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Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its
e
ective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has
yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in
other domains.	erefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project
to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the
performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven
to have a high performance in cost estimation domains. 	e BRTmodel has shown results similar to those of NNmodel using 234
actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the
importance plot and structuremodel, which can support estimators in comprehending the decisionmaking process. Consequently,
the boosting approach has potential applicability in preliminary cost estimations in a building construction project.

1. Introduction

In building construction, budgeting, planning, and monitor-
ing for compliance with the client’s available budget, time,
and work outstanding are important [1]. 	e accuracy of the
construction cost estimation during the planning stage of
a project is a crucial factor in helping the client and con-
tractor with the adequate decision making and for the
successful completion of the project [2–5]. However, there
is a problem in that it is di�cult to quickly and accurately
estimate the construction costs at the early stage because the
drawings and documentation are generally incomplete [6].
Machine learning approaches can be applied to alleviate this
problem. Machine learning has some advantages over the
human-cra�ed rules for data driven works, that is, accurate,
automated, fast, customizable, and scalable [7].

Cost estimating approaches using a machine learning
technique such as a neural network (NN) or support vector
machine (SVM) have received signi�cant attention since the
early 1990s for accurately predicting the construction costs
under a limited amount of project information. 	e NN

model [1, 8–11] and the SVM model [12–16] were developed
for predicting and/or estimating the construction costs.
Although applying an NN to construction cost estimations
has been very popular and has shown superior accuracy
over other competing techniques [2, 4, 17–21], it has several
disadvantages, such as a lack of self-learning and a time-
consuming rule acquisition process [14]. A SVM, introduced
by Vapnik [22], has attracted a great deal of attention because
of its capacity for self-learning and high performance in
generalization; moreover, it has shown the potential for
utilization in construction cost estimations [5, 13, 14, 16, 23,
24]. However, the SVM approach requires a great deal of
trial and error to determine a suitable kernel function [14].
Moreover, SVM models have a high level of algorithmic
complexity and require extensive amounts of memory [25].

Among the recent machine learning techniques, the
boosting approach, which was developed by Freund and
Schapire [26], who also introduced the AdaBoost algorithm,
has become an important application in machine learning
and predicting models [27]. 	e boosting approach provides
an e
ective learning algorithm and strong boundaries in
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terms of the generalization performance [28–31]. Compared
with competing techniques used for prediction problems, the
performance of the boosting approach is superior to that of
both a NN [32] and a SVM [33]. It is also simple, easy to pro-
gram, and has few parameters to be tuned [31, 34, 35]. Because
of these advantages, the boosting approach has been actively
utilized in various domains. In the construction domain,
some studies have attempted to apply this approach to the
classi�cation problem (for predicting a categorical dependent
variable), such as the prediction of litigation results [27]
and the selection of construction methods [31, 36]. However,
there have been no e
orts to do so for regression problems
(for predicting a continuous dependent variable), such as
construction cost estimation.

In this study, the boosting regression tree (BRT) is applied
to the cost estimation at the early stage of a construction
project to examine the applicability of the boosting approach
for a regression problem within the construction domain.
	e BRT in this study is based on the module of a stochastic
gradient boosting tree, which was proposed by Friedman
(2002) [37]. It was developed as a novel advance in data
mining that extends and improves the regression tree using
a stochastic gradient boosting approach. 	erefore, it has
advantages of not only a boosting approach but also a regres-
sion tree, that is, high interpretability, conceptual simplicity,
computational e�ciency, and so on. 	e boosting approach
can especially adopt the other datamining techniques, that is,
a NN and SVM, as well as decision tree, as base learner. 	is
feature matches up to the latest trends in the �eld of fusion
of computational intelligence techniques to develop e�cient
computational models for solving practical problems.

In the next section, the construction cost estimation and
its relevant studies are brie�y reviewed. In the third section,
the theory of a BRT and a cost estimation model using a BRT
are both described. In the fourth section, the cost estimation
model using a BRT is applied to a dataset from an actual
project of a school building construction inKorea and is com-
paredwith that of anNN and an SVM. Finally, some conclud-
ing remarks and suggestions for further study are presented.

2. Review of Cost Estimation Literature

Ra�ery [38] categorized the preliminary cost estimation
system used in building construction projects into three
generations. 	e �rst generation of the system was a method
from the late 1950s to the late 1960s that utilized the unit-
price. 	e second generation of the system, which was
developed from the middle of the 1970s, was a statistical
method using a regression analysis according to propagating
personal computers. 	e third generation of the system is
a knowledge-based arti�cial intelligence method from the
early 1980s. However, based on the third generation, Kim [39]
also separated a fourth generation based onmachine learning
techniques such as a NN and SVM. 	e author showed an
outstanding performance in construction cost estimation,
although much remains to be resolved, for example, the
complexity of the parameter settings.

We believe that the boosting approach can be a next-
generation cost estimation system at the early stage of a
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Figure 1: Schematic of a boosting procedure.

construction project. In the prediction problem domain,
combining the predictors of several models o�en results in
a model with improved performance.	e boosting approach
is one such method that has shown great promise. Empirical
studies have shown that combining models using the boost-
ing approach produces a more accurate regression model
[40]. In addition, the boosting approach can be extensively
applied to prediction problems using an aforementioned
machine learning technique such as a NN and SVM, as well
as decision trees [27]. However, the boosting approach has
never been used in regression problems of the construction
domain, including cost estimations, but has been actively
utilized in other domains, such as remote aboveground
biomass retrieval [41], air pollution prediction [42], so�ware
e
ort estimation [43], soil bulk density prediction [44], and
Sirex noctilio prediction [45]. In this study, we examine
the applicability of a BRT for estimating the costs in the
construction domain.

3. Boosting Regression Trees

Because of the abundance of exploratory tools, each having its
own pros and cons, a di�cult problem arises in selecting the
best tool. 	erefore, it would be bene�cial to try to combine
their strengths to create an even more powerful tool. To
a certain extent, this idea has been implemented in a new
family of regression algorithms referred to under the general
term of “boosting.” Boosting is an ensemble learningmethod
for improving the predictive performance of a regression
procedure, such as the use of a decision tree [46]. As shown
in Figure 1, the method attempts to boost the accuracy of
any given learning algorithm by �tting a series of models,
each having a low error rate, and then combining them into
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Figure 2: Gradient boosted decision tree ensemble.

an ensemble that may achieve better performance [36, 47].
	is simple strategy can result in a dramatic improvement in
performance and can be understood in terms of other well-
known statistical approaches, such as additive models and a
maximum likelihood [48].

Stochastic gradient boosting is a novel advance to the
boosting approach proposed by Friedman [37] at Stanford
University. Of the previous studies [26, 49–51] related to
boosting for regression problems, only Breiman [50] alludes
to involving the optimization of a regression loss function as
part of the boosting algorithm. Friedman [52] proposed using
the connection between boosting and optimization, that is,
the gradient boost algorithm. Friedman [37] then showed
that a simple subsampling trick can greatly improve the pre-
dictive performance of stochastic gradient boost algorithms
while simultaneously reducing their computational time.

	e stochastic gradient boost algorithm proposed by
Friedman [37] uses regression trees as the basis functions.
	us, this boosting regression tree (BRT) involves generating
a sequence of trees, each grown on the residuals of the
previous tree [46]. Prediction is accomplished by weighting
the ensemble outputs of all regression trees, as shown in
Figure 2 [53].	erefore, this BRTmodel inherits almost all of
the advantages of tree-based models, while overcoming their
primary disadvantages, that is, inaccuracies [54].

In these algorithms, the BRT approximates the function�(�) as an additive expansion of the base learner (i.e., a small
tree) [43]:

� (�) = �0 (�) + �1�1 (�) + �2�2 (�) + ⋅ ⋅ ⋅ + ���� (�) . (1)

A single base learner does not make su�cient prediction
using the training data, even when the best training data are
used. It can boost the prediction performance using a series
of base learners with the lowest residuals.

Technically, BRT employs an iterative algorithm, where,

at each iteration �, a new regression tree ℎ(�; {���}�� ) parti-
tions the �-space into 	-disjoint regions {���}�� and predicts
a separate constant value in each one [54]:

ℎ (�; {���}�� ) =
�∑
�−1
��� | (� ∈ ���) . (2)

Here ��� = mean��∈���(�̃��) is the mean of pseudo-residuals
(3) in each region ��� induced at the�th iteration [37, 54]:

�̃�� = −[�Ψ (��, � (��))�� (��) ]
	(�)=	�−1(�)

. (3)

	e current approximation ��−1(�) is then separately
updated in each corresponding region [37, 54]:

�� (�) = ��−1 (�) + � ⋅ ��� | (� ∈ ���) , (4)

where

��� = arg min



∑
��∈���

Ψ (��, ��−1 (��) + �) . (5)

	e “shrinkage” parameter � controls the learning rate of the
procedure.

	is leads to the following BRT algorithm for generalized
boosting of regression trees [37].

(1) Initialize �(�), �0(�) = argminΥ∑��−1Ψ(��, �).
(2) For� = 1 to� do

(3) Select a subset randomly from the full training
dataset,

{� (�)}�� = rand perm {�}�� . (6)

(4) Fit the base learner,

�̃(�)� = −[�Ψ (�(�)�,, � (�(�)))�� (� (�)) ]
	(�)=	�−1(�)

, � = 1, �̃.

(7)

(5) Compute the model update for the current iteration,

{���}�� = 	 − terminal node tree({�̃(�)�,�(�)}�̃� ) . (8)

(6) Choose a gradient descent step size as,

��� = arg min



∑
�(�)∈���

Ψ (�(�), ��−1 (�(�)) + �) . (9)

(7) Update the estimate of �(�) as,
�� (�) = ��−1 (�) + � ⋅ ��� | (� ∈ ���) . (10)

(8) end For.

	ere are speci�c algorithms for several loss criteria

including least squares: "(�, �) = (� − �)2, least-absolute
deviation: "(�, �) = |� − �|, and Huber-�: "(�, �) = (� −�)2 | (|� − �| ≼ $) + 2$(|� − �| − $/2) | (|� − �| > $) [37].
	e BRT applied in this study adopts the least squares for loss
criteria as shown in Figure 3.

4. Application

4.1. Determining Factors A
ecting Construction Cost Estima-
tion. In general, the estimation accuracy in a building project
is correlated with the amount of project information available
regarding the building size, location, number of stories, and
so forth [55]. In this study, the factors used for estimating
the construction costs are determined in two steps. First, a
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Table 1: Factors in construction cost estimation.

Description Min. Max Average Remark

Input

Budget
(1) BTL

Nominal
(2) National �nance

School levels

(1) Elementary

Nominal(2) Middle

(3) High

Land acquisition

(1) Existing

Nominal(2) Building lots

(3) Green belts

Class number 12 48 31 Numerical

Building area (m2) 1,204 3,863 2,694 Numerical

Gross �oor area (m2) 4,925 12,710 9,656 Numerical

Storey 3 7 4.7 Numerical

Basement �oor (storey) 0 2 0.5 Numerical

Floor Height (m) 3.3 3.6 3.5 Numerical

Output

Total construction cost
(thousand KRW)

4,334,369 14,344,867 8,288,008 Numerical

Summary of boosted trees

Response: construction cost

Optimal number of trees: 183; maximum tree size: 5

Train data

Test data

Optimal number
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Figure 3: Training results of BRT.

list of factors a
ecting the preliminary cost estimation was
made by reviewing previous studies [2, 3, 8, 12, 14, 20, 23,
55, 56]. Lastly, appropriate factors were selected from this list
by interviewing practitioners who are highly experienced in
construction cost estimation in Korea. Consequently, nine

factors (i.e., input variables) were selected for this study, as
shown in Table 1.

4.2. DataCollection. Datawere collected from234 completed
school building projects executed by general contractors from
2004 to 2007 in Gyeonggi Province, Korea. 	ese cost data
were only the direct costs of di
erent school buildings, such
as elementary, middle, and high schools, without a markup
as shown in Figure 4. According to the construction year,
the total construction costs were converted using the Korean
building cost index (BCI); that is, the collected cost data were
multiplied by the BCI of the base year of 2005 (BCI = 1.00).
	e collected cost data of 217 school buildings were randomly
divided into 30 test datasets and 204 training datasets.

4.3. Applying BRT to Construction Cost Estimation. In this
study, the construction cost estimation model using a BRT
was tested through application to real building construction
projects. 	e construction costs were estimated using the

BRT as follows. (1) 	e regression function �̂(�) was trained
using training data. In the dataset, the budget, school levels,
gross �oor area, and so on were allocated to each �� of the
training set. Each result, that is, the actual cost, was allocated
to ��. (2) A�er the training was completed according to the
parameters such as the learning (shrinkage) rate, the number
of additive trees, and themaximum andminimumnumber of
levels, the series of trees �̂(�) which maps � to � of training
data set (��, ��) withminimized loss functionΨ(��, �(��))was
found. (3) 	e expected value of �̂(�), that is, the expected
cost, was calculated for a new test dataset (��, ��).

	e construction cost estimation model proposed in
this study was constructed using “STATISTICA Release 7.”
STATISTICA employs an implementation method usually
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Figure 4: Fragment of cost dataset.

Figure 5: Parameter setting for BRT.

referred to as a stochastic gradient boosting tree by Friedman
(2002, 2001) [37, 52], also known as TreeNet (Salford Systems,
Inc.) or MART (Jerill, Inc.). In this so�ware, a stochastic
gradient booting tree is used for regression problems to
predict a continuous dependent variable [57]. To operate a
boosting procedure in STATISTICA, the parameter settings,
that is, the learning rate, the number of additive trees, the
proportion of subsampling, and so forth, are required. Firstly,
the learning rate was set as 0.1. It was found that small values,
that is, values under 0.1, lead tomuch better results in terms of
the prediction error [52]. We empirically obtained the other
parameters, which are shown in Figure 5. As a result, the
training result of the BRT showed that the optimal number
of additive trees is 183 and the maximum size of tree is 5, as
shown in Figure 3.

4.4. Performance Evaluation. In general, the cost estimation
performance can be measured based on the relationship
between the estimated and actual costs [56]. In this study, the
performance was measured using the Mean Absolute Error
Rates (MAERs), which were calculated using

MAERs = (∑ &&&&(('� − '�) /'�) × 100&&&&)* , (11)

Importance plot
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Figure 6: Importance plot of dependent variables.

where '� is the estimated construction costs by model
application, '� is the actual construction costs collected, and* is the number of test datasets.

To verify the performance of the BRT model, the same
cases were applied to a model based on a NN and the results
compared. We chose the NN model because it showed a
superior performance in terms of cost estimation accuracy in
previous studies [2, 5, 14]. “STATISTICA Release 7” was also
used to construct the NN model in this study. To construct
a model using a NN, the optimal parameters have to be
selected beforehand, that is, the number of hidden neurons,
the momentum, and the learning rate for the NN. Herein, we
determined the values from repeated experiments.

5. Results and Discussion

5.1. Results of Evaluation. 	e results from the 30 test datasets
using a BRT and a NN are summarized in Tables 2 and 3.	e
results from the BRT model had MAERs of 5.80 with 20% of
the estimates within 2.5% of the actual error rate, while 80%
were within 10%. 	e NN model had MAERs of 6.05 with
10% of the estimates within 2.5% of the actual error rate, while
93.3% were within 10%. In addition, the standard deviations
of the NN and BRT models are 3.192 and 3.980, respectively,
as shown in Table 4.

	e MAERs of two results were then compared using a--test analysis. 	e MAERs of the two results are statistically
similar, although there are di
erences between them. As the
null hypothesis, the MAERs of the two results are all equal
(30 : 4� = 0). 	e --value is 0.263 and the 5 value is 0.793
(>0.05). 	us, the null hypothesis is accepted. 	is analysis
shows that the MAERs of the two results are statistically
similar.

	e BRT model provided comprehensible information
regarding the new cases to be predicted, which is an advan-
tage inherent to a decision tree. Initially, the importance of
each dependent variable to cost estimation was provided,
as shown in Figure 6. 	ese values indicate the importance
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Tree graph for construction cost

Number of nonterminal nodes: 2, number of terminal nodes: 3

Tree number: 1

Gross �oor area

N = 32

Mu = 6848849.971750

Var = 558511189640.014770

N = 16

Mu = 6331853.105250

Var = 505633698345.814450

N = 16

Mu = 7365846.838250

Var = 76817160992.577103

Gross �oor area

N = 60

Mu = 9056010.804100

Var = 1787132424298.256600

N = 92

Mu = 8288302.688500

Var = 2464865440566.831100
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Figure 7: An example of structure model.

Table 2: Summary of results by estimation model.

Error rate (%)
NN BRT

Fre. (%) Cum. (%) Fre. (%) Cum. (%)

0.0–2.5 3 (10.0) 3 (10.0) 6 (20.0) 6 (20.0)

2.5–5.0 11 (36.7) 14 (46.7) 10 (33.3) 16 (53.3)

5.0–7.5 6 (20.0) 20 (66.7) 6 (20.0) 22 (73.3)

7.5–10.0 8 (26.7) 28 (93.3) 2 (6.7) 24 (80.0)

10.0–12.5 1 (3.3) 29 (96.7) 3 (10.0) 27 (90.0)

12.5–15.0 1 (3.3) 30 (100) 2 (6.7) 29 (96.7)

15.0–17.5 0 (0) 30 (100) 1 (3.3) 30 (100)

MAERs 6.05 — 5.80 —

of each variable for the construction cost estimation in the
model. Finally, the tree structures in themodel were provided
as shown in Figure 7. 	is shows the estimation rules, such
as the applied variables and their in�uence on the proposed
model. 	us, an intuitive understanding of the whole struc-
ture of the model is possible.

5.2. Discussion of Results. 	is study was conducted using
234 school building construction projects. In addition, 30
of these projects were used for testing. In terms of the
estimation accuracy, the BRT model showed slightly better
results than the NN model, with MAERs of 5.80 and 6.05,

respectively. In terms of the construction cost estimation,
it is di�cult to conclude that the performance of the BRT
model is superior to that of the NN model because the gap
between the two is not statistically di
erent. However, even
the similar performance of the BRTmodel is notable because
the NN model has proven its superior performance in terms
of cost estimation accuracy in previous studies. Similarly, in
predicting the so�ware project e
ort, Elish [43] compared
the estimation accuracy of neural network, linear regression,
support vector regression (SVR), and BRT. Consequently,
BRT outperformed the other techniques in terms of the
estimation performance that has been also achieved by SVR.
	ese resultsmean that the BRT has remarkable performance
in regression problem as well as classi�cation one. Moreover,
the BRT model provided additional information, that is, an
importance plot and structure model, which helps the esti-
mator comprehend the decision making process intuitively.

Consequently, these results reveal that a BRT, which is
a new AI approach in the �eld of construction, has poten-
tial applicability in preliminary cost estimations. It can
assist estimators in avoiding serious errors in predicting the
construction costs when only limited information is available
during the early stages of a building construction project.
Moreover, a BRT has a large utilization possibility because the
boosting approach can employ existing AI techniques such
as a NN and SVM, along with decision trees, as base learners
during the boosting procedure.
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Table 3: Cost estimation results of each test set.

Number
Historical cost
(1,000KRW)

Neural networks Boosting regression tree

Predicted cost
(1,000KRW)

Error rate (%)
Predicted cost
(1,000KRW)

Error rate (%)

1 6,809,450 7,704,034 13.14 7,206,795 5.84

2 9,351,716 10,015,906 7.10 9,805,656 4.85

3 6,656,230 7,251,317 8.94 6,322,112 5.02

4 7,119,470 7,128,513 0.13 7,418,373 4.20

5 7,304,747 7,978,990 9.23 7,349,178 0.61

6 9,729,392 9,516,946 2.18 9,259,162 4.83

7 10,801,826 9,817,999 9.11 9,682,119 10.37

8 7,944,318 7,246,763 8.78 7,136,773 10.17

9 10,879,004 10,136,431 6.83 10,572,777 2.81

10 7,552,814 7,764,300 2.80 7,683,295 1.73

11 8,845,099 8,558,536 3.24 8,370,497 5.37

12 10,690,800 10,001,503 6.45 10,015,284 6.32

13 8,694,721 8,258,452 5.02 8,446,796 2.85

14 6,582,636 6,810,406 3.46 6,954,507 5.65

15 7,583,680 8,312,216 9.61 8,194,292 8.05

16 7,099,220 7,955,966 12.07 8,292,381 16.81

17 8,145,147 8,604,444 5.64 8,522,009 4.63

18 8,652,810 7,853,765 9.23 8,270,169 4.42

19 10,527,278 10,040,039 4.63 9,611,194 8.70

20 6,679,924 6,467,344 3.18 7,397,923 10.75

21 8,383,830 9,203,887 9.78 8,487,286 1.23

22 7,298,932 8,018,225 9.85 8,294,895 13.65

23 7,505,428 7,749,053 3.25 7,967,265 6.15

24 7,710,921 7,622,053 1.15 7,795,563 1.10

25 6,196,652 6,503,022 4.94 5,940,634 4.13

26 8,897,861 8,554,455 3.86 8,714,123 2.06

27 7,840,787 8,535,617 8.86 8,863,975 13.05

28 8,023,067 7,666,898 4.44 6,900,068 14.00

29 7,495,213 7,270,806 2.99 7,695,613 2.67

30 7,653,005 8,003,292 4.58 7,775,139 1.60

MAERs 6.05 5.80

Table 4: Descriptive analysis of error rate estimation.

MAERs Std, deviation Std, error
95% con�dence interval

of the MAERs

Lower Upper

NN 6.045 3.192 0.583 2.542 4.291

BRT 5.800 3.980 0.727 3.170 5.351

6. Conclusion

	is study applied a BRT to construction cost estimation,
that is, the regression problem, to examine the applicability
of the boosting approach to a regression problem in the con-
struction domain. To evaluate the performance of the BRT

model, its performance was compared with that of an NN
model, which had previously proven its high performance
capability in the cost estimation domains. 	e BRT model
showed similar results when using 234 actual cost datasets
of a building construction project in Korea. Moreover, the
BRT model can provide additional information regarding
the variables to support estimators in comprehending the
decision making process. 	ese results demonstrated that
the BRT has dual advantages of boosting and decision trees.
	e boosting approach has great potential to be a leading
technique in next generation construction cost estimation
systems.

In this study, an examination using a relatively small
dataset andnumber of variableswas carried out on the perfor-
mance of a BRT for construction cost estimation. Although
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both models performed satisfactorily, further detailed exper-
iments and analyses regarding the quality of the collected
data are necessary to utilize the proposed model for an actual
project.
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