircraft 
to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence 
instabilities. The predictions were verified with numerical simulations. 

Nomenclature 
b wing span 
c mean wing chord 
g gravity 
I x inertia about aircraft x axis 
I y inertia about aircraft y axis 
I z inertia about aircraft z axis 
I aerodynamic rolling moment 
M aircraft mass 
m aerodynamic pitching moment 
n aerodynamic yawing moment 
p roll rate 
Q dynamic pressure, !pV2 
q pitch rate 
r yaw rate 
S wing surface area 
T applied thrust 
V aircraft speed 
W aircraft weight 
X aerodynamic force along aircraft x axis 
Y aerodynamic force along aircraft y axis 
Z aerodynamic force along aircraft z axis 
a angle of attack 
f3 angle of sideslip 
lJa aileron deflection 
& elevator deflection 
5r rudder deflection 
(J pitch angle 
p atmospheric density 
cf> roll angle 
'" yaw angle 
o rotation rate about velocity vector 
fi nondimensional rotation rate about velocity vector 
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Introduction 

N ONLINEAR dynamics are central to several important 
aircraft motions, including roll-coupling and stall/spin 

phenomena. Inertial coupling is the most important nonlin­
earity in roll-coupling instabilities, while stall/spin phenomena 
involve both nonlinear aerodynamics and inertial coupling. 
Linearized equations of motion cannot be used to analyze 
these phenomena. Indeed, roll-coupling instabilities were first 
discovered in flight, often with fatal results, because the 
linearized equations of motion used for analysis at that time 
did not contain the instability. 

Phillips' first analyzed the roll-coupling problem by treating 
the roll rate as a parameter in the linearized pitching and 
yawing moment equations. His analysis showed that aircraft 
with low inertia in roll could experience instabilities in pitch 
or yaw for certain critical roll rates. Inertial coupling also 
results in large sideslip deviations which cause high loads on 
the vertical tail. 

Much of the subsequent research was devoted to predicting 
the maximum tail loads during maneuvers involving roll cou­
pling. The typical method of analysis was to run many nu­
merical simulations using simplified equations of motion that 
retained only nonlinearities important to roll-coupling phe­
nomena. Gates and Minka2 calculated the steady states of 
simplified equations of motion for an aircraft and showed that 
the jump phenomena associated with roll-coupling instabili­
ties resulted in the aircraft jumping from one steady state to 
another. 

Subsequent researchers expanded the techniques of Gates 
and Minka2 to analyze more complete aerodynamic models. 
Young et al.3 developed an iterative technique for determin­
ing the steady states of a simplified set of equations of motion. 
The simplifications involved neglecting the effects of gravity 
and assuming a constant aircraft speed. Young et al. 3 analyzed 
an aerodynamic model that only included nonlinearities as a 
function of the angle of attack. Their results allowed them to 
predict both the control surface deflections at which an in­
stability would occur and the final state of the aircraft after 
the instability. The global nature of the results provided a 
qualitative understanding of the dynamics of the aircraft and 
clearly showed the benefits of calculating the steady states of 
an aircraft. 

Analysis of the stall/spin phenomena developed along the 
same general pattern as analysis of the roll-coupling instabil-
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ity. Initially, most work involved numerical simulations of spin 
entry and attempts to determine recovery techniques. Early 
simulations of spin entry and recovery compared poorly with 
spin tunnel and flight tests. The reason for the disparities 
between the numerical simulations and flight tests was de­
termined by Chambers et al. 4 who showed that rotary balance 
data need to be included in the aerodynamic model in order 
to correctly model the aerodynamics during a spin. In partic­
ular, the nonlinearity of the yawing moment as a function of 
the yaw rate needs to be included in the aerodynamic model. 

Recent analyses of stall/spin phenomena have involved at­
tempts to determine the steady spin modes of aircraft. Adams5 

developed an iterative search technique for determining the 
steady-state spins of several aircraft. His results compared 
poorly with flight tests because he did not include rotary bal­
ance data in his aerodynamic models. Tischler and Barlow" 
developed a graphical technique for determining the steady 
spin modes of several general aviation aircraft. Rotary balance 
data were included in the aerodynamic models and the results 
compared well with flight test results. 

A major shortcoming of the above techniques is that they 
all require some type of simplification of the equations of 
motion and/or the aerodynamic models. Continuation meth­
ods are numerical techniques for calculating the steady states 
of systems of ordinary differential equations and have recently 
been used to study roll-coupling instabilities and high-angle­
of-attack instabilities. Carroll and Mehra7 were the first to 
use a continuation technique to calculate the steady states of 
an aircraft. They determined the steady states of a' variable 
sweep fighter and the F-4. By studying the steady states of 
these two aircraft they were able to show that wing rock occurs 
near the stall angle of attack due to a Hopf bifurcation of the 
trim steady state. Carroll and Mehra7 also calculated the steady 
spin modes for the aircraft and were able to predict both the 
control surface deflections at which the aircraft would undergo 
stall/spin divergence and the resulting steady state of the air­
craft. They then developed recovery techniques using their 
knowledge of the steady spin modes for the aircraft. Control 
surface interconnects or control surface limits could also be 
designed based on the knowledge of the control surface de­
flections which resulted in stall/spin divergence. 

Guicheteau'·9 has used continuation methods and bifurca­
tion theory in studying the nonlinear dynamics of a realistic 
aircraft model that includes unsteady aerodynamic coeffi­
cients. The effects of a lateral offset of the c.g. and the effects 
of engine torque on spin entry and recovery have been stud­
ied. ONERA is using a German-French Alpha-Jet combat 
aircraft to corroborate the results obtained with the contin­
uation method. Planeaux lO •I1 has used bifurcation analysis to 
study the periodic motions of model fighter aircraft. This is 
particularly relevant to understanding the spin behavior of an 
aircraft, as most aircraft have periodic spin modes. Planeaux 
has also analyzed aircraft models that contained control aug­
mentation systems. The model used in the calculations was a 
simplified version of the control augmentation system in an 
actual aircraft, but the inclusion of a control system in the 
aircraft model was a major step towards realistic aircraft mod­
els. It is interesting to note that the qualitative nature of the 
steady states was not changed by the control augmentation 
system. The quantitative nature of the results could be very 
different depending on whether or not a control system is in­
cluded in the model and the stability of a given steady state 
can be changed by the control system. Planeaux was able 
to change the control surface deflections at which wing rock 
occurred by providing roll rate feedback to the aileron or 
differential tail. 

In this work we use a continuation method to determine 
the steady states of the F-14 as functions of the elevator de­
flection and bifurcations of these steady states. Results from 
dynamical systems theory are used to predict the nature of 
the instabilities caused by the bifurcations and the response 
of the aircraft after a bifurcation is encountered. Numerical 

simulations are used to verify the predictions. Instabilities 
during longitudinal maneuvers were shown to cause wing rock 
and spiral divergence. Steady spins were determined as func­
tions of the elevator deflection, but attempts to recover from 
developed spins proved unsuccessfuL 

Theoretical Background 

Dynamical Systems Theory 

Dynamical systems theory provides a methodology for 
studying systems of ordinary differential equations. Many sys­
tems have been studied using the techniques of dynamical 
systems theory, but the techniques have not been widely used 
to study the equations of motion for an aircraft. The important 
ideas of dynamical systems theory used in this report will be 
introduced in the following paragraphs. More information on 
dynamical systems theory can be found in the book of Guck­
enheimer and Holmes.12 

The first step in analyzing a system of nonlinear differential 
equations, in the dynamical systems theory approach, is to 
calculate the steady states of the system and their stability. 
Steady states of a system can be found by setting all time 
derivatives equal to zero and solving the resulting set of al­
gebraic equations. The Hartman-Grobman theorem (Guck­
enheimer and Holmes,12 Chap. 1, p. 13) proves that the local 
stability of a steady state can be determined by linearizing 
the equations of motion about the steady state and ,calculating 
the eigenvalues. A steady state is locally stable if the real 
parts of all the eigenvalues of the linearized system are neg­
ative. If the real part of any eigenvalue of the linearized system 
is positive, the steady state is locally unstable. In the neigh­
borhood of a steady state the system will be attracted to the 
steady state if the steady state is stable and repelled from the 
steady state if the steady state is unstable. 

The implicit function theorem (loos and Joseph,13 Chap. 
2, pp. 13, 14) proves that the steady states of a system are 
continuous functions of the parameters of the system at all 
steady states where the linearized system is nonsingular. A 
singular linearized system is characterized by a zero eigen­
value. Thus, the steady states of the equations of motion for 
an aircraft are continuous functions of the control surface 
deflections. Stability changes can occur as the parameters of 
the system are varied in such a way that the real parts of one 
or more eigenvalues of the linearized system change sign. 
Changes in the stability of a steady state lead to qualitatively 
different responses for the system and are called bifurcations. 
Stability boundaries can be determined by searching for steady 
states which have one or more eigenvalues with zero real 
parts. 

There are many types of bifurcations and each has a dif­
ferent effect on the response of the system. Qualitative changes 
in the response of the system can be predicted by determining 
how many and what types of eigenvalues have zero real parts 
at the bifurcation point. Bifurcations for which one real ei­
genvalue is zero lead to the creation or destruction of two or 
more steady states. Bifurcations for which one pair of complex 
eigenvalues has zero real parts can lead to the creation or 
destruction of periodic motions. 

Bifurcations for which more than one real eigenvalue or 
more than one pair of complex eigenvalues have zero real 
parts lead to very complicated behavior and are beyond the 
scope of this report. Three types of bifurcations were found 
to occur in the steady states of the F-14: 1) saddle-node, 2) 
pitchfork, and 3) Hopf. Guckenheimer and Holmesl2 provide 
a thorough introduction to the various types of bifurcations 
that occur in nonlinear systems and their effects on the dy­
namics of the system. 

Continuation Methods 

Continuation methods are a direct result of the implicit 
function theorem, which proves that the steady states of a 
system are continuous functions of the parameters of the sys-
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Fig. 1 Graphical representation of continuation method. 

tern at all steady states except for steady states at which the 
linearized system is singular. The general technique is to fix 
all parameters but one and trace the steady states of the system 
as a function of this parameter. If one steady state of the 
system is known, a new steady state can be approximated by 
linear extrapolation from the known steady state (see Fig. 1). 
The slope of the curve at the steady state can be determined 
by taking the derivative of the equation given by setting all 
time derivatives equal to zero. 

If two steady states are known, a new steady state can be 
approximated by linear extrapolation through the two known 
steady states as shown in Fig. 1. This technique is much more 
efficient than calculating the exact slope of the curve at the 
known steady state, which requires a matrix inversion. Errors 
between the approximate steady state and the true steady 
state can be reduced with Newton's method. The stability of 
each steady state can be determined by calculating the eigen­
values of the linearized system. Any changes in stability from 
one steady state to the next will signify a bifurcation. There 
are several continuation method algorithms, in this work we 
use the algorithm developed by Doedel and Kernevez l4 which 
is based on the work of KellerY 

Model of Aircraft Dynamics 
The purpose of this work has been to use bifurcation theory 

to analyze the equations of motions for an aircraft. This work 
concentrated on the high-angle-of-attack dynamics of the F-
14 for several reasons. The main reason is that high-angle-of­
attack dynamics are inherently nonlinear and cannot be an­
alyzed by the traditional linear techniques. Also, with the 
recent emphasis on developing jet fighters that can maneuver 
at high angles of attack it was felt that results on high-angle­
of-attack flight would be particularly relevant. 

The equations of motion used in this study assumed a rigid 
aircraft, no applied thrust, and constant atmospheric density. 
The equations were written in a principal axis system and 
consist of 

rotational equations 

. 1y - 1z I 
p = ---qr +-

Ix Ix 

. 1z - Ix m 
q = Iy pr + 4 

translational equations 

a = q - (p cos a + r sin a)tan f3 

1 
+ MV cos f3 (Z cos a - X sin a) 

+ V g f3 (sin a sin () + cos a cos () cos cjJ) 
cos 

1 
{3 = p sin a - r cos a + MV [Y cos f3 

- (X cos a + Z sin a)sin f31 

g ( . f3 . + V cos a Sill Sill () + cos f3 cos () sin cjJ 

- sin a sin f3 cos () cos cjJ) 

. 1 
V = M [(X cos a + Z sin a)cos f3 + Y sin f31 

+ g(sin f3 cos () sin cjJ - cos a cos f3 sin () 

+ sin a cos f3 cos () cos cf» 

Euler angles 

iJ = q cos cjJ - r sin cjJ 

cjJ = p + (q sin ¢ + r cos cjJ )tan () 

t/J = (q sin cjJ + r cos cjJ)sec () 

The equation for the time rate of change of t/J is decoupled 
from the other equations, so the system can be reduced frOl:, 
a ninth-order system to an eighth-order system. The steady 
states presented in this article are steady states of the first 
eight equations, while the yaw angle will, in general, vary 
with time. 

The aerodynamic model used in this work was supplied by 
NASA Ames Dryden Flight Research Center and is the aero­
dynamic model used in their flight simulators. The model 
includes nonlinearities as functions of the angles of attack and 
sideslip, the rotation rate about the velocity vector, and the 
elevator deflection. Data were reported for angles of attack 
from 0-90 deg, angles of sideslip from -20 to +20 deg, fl, 
from - 0.54 to + 0.54, and elevator deflections from - 30 to 
+ 10 deg. Mach number effects were included in the aero­
dynamic model provided by NASA, but were not included in 
this work. This limited the Mach number of the results pre­
sented here to be less than 0.60. 

Three aerodynamic data bases are included in the model: 
1) low angle of attack, 2) high angle of attack, and 3) rotary 
balance data. The low-angle-of-attack aerodynamic model is 
reported for angles of attack from 0 to 55 deg, angles of 
sideslip from - 20 to + 20 deg, and elevator deflections from 
- 30 to + 10 deg and has the form 

x = X(a, (3) + q Xq(a) 

+ [ XSe.l(a, (3) lie; lie ;?: -10J 
-lOXse.1(a, (3) + (lie + 1O)X&.2(a, (3); lie:5 -10 

Z = Z(a, (3) + ij Zq(a) 

+ [ lie Zkl(a, (3); lie;?: - IOJ 
-lOZse.l(a, (3) + (lie + 1O)Zse.2(a, (3); lie:5 - 10 

m = mea, (3) + ij mq(a) 

+ [ lie mSe.l(a, (3); lie ;?: -ISJ 
-iSmse.l(a, (3) + (lie + I5)mse.2(a, (3); lie:5 -15 

Y = Yea, (3) - oa YSa(a, (3) + or Ys,(a, (3) 

+ f Y,(a) + P Yia) 

I = I(a, (3) + f3 Dl/3.2(a) - oa [/sn.l(a, (3) + l"a.2(a, oe)] 

+ 8r ls,(a, (3) + f l/a) + p lp(a) 

n = n(a, f3, oe) - oa [ns •. I(a, (3) + n'a.zCa, oe)] 

+ or ns,(a, f3, oe) + f n,(a) + p n,,(a) 
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where 

q=q-Osin/3 

f = r - 0 sin a cos /3 

p = p - Ocosacosf3 

o = (p cos a + r sin a)cos f3 + q sin f3 

The variables q, f, and p are used in the forced oscillation 
aerodynamic terms to keep the rotary balance aerodynamic 
model and the forced oscillation aerodynamic model inde­
pendent of each other. 

The high-angle-of-attack aerodynamic model is reported for 
angles of attack from 55 to 90 deg, angles of sideslip from 
- 20 to + 20 deg, and elevator deflections from 0 to - 30 deg 
and has the form 

x = X(a, f3) + oe X.,(a, f3) 

Z = Z(a, f3) + q Zia) + oe Z.,(a, f3) 

m = mea, f3) + q mq(a) + a maCa} + oe m.,(a, /3) 

Y = Yea, f3) - oaY.a(a, f3) + fY,(a) + pYp(a) 

I = I(a, f3) - oa I.a(a, f3) + f I,(a) + p Ip(a) 

n = n(a, f3, oe) - oa n.a(a, f3) + f n,(a) + p np(a) 

Rotary balance data is reported for angles of attack from 
o to 90 deg, angles of sideslip from - 20 to + 20 deg, elevator 
deflections from - 30 to + 10 deg, and nondimensional roll 
rates about the velocity vector from -0.54 to +0.54, where 
the non dimensional rotation rate is defined as 

0= (b/2V)O 

The rotary balance aerodynamic model has the form 

x = 0.0 

Z = -DCNORM(a,O) 

m = DCMR(a, 0) + DCMRB[a, 0 sign(f3)llf31 

Y = DCYR(a,O) + DCYRIS(a, 0) AKCYIS(O, &) 

I = DCLR(a, 0) + DCLRIS(a, 0) AKCL1(oe) 

+ DCLRDD[a, 0 sign(oo)llool7l 

n = DCNR(a, 0) + DCNRIS(a, 0) AKCNIS(O, &) 

+ AKCNB(a, f3) DCNRB(a, 0, f3) 

+ DCNRDD[a, 0 sign(oa), &1100171 

. One important characteristic of this aerodynamic model is 
that the rudder is ineffective at angles of attack greater than 
55 deg. This is a significant limitation to developing spin re­
covery techniques for the F-14. Jahnke '6 contains more details 
on the aerodynamic model. 

The aerodynamic coefficients must have a continuous first 
derivative for the continuation algorithm to converge, so the 
aerodynamic data were approximated with bicubic functions 
using an algorithm of Press et al.l7 This type of fit can intro­
duce large curvatures to the aerodynamic data. The data were 
approximated with linear interpolation in the time simulations 
to make sure the bifurcations predicted by the continuation 
method were not a result of the curvatures introduced by the 
data fit. 

Results 
The dynamics of the F-14 have been studied by determining 

the steady states of the equations of motion and seeking bi­
fUrcations. The steady states are plotted as functions of the 

aileron or elevator deflection. Atmospheric density is held 
constant at 0.53 kglm3, which corresponds to an altitude of 
20,000 ft, and the applied thrust is zero for the results pre­
sented here. Including nonzero applied thrust in the analysis 
would change the steady-state velocity of the aircraft, but not 
the qualitative nature of the results. Jahnkels has shown that 
for subsonic speeds, both high-angle-of-attack and roll-cou­
pling instabilities are insensitive to airspeed. Also, since the 
aerodynamic model used in this study was limited to Mach 
numbers below 0.60, a wider range of elevator deflections 
could be analyzed when zero applied thrust was used in the 
analysis. The small Canards included in operational F-14s to 
provide longitudinal stability are not induded in the aircraft 
model used in this study. Also, the spoilers are retracted and 
the wings fully swept forward for the results presented here. 

Longitudinal Maneuvers 

Figure 2 shows the steady states of the F-14 that are at low 
angles of attack. Steady states represented by curve 1 are the 
longitudinal trim conditions and the steady states represented 
by curves 2N and 2P represent spirally divergent motions. 
The Nand P are used to denote steady states with negative 
and positive roll rates, respectively. Figure 2 shows that for 
elevator deflections greater than 7 deg the trim conditions of 
the F-14 are stable. The steady states represented by curve 1 
were calculated up to an elevator deflection of - 40 deg. A 
smaller range is shown in Fig. 2 so that the instabilities that 
occur for small elevator deflections can be clearly seen. The 
trim condition for a given elevator deflection can be deter­
mined by drawing a vertical line representing the desired el­
evator deflection on each plot; each intersection of this line 
with the curve of steady states gives a possible steady state 
of the aircraft. 

For elevator deflections between -6.7 and -5.4 deg, the 
steady-state trim conditions of the F-14 are unstable as a result 
of two Hopf bifurcations. Hopf bifurcations can lead to pe­
riodic motions, so it is possible that for elevator deflections 
between -6.7 and -5.4 deg the F-14 will undergo periodic 
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Fig. 3 Simulation of wing rock instability, or = O. 

motions. Figure 3 shows a time simulation in which the ele­
vator deflection is changed from - 5 to - 6 deg, putting the 
aircraft in a region of unstable steady states. The figure shows 
that a slowly developing wing rock is present for an elevator 
deflection of - 6 deg. The oscillations grow slowly and have 
a period of about 4 s, so they would not be a danger to pilots. 
Note that the magnitude and frequency of these oscillations 
could change ifthe airspeed was increased (by applying thrust) 
or if the atmospheric density was changed (due to changing 
the altitude). 

For elevator deflections between - 3 and - 4 deg there are 
three possible steady states for the aircraft. The trim condi­
tions (curve 1) are unstable while the two steady states rep­
resenting spiral divergence are stable. Thus, for elevator de­
flections between -3 and -4 deg the F-14 would experience 
spiral divergence. A time simulation of this is shown in Fig. 
4. The roll angle of the aircraft changes rapidly in response 
to a one-tenth of a degree aileron perturbation and then con­
tinues to slowly increase. The pitch angle and velocity also 
change as the aircraft enters a shallow spiral. This instability 
grows very slowly and could be controlled by a pilot. 

The wing rock and spiral divergence instabilities could also 
be controlled with a simple feedback control system_ Wing 
rock may be a result of low damping in roll,19 while spiral 
divergence may be a result of insufficient dihedral effect.20 

Feedback to the ailerons can be used to supplement both of 
these stability derivatives. Roll rate feedback can be used to 
increase the effective roll damping and sideslip feedback can 
be used to supplement the dihedral effect. Figure 5 shows the 
steady states that are at low angles of attack when sideslip 
and roll rate feedback to the ailerons are included in the 
aircraft model. The figure shows that both the wing rock 
instability and the spiral divergence instability have been elim­
inated through the use of feedback to the ailerons. It should 
be noted that the effect of the control system was computed 
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Fig. 4 Simulation of spiral divergence instability, or = O. 
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on the steady states of the nonlinear equations of motion. 
Continuation methods make it possible to determine the ef­
fects of a control system on nonlinear systems as opposed to 
the classical method of determining the effects of a control 
system on the linearized equations of motion. 

Lateral Maneuvers 

Figure 6 shows the steady states of the F-14 as a function 
of aileron deflection for an elevator deflection of - 10 deg 
and zero rudder deflection. The figure shows that multiple 
steady states exist for most aileron deflections. For example, 
a vertical line representing 0 deg of aileron deflection inter­
sects five steady states. Three of these steady states are stable 
so the aircraft could exhibit either of these three steady states 
for 0 aileron deflection. Note that five steady states also exist 
in Fig. 2 for a vertical line representing an elevator deflection 
of -10 deg, but only one curve of steady states is shown in 
the figure. 

One stable steady state at 0 aileron deflection represents 
the trim condition for an elevator deflection of -10 deg (i.e., 
p = q = r = f3 = ¢ = 0). The other two stable steady states 
represent spins. This can be seen by noting that these steady 
states all have angles of attack near 80 deg and large steady­
state yaw rates. The segment of stable steady states containing 
the trim condition for an elevator deflection of - 10 deg only 
exists for aileron deflections between -12 and + 12 deg be­
cause of two saddle-node bifurcations that occur at aileron 
deflections of -12 and + 12 deg. 

For example, see the steady-state angles of attack shown 
in Fig. 6. If the aircraft is trimmed at an elevator deflection 
of -10 deg the steady-state angle of attack will be given by 
the angle of attack at 0 aileron deflection contained in the 
curve of low-angle-of-attack steady states. If the aileron de­
flection is increased slowly enough, the steady state of the 
aircraft will be given by the curve of stable low-angle-of-attack 
steady states up to an aileron deflection of 12 deg. For aileron 
deflections greater than 12 deg, the steady states that are at 
low angles of attack do not exist, so the aircraft will jump to 
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Fig. 7 Simulation of instability during a lateral maneuver with Be 
= -10, Or = O. 

a new stable motion. This new motion could be either a stable 
steady state or some type of time-dependent motion. 

Figure 7 shows a simulation of the maneuver described 
above. The simulation shows that as the aileron deflection is 
increased to 10 deg, the aircraft enters a spin, while the steady­
state analysis predicted spin entry at an aileron deflection of 
12 deg. The difference between the critical aileron deflection 
predicted by the steady-state analysis and the critical aileron 
deflection predicted by the time simulation could either be a 
result of the transient aileron deflection in the simulation or 
a result of the different aerodynamic curve fits used in the 
continuation method algorithm and the simulation program. 

A recovery from the spin is attempted by reducing the 
aileron deflection to - 12 deg, at which point the steady spin 
becomes unstable because of a Hopf bifurcation (see Fig. 6). 
The recovery is not successful because a stable oscillatory spin 
develops. Recall that the rudder is ineffective at angles of 
attack greater than 55 deg, so only the elevator and ailerons 
are available to attempt a recovery from a spin. The lack of 
rudder authority at high angles of attack could make it im­
possible to recover from a developed spin. 

Since it is difficult or impossible to recover from a devel­
oped spin in the F-14, it is clearly desirable to avoid entering 
a spin. The saddle-node bifurcations that occur at aileron 
deflections of + 12 and - 12 deg were responsible for the 
aircraft entering a spin. If the aileron deflections were limited 
to values less than those at which the saddle-node bifurcations 
occur, it might be possible to avoid entering a spin. Fig. 8 
shows the loci of elevator and aileron deflections at which the 
saddle-node bifurcations responsible for spin entry occur. This 
diagram could be used to put limits on the aileron deflection. 
Inclusion of a control system could change this figure so the 
results for an operational F-14 may be different. 

Rudder deflection is applied during most lateral maneuvers 
and would, in general, change the control surface deflections 
at which bifurcations occur. Figure 9 shows the steady states 
of the aircraft as a function of aileron deflection for an elevator 
deflection of -10 deg and a rudder deflection of - 2 deg. 
The elevator deflection is the same for Figs. 6 and 9, so 
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-10, iir = 

differences in the steady states in the two figures are a result 
of the different rudder deflections. 

Applying 2 deg of negative rudder deflection has a dramatic 
effect on the steady states of the aircraft which are at low 
angles of attack. Figure 6 shows that with no rudder deflec­
tion, the steady states that are at low angles of attack only 
exist for aileron deflections between -12 and + 12 deg. When 
2 deg of negative rudder deflection are applied (see Fig. 9), 
steady states that are at low angles of attack exist for aileron 
deflections between -10 and + 30 deg. Thus, by using the 
rudder, it is possible to apply 18 deg of extra positive aileron 
deflection. Note that steady states that have angles of attack 
greater than 55 deg are the same for Figs. 6 and 9 because 
the rudder is ineffective for angles of attack greater than 
55 deg. 

Figure 10 shows the combination of rudder and aileron 
deflections that cause the steady states that are at low angles 
of attack to become unstable. For example, drawing a hori­
zontalline representing 0 rudder deflection shows that saddle­
node bifurcations cause the steady states that are at low angles 
of attack to become unstable for aileron deflections larger 
than + 12 or -12 deg. Figure 10 could be used to put limits 
on the aileron deflection for a given rudder deflection, or it 
could be used to design an aileron-rudder interconnect such 
that the combinations of aileron and rudder deflections at 
which bifurcations occur could not be realized. Recall that 

Fig. 10 is only valid for an elevator deflection of - 10 deg, 
but similar plots could be made for other elevator deflections. 

Steady Spin Modes 

Continuation methods require a known steady state as a 
starting point for the continuation procedure. It is usually 
easy to determine steady states that are at low angles of attack. 
Determining the steady spin modes for an aircraft is a more 
difficult task and it is usually not possible to be certain that 
all the steady spin modes of a particular aircraft have been 
determined. 

The approach used to find the spin modes in this work was 
to guess an initial spin mode as a starting point for the con­
tinuation method algorithm, then let the algorithm run until 
either a true steady spin was determined or the algorithm ran 
into numerical problems. Spin modes determined by Adams' 
and Jahnke'6•

" 
for other aircraft were used as a guide for 

picking the approximate spin modes. 
Steady spin modes can also be obtained from Fig. 6. Recall 

that the steady states for 0 aileron deflection and angles of 
attack greater than 80 deg are steady spin modes. It is also 
important to search for branches of steady spin modes that 
are not connected to the branch of steady states containing 
the trim conditions for the aircraft. For example, the curves 
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Fig. 12 Simulation of spin entry and attempted recovery with ailerons 
and rudder neutral. 

4N and 4P in Fig. 11 represent branches of steady spin modes 
that are not connected to branches 3N and 3P. A major dif­
ficulty with nonlinear problems is that it is difficult if not 
impossible to be sure that all branches of steady states have 
been found. 

Figure 11 shows the steady spin modes of the F-14 that were 
found in this work as a function of the elevator deflection. 
The asymmetry of the aerodynamic model is evident in the 
spin modes. If the aerodynamic model was symmetric, curves 
3N and 3P and curves 4N and 4P would be symmetric. Spin 
modes represented by curves 4N and 4P are flat spins (a = 
90 deg) at very high yaw rates. These spin modes were un­
stable for all control surface deflections used during the course 
of this work. 

Spin modes given by curves 3N and 3P represent both flat 
spins (a"" 90 deg) and steep spins (a "" 50 deg), but only the 
flat spins are stable. Figure 11 shows that stable steady spins 
exist for almost the entire range of elevator deflections, so it 
may not be possible to recover from a developed spin with 
only elevator deflections for 0 aileron deflection. Recall that 
the rudder is ineffective for angles of attack greater than 
55 deg. 

Figure 12 shows an attempted spin recovery using only the 
elevator. A small perturbation in the aileron deflection for 
an elevator deflection of - 5 deg causes the aircraft to enter 
a spin with a positive roll rate. The elevator deflection is first 
increased to - 20 deg in an attempt to recover from the spin, 
because the steady spin modes with positive roll rates (3P) 
are unstable for an elevator deflection of - 20 deg (see Fig. 
11). This attempted recovery is not successful as the aircraft 
enters an oscillatory spin. 

Increasing the elevator deflection to - 40 deg, for which 
no stable or unstable steady spin exists, is also unsuccessful 
in recovering from the spin because a stable oscillatory spin 
exists at this elevator deflection. Finally, full nose down el­
evator is applied (l)e = -10 deg) but this is also unsuccessful 
in recovering from the spin. This example shows the need to 
determine the time-dependent spin modes along with the steady 
spin modes in order to develop spin recovery techniques. 

Conclusions 
The above results show the value of using continuation 

methods and dynamical systems theory for analyzing the equa­
tions of motion for an aircraft. The efficiency of the method 
makes it possible to analyze complicated aerodynamic models 
using the complete equations of motion for the entire range 
of control surface deflections. The results presented here were 
computed on a micro-VAX and it generally took about 1 min 
to compute curves of steady states such as those shown in Fig. 
6. Simulations usually took 20 times as long, which shows the 
efficiency of calculating the steady states with continuation 
methods. 

The method has great potential for designing control laws. 
Figures like Fig. 8 could be used to put limits on the control 
surface deflections so pilots stay away from jump phenomena. 
Simple feedback control systems can also be included in the 
aircraft model to determine the effects of control systems on 
the various instabilities. This could be particularly useful for 
designing control systems for high-angle-of-attack flight where 
the equations of motion are inherently nonlinear and results 
from traditional linear control theory might not be valid. 

A knowledge of the control surface deflections that cause 
bifurcations can also be used to escape from motions caused 
by a jump in the state of the aircraft. No successful spin 
recovery technique was determined for this aircraft because 
of the presence of stable periodic spin modes. This points to 
the need to determine the control surface deflections that lead 
to the existence of stable periodic spins. Continuation meth­
ods can be extended to determine periodic motions as func­
tions of the parameters of the system just as the fixed points 
have been found in this work. 
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