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Abstract:  Brush block copolymers are a class of comb polymers that feature polymeric 

side chains densely grafted to a linear backbone. These polymers display interesting properties 

due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly 

ordered nanostructures. The ability to prepare brush polymers with precise structures has been 

enabled by advancements in controlled polymerization techniques. This Feature Article 

highlights the development of brush block copolymers as photonic crystals that can reflect 

visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer 

self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation 

of photonic crystals from common organic chemical feedstocks. The characteristic physical 

properties of brush block copolymers are discussed, along with methods for their preparation. 

Strategies to induce self-assembly at ambient temperatures and the use of blending techniques 

to tune photonic properties are emphasized. 
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1. Introduction 

Materials that can control and manipulate the flow of light have numerous applications 

in optical elements, including use as filters,[1] low and high reflection coatings,[2] diffraction 

gratings,[3] and resonant cavities.[4] One class of nanostructured materials capable of “light processing” is photonic crystals (PCs), which are ordered composite structures with periodicity 
comparable to the wavelength of light.[5] A requirement for practical applications of photonic 

crystals is that their bandwidths and center frequencies must be well controlled. Filters and 

resonant cavities require narrow broadband reflections.[6] In contrast, for coatings that prevent 

absorption and thermalization of solar energy, broadband reflection (several hundred 

nanometers) of infrared (IR) radiation is often desired.[7] These diverse demands create the 

need for methods to produce photonic crystals with varied properties. 

This Feature Article focuses on the use of brush polymers, a highly branched polymer 

architecture, in photonic crystal applications. We highlight specific examples of these materials, 

with an emphasis on their structures and photonic properties. To introduce this topic, the 

general properties of photonic crystals and their fabrication will be briefly discussed below. 

Additional details on coherent light scattering and general fabrication methods for photonic 

crystals are available in monographs by Joannopoulos et al.[5] and Maldovan and Thomas,[8] as 

well as in review articles by Yablonovich,[9] Paquet and Kumacheva,[10] Moon and Yang,[11] and 

Lee et al..[12]  

1.1. Properties of Photonic Crystals 

The simplest photonic crystal structures consist of alternating layers of high- and low-

refractive-index materials.[5] These multilayer assemblies are called one-dimensional photonic 



 

    

 

This article is protected by copyright. All rights reserved. 

 - 4 - 

crystals or Bragg stacks. At each interface of these structures, some of the incident light is 

reflected. Reflections from most wavelengths of light do not add constructively, and thus these 

wavelengths can propagate through the material. At the specific wavelength for which the 

optical periodicity of the material matches the path length of a photon, a photonic band gap is 

formed, which prevents this frequency of light from propagating. At this wavelength, all 

reflected signals are in phase and add constructively, leading to a reflected signal.  

The particular wavelength of light that is reflected (λ) can be described by a combination of Bragg’s law and Snell’s law (Equation 1), where m is the order of Bragg diffraction, d is the 

layer thickness, ηeff is the effective refractive index, and θ is the angle of incidence with respect 
to the plane of the photonic crystal. The optical path changes with incident angle, causing the 

band gap to be angle-dependent. 

      √                        

(1) 

For a normal incident beam (θ = 0), the peak position λ depends on the optical thickness (nidi) of 

each layer in the material as described by Equation 2, where ni is the refractive index of 

component i, and di is the thickness of the ith layer. 

λ = 2(n1d1 + n2d2)              

(2) 

The intensity of the reflected light, or reflectivity (R), for normal incidence for a multilayer film 

composed of N layers is given by Equation 3, for n2 < n1.  

   [                    ]               

(3) 
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These equations form a starting point for control of the reflectance properties of a photonic 

crystal. Increasing the refractive index contrast or number of bilayers will increase the 

reflectivity, whereas thickening the layers only affects the wavelength of reflectance.  

1.2. Fabrication of Photonic Crystals 

A variety of strategies have been developed to prepare photonic crystals. Traditional fabrication has been accomplished by “top-down” techniques such as layer-by-layer stacking,[13] 

multibeam holography,[14] phase mask lithography,[15] and electrochemical etching.[16] These 

approaches offer precise manufacturing but require complex apparatuses and complicated 

series of processing steps.[17] 

“Bottom-up” approaches, such as self-assembly of colloidal crystals or polymers, are 

rapid and relatively inexpensive techniques to prepare photonic crystals under mild processing 

conditions.[18] One limitation of colloidal templating is the low refractive index contrast for 

typical colloidal materials, and infilling with inorganic materials is often required to achieve 

photonic properties, increasing costs and the number of fabrication steps.[19] Furthermore, 

colloidal assembly is generally limited to face-centered cubic geometries.  

Modern polymerization techniques that allow for control of molecular weights and chain 

architectures have made polymeric multilayer films attractive in photonic crystal 

applications.[20] These soft materials have controllable compositions, structures, and mechanical 

properties,[21] and they are flexible and easily molded to meet geometric specifications. While 

the refractive index contrast between polymer-based components is relatively small,[22] this can 

be compensated for by forming structures with a large number of layers (Equation 3) or by 

blending with high-index components (Section 4.3). As described below, polymeric materials 

are able to access a wide range of 1D, 2D, and 3D periodic dielectric structures, which can be 

controlled by the composition and architecture of these materials. 
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2. Properties of Bottlebrush Copolymers 

Polymers are amenable to use in a wide range of applications due to their highly varied 

and tunable properties. The physical attributes of polymers can be controlled by monomer 

selection and macromolecular structure (i.e., molecular weight, shape, and branching). In the 

following Section, the self-assembly of diblock copolymers will be discussed, with an emphasis 

on differences between linear and brush polymer architectures. 

  

2.1. General Principles of Block Copolymer Self-Assembly 

Block copolymers (BCPs) consist of two or more chemically distinct polymers (blocks) 

that are sequentially incorporated in the same polymer chain, and the self-assembly of these 

materials constitutes a powerful tool for the synthesis of nanostructured materials.[23] In 

general, the phase behavior of an AB diblock copolymer (Figure 1) is dictated by: (1) the 

volume fractions of the A and B blocks (fA and fB, with fA + fB = 1), (2) the total degree of 

polymerization (N = NA + NB), and (3) the Flory-Huggins parameter, χAB.[23] The χ-parameter 

describes the penalty for A/B mixing due to the incompatibility of the A and B segments. At 

sufficiently high segregation strengths (χN), microphase separation occurs. The particular 

ordered phase that is favored is dictated by a balance between the enthalpic drive to minimize 

the unfavorable A/B segment contacts, while simultaneously maximizing the conformational 

entropy of polymer chains. Symmetric diblock copolymers favor lamellar morphologies, while 

asymmetric volume fractions lead to cylindrical, gyroid, or spherical ordered phases.[22, 24]  

Typically, linear block copolymers (LBCPs) with molecular weights ranging from 10–100 

kDa can be readily prepared, which assemble to structures with domain sizes from 10–40 

nm.[25] However, it remains challenging to access the larger domain spacings necessary to reflect 
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visible light (>70 nm).[26] In addition to the synthetic difficulty of preparing very high molecular 

weight linear copolymers,[27] these materials are often highly entangled in the melt, which 

inhibits their ability to assemble into long-range ordered structures.[25, 28] When cast from 

solution, high molecular weight LBCPs can form well-ordered structures with periodicities large 

enough to reflect visible light;[27, 29] however, these processing methods can be slow, and careful 

optimization of conditions such as solvent and temperature is required to create uniform and 

reproducible assemblies. 

 

 

2.2. Bottlebrush Block Copolymer Self-Assembly 

 Brush polymers, also called bottlebrushes, feature polymeric side chains grafted to a 

linear backbone (Figure 1, bottom). The high branch-to-backbone ratio in these systems causes 

bottlebrush polymers to display different conformational behavior than linear polymers.[30] 

Bottlebrush polymers adopt worm-like, cylindrical conformations that are relatively 

extended.[31] 

The bottlebrush architecture is beneficial in facilitating self-assembly to structures with 

large domain sizes. Rheological studies have demonstrated that brush polymers with side-chain 

lengths below entanglement molecular weight do not entangle, even in the ultrahigh molecular 

weight regime of up to thousands of kilodaltons (over an order of magnitude higher than the 

entanglement molecular weight of most linear polymers).[32] This has been attributed to 

backbone elongation due to the steric congestion between adjacent side chains. Entanglement 

presents a kinetic barrier to reorganization during self-assembly, so architectures that minimize 

entanglement may display more rapid self-assembly.  
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The faster ordering kinetics of bottlebrush block copolymers have been measured by in 

situ small-angle X-ray scattering (SAXS). Russell and co-workers have studied self-assembly of 

symmetric brush block copolymers (BBCPs) with polylactide (PLA) and polystyrene (PS) side 

chains (Mn ~ 2.4 kDa for both PLA and PS).[33] Formation of a lamellar phase was observed 

within 5 minutes for a 118 kDa sample annealed at 130 °C. A higher molecular weight sample 

(529 kDa) required 1 hour to assemble at the same temperature. In contrast, a 50 kDa linear PS-

b-PLA diblock did not display well-developed order after 24 hours of thermal annealing, 

suggesting that the bottlebrush architecture displays significantly faster ordering compared to 

linear systems. 

The scaling of domain spacing with degree of polymerization also differs between linear 

and brush block copolymers. For strongly segregated LBCPs, domain spacing, d, is determined 

by the scaling relationship d ~ N2/3χ1/6.[23] The scaling exponent for BBCPs has only been 

determined in a few studies,[28, 33-34] and this relationship is not well understood. Gu et al. 

compared two series of symmetric BBCPs with PS and PLA side chains.[33] For the first series, 

relatively short 2.4 kDa side chains were featured on both blocks, whereas the second series had 

blocks with ~4.4 kDa side chains. Domains spacings, as measured by SAXS, were fit to a power 

law d ~ Nα, and the samples with lower molecular weight side chains were observed to exhibit a larger scaling exponent (α = 0.91) than those for the other series (α = 0.84). The relatively large 
scaling exponents for these series (compared to LBCPs) were attributed to a more extended 

conformation of BBCPs relative to linear systems.[33] However, recent work by Dalsin et al. for 

BBCPs featuring PS and atactic polypropylene (aPP) side chains indicates that the scaling exponent depends on backbone length, ranging from α ≈ 0.3 at small backbone lengths to α ≈ 0.9 
as N increases.[34] This work suggests that BBCPs transition from being starlike to brushlike as 

the backbone length increases relative to the side chain length; however, there can be 

considerable bending of BBCPs, even with long backbones.  
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For all block copolymer architectures, relative volume fractions crucially shape self-

assembly. For LBCPs, only the length of the two segments can modify the composition, whereas 

BBCP assembly is influenced by both the backbone and brush side chain lengths. Rzayev and co-

workers have demonstrated that asymmetric BBCPs, which contained symmetrical backbone 

blocks, but asymmetric side chain lengths, assembled to cylindrical structures with diameters as 

large as 55 nm (Figure 2).[35] Complementary work from our group has shown that non-

lamellar morphologies are accessible by utilizing BBCPs with asymmetric backbone block 

lengths.[36] These studies present two strategies to alter the volume fractions and therefore 

influence the resulting morphology of a brush copolymer: the backbone block lengths or the 

side chain molecular weights can be adjusted. 

 

 

 

 In summary, BBCPs display unique rheological properties and rapid ordering kinetics as 

a consequence of the densely grafted molecular architecture. These are beneficial in the self-

assembly of structures with large domain sizes and long-range order, which are requirements 

for photonic crystal applications. The following Section describes specific examples of BBCP 

photonic materials. 

 

3. Bottlebrush Block Copolymer Assembly to Photonic Crystals 

3.1. Strategies to Prepare Bottlebrush Polymers 

 There are three general methods to prepare brush polymers, called the “grafting-to,” “grafting-from,” and “grafting-through” approaches (Figure 3).[37] The grafting-to method 
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involves covalent attachment of monotelechelic (functionalized on one chain end) polymer 

chains to a functional backbone. Common reactions to attach polymeric side chains include 

nucleophilic substitution and copper(I)-catalyzed azide–alkyne “click” coupling reactions.[38] 

This approach allows for good control of backbone and side chain dispersities (Đ); however, the 

grafting density is often low (<60%), as coupling between two macromolecular species at 

tightly spaced intervals can be challenging.[37a] The grafting-to approach has not been widely 

used due to this limitation. 

 

The grafting-from method directly grows the polymeric side chains from initiation sites 

distributed along the polymeric backbone. This approach is highly modular, which allows for 

generation of a variety of bottlebrushes with different compositions or molecular weights from 

a single macroinitiator. There is good control of backbone dispersity using this approach; 

however, grafting density and side chain dispersity are only moderately controlled, as there can 

be steric difficulties with initiation and side chain polymer growth.[38] Preparation of 

copolymers using a grafting-from technique can also be synthetically challenging; multiple 

protection/deprotection steps may be necessary for sequential side chain polymerizations.[37a] 

 Lastly, the grafting-through method involves the direct polymerization of monotelechelic polymers, also referred to as “macromonomers”.[39] Similar to grafting-to 

synthesis, the grafting-through method has the advantage that the side chains can be 

characterized prior to bottlebrush synthesis. This route generates materials with uniform side 

chain molecular weight and grafting density, as every backbone monomer contains a side chain. 

One drawback is that steric hindrance at the propagating poly macromonomer chain end can be 

a problem; however, appropriate design of the macromonomer and catalyst can overcome this 

challenge. 
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 Ultimately, the choice of synthetic strategy depends upon the requirements of the 

application of interest. If uniform grafting density is not critical, the grafting-to or -from 

methods are potentially preferable, as they are highly modular. If high grafting density and 

uniform side chain length are required, the grafting-through method is superior.  

3.2. Synthesis and Self-Assembly of Brush Block Copolymer Photonic Crystals 

Runge and Bowden provided the first demonstration that block copolymers with at least 

one grafted block can have advantages accessing domains large enough to reflect visible light.[40] 

Sequential ruthenium-catalyzed ring-opening metathesis polymerization (ROMP) of 

oxanorbornene monomers afforded a diblock copolymer in which one block is decorated with 

atom transfer radical polymerization (ATRP) initiator sites and the other block bears hexanoate 

groups (Figure 4). Following hydrogenation of the backbone, polystyrene arms were grown by 

copper-catalyzed ATRP from the initiation sites. This procedure afforded high molecular weight 

copolymers (Mn = 730–6,400 kDa) with moderately controlled molecular weight distributions 

(Đ = 1.17–1.44). These polymers contain highly asymmetric branch lengths, as only one of the 

blocks is decorated with polymeric side chains. These asymmetric copolymers are termed 

brush-coil diblocks or “comb block polymers.”  
Thin films of polystyrene/hexanoate copolymers were prepared by controlled 

evaporation from dichloromethane, followed by annealing for 24 hours at 100 °C. A range of 

morphologies was observed by SEM, including lamellae, cylinders, and spheres, depending on 

the volume fraction of the polystyrene component (Table 1). Increasing asymmetry in the 

volume fractions of the two blocks by varying the relative backbone length (expressed as the 

mol% of polystyrene in Table 1) leads to preferential formation of cylindrical or spherical 

phases. For a given morphology, higher molecular weight samples have larger domain sizes. 
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Photonic properties were noted for one sample (Mn = 2030 kDa, Entry 4 in Table 1), 

which appeared blue after complete evaporation of dichloromethane. The wavelength of maximum reflectance (λmax) could be shifted from 385 nm to 445 nm by exposure to 

dichloromethane vapor. This shift to longer wavelength (corresponding to a color change from 

blue to green) is due to solvent swelling of domain sizes.  Interestingly, this photonic crystal 

corresponds to a sample with spherical morphology; in contrast, all other BBCP-based photonic 

crystals discussed in this Feature Article have lamellar structures. Access to the spherical 

morphology may be enabled by the unique brush-coil architecture.  

 Rzayev has also utilized a grafting-from method to prepare polylactide/polystyrene 

BBCP photonic crystals (Figure 5).[25] The backbone was synthesized by sequential reversible 

addition-fragmentation chain-transfer (RAFT) polymerization of solketal methacrylate and 2-

(bromoisobutyryl)ethyl methacrylate. Polystyrene branches were grown from the bromide-

containing initiator sites by copper-catalyzed ATRP. Subsequently, the ketal groups were 

hydrolyzed, and DBU-catalyzed ring-opening polymerization of lactide was performed from the 

resulting hydroxyl groups. NMR and GPC analysis indicated that high initiation efficiency was 

achieved during styrene polymerization (>90%), whereas slightly lower efficiency was 

observed for lactide polymerization (70–90%).  

 

Samples were melt-pressed at 170 °C for 16 hours, and a high molecular weight sample 

(Mn = 2400 kDa, fPLA = 0.37) was observed to reflect blue light (Figure 6).  Morphologies were 

assigned by ultra-small-angle X-ray scattering (USAXS) and verified by scanning electron 

microscopy (SEM) (Figure 6). The relative block lengths along the backbone were varied to 

assess the impact of compositional asymmetry on morphology. Lamellar morphologies were 
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exclusively observed, even for highly asymmetric BBCPs (fPLA = 0.3). For the blue sample shown 

in Figure 6, (Mn = 2400 kDa, fPLA = 0.37), a domain spacing of 153 nm was obtained from USAXS, 

and thicknesses of the PLA and PS layers (dPLA = 57 nm and dPS = 96 nm) were calculated from 

the domain spacing and volume fraction of the BBCP. Domain spacing increased linearly with 

backbone length, which was attributed to an extended conformation. In comparison, typical 

coil-coil LBCPs are expected to display cylindrical or spherical morphologies at this volume 

ratio[22] and typically exhibit domain spacings that scale by MW2/3.[23, 41]  

 

  

 

Ring-opening metathesis polymerization (ROMP) is a powerful approach to grafting-

through synthesis of bottlebrush polymers. Ruthenium-catalyzed ROMP has been demonstrated 

for a range of macromonomers, taking advantage of the ring strain of the norbornene monomer, 

high activity of ruthenium metathesis catalysts, and the stability of the propagating species to 

enable the synthesis of well-defined bottlebrush polymers.[42] These catalysts exhibit excellent 

functional group and steric tolerance, which are necessary to polymerize macromonomers with 

diverse functionalities and side chain lengths. 

Xia et al. investigated grafting-through polymerization of polylactide (PLA) and poly(n-

butyl acrylate) (PnBA) macromonomers by ROMP (Mn = 4.7 and 4.0 kDa for PLA and PnBA 

macromonomers, respectively) (Figure 7).[39b] Living ROMP characteristics were observed, and 

molecular weights could be controlled by the macromonomer-to-ruthenium molar ratio. Due to 

similar polymerization rates, brush random polymers g-[PLA-ran-PnBA] could be prepared by 

initiating a mixture of the two macromonomers. BBCPs g-[PLA-b-PnBA] were prepared by 
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sequential addition of macromonomers. Samples with high molecular weights (Mn = 450–1880 

kDa) and narrow dispersities (Đ = 1.07–1.10) were prepared by this method. 

 

 Domain spacings were determined by SAXS for random and block copolymers that were 

thermally annealed at 100 °C for 12 hours. Lamellar morphologies were exclusively observed. 

For random copolymers, domain spacings determined by SAXS were observed to be 

independent of backbone length (14.3 ± 0.3 nm), which was in good agreement with 

measurements of lamellar thicknesses of 17 to 20 nm by atomic force microscopy (AFM). The 

lack of dependence of lamellar spacing on backbone length suggests that these samples 

assemble by segregation of the PLA and PnBA side chains to opposite sides of the 

polynorbornene backbone (Figure 8). A much larger d-spacing of 116 nm was measured for a 

symmetric block copolymer g-[PLA100-b-PnBA100] (Mn = 980 kDa). Furthermore, a higher 

molecular weight copolymer g-[PLA200-b-PnBA200] (Mn = 1770 kDa) reflected green light upon 

slow evaporation of THF. The large lamellar spacings of the block copolymers suggest that the 

backbone is oriented orthogonal to the lamellae for this architecture. This work demonstrated 

that polymer sequence (i.e., random or block) can control domain spacing in brush copolymer 

nanostructures.  

 

 

 Sveinbjörnsson et al. have investigated the effects of BBCP molecular weight and 

assembly method on photonic properties. PS and PLA macromonomers were synthesized from 

exo-norbornene-functionalized initiators by ATRP and ring-opening polymerization, 

respectively. Symmetric BBCPs were prepared by sequential ROMP of these macromonomers, 
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producing samples with extremely high molecular weights (Mn = 1080–6440 kDa) and 

acceptable molecular weight distributions (Đ = 1.07–1.58). 

  A number of methods to produce photonic films were compared, including controlled 

evaporation from DCM or THF and thermal annealing. The film preparation method had a 

dramatic effect on photonic properties. For one BBCP sample (Mn = 2940 kDa), films cast from 

DCM, THF, or that were thermally annealed appeared blue, green, or red, respectively (Figure 

9). SEM images were obtained to compare morphologies for these samples. Films cast from 

DCM appeared as highly disordered lamellae (Figure 9B), while evaporation from THF afforded 

larger and better-ordered lamellar domains (Figure 9C). This solvent effect may be in part due 

to different kinetics of evaporation or quality of solvent;[43] however, because these samples are 

not long-range ordered, differences in grain size or the orientation of lamellae may also 

contribute to the reflectance properties of these samples. Thermal annealing resulted in the 

greatest thickening of lamellae (Figure 9D,E), consistent with the observation of the longest 

wavelength reflections by this preparation method.  

 

 

 Films of a 2940 kDa BBCP prepared by controlled evaporation exhibited a maximum wavelength of reflectance (λmax) of 540 nm. Impressively, direct thermal annealing of a higher 

molecular weight sample (Mn = 6640 kDa) under compression produced a film that reflected at 

near-infrared (NIR) wavelengths (λmax = 1311 nm).[7] At the time, this was an unprecedented 

wavelength regime for unswelled polymer-based photonic crystals. However, the samples in 

this series that reflect wavelengths of >1000 nm have low reflectivities and large bandwidths, 

indicating poor ordering of the highest molecular weight samples, an ongoing challenge for 

producing well-ordered NIR-reflecting BBCPs. The reflectance maximum (and therefore, 
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domain spacing) was a linear function of molecular weight for all self-assembly techniques 

analyzed, which was attributed to a greater degree of backbone extension for brush polymers 

relative to linear materials. The angle-dependent reflectance spectra were measured for a well-

ordered sample (Mn = 1530 kDa), and good agreement of the angular frequency response was 

observed between experiment and transfer matrix simulations. 

 Development of methods to assemble photonic materials under ambient conditions 

could enable widespread applications. To facilitate self-assembly, Miyake et al. developed 

isocyanate-based macromonomers,[44] as poly(isocyanates) are known to adopt rigid, helical 

structures.[45] The rigid structure of poly(isocyanates) has also been exploited in the context of 

LBCPs, and poly(hexyl isocyanate-b-styrene) rod-coil block copolymers have demonstrated 

periods as large as 1000 nm.[46] For BBCPs, use of rigid side chains, rather than random-coil side 

chains, can reduce entanglement and increase main chain elongation to facilitate self-

assembly.[47] BBCPs featuring poly(hexyl isocyanate) and poly(4-phenyl butyl isocyanate) side 

chains were prepared by graft-through ROMP of corresponding macromonomers. High 

molecular weight materials were prepared (Mw = 1512–7119 kDa) with low molecular weight 

distributions (Đ = 1.08–1.39) (Figure 10).  

 

 

Film preparation methods were compared, including controlled evaporation from DCM, 

THF, CHCl3, and toluene. There was no solvent effect on self-assembly, as determined by comparing λmax values for the cast films. This is in contrast to previous observations for PS/PLA 

BBCPs (Figure 9).[7] Samples with molecular weights (Mw) of 1512, 2918, and 4167 kDa 

appeared violet, green, and red, consistent with the primary reflectance peaks observed for these samples (λmax = 334, 511, and 664 nm, respectively, Figure 11). SEM images confirmed 
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the lamellar morphologies of these samples. Higher molecular weight BBCPs (5319 and 7119 

kDa) exhibited broad reflectance peaks centered at 801 nm and 1120 nm, and SEM analysis 

indicated that these samples displayed unordered morphologies and lacked well-defined 

domains. This method of using stiff isocyanate-based side chains provided a significant 

improvement in the wavelengths of reflectance accessible by controlled evaporation under 

ambient conditions. 

  

  

 There are three potential causes of dispersity in the BBCP architecture: the polymeric 

main chain, and the two polymeric brush components. Although dispersity is known to have a 

neutral or beneficial effect on enhancing the self-assembly of LBCPs,[48] dispersity could 

potentially lead to non-uniform assembly, causing broad reflectance bandwidths. To reduce 

overall dispersity in BBCPs, Piunova et al. investigated the use of dendronized block copolymers 

to prepare uniform polymer-based photonic crystals.[49] Dendritic polymers exhibit low chain 

entanglement due to steric repulsion between pendant substituents, making them promising 

components to promote rapid self-assembly. Additionally, these materials require lower total 

molecular weights than BBCP systems with polymeric side chains, which lowers viscosity while 

still achieving similar degrees of sterically induced backbone extension. 

Discrete norbornene wedge-type monomers featured either decyl or benzyl ether 

substituents radiating from a central aryl core (Figure 12). Dendronized block copolymers with 

high molecular weights (Mw = 480–3340 kDa) and low polydispersities (Đ = 1.05–1.23) were 

prepared by ROMP. Samples with molecular weights ranging from 480 to 1390 kDa reflected in the visible to NIR (λmax = 330–888 nm) upon controlled evaporation from DCM (Figure 13). 

Higher molecular weight dendronized block copolymer samples did not assemble to ordered 
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structures or reflect light. This was attributed to reduced main chain rigidity for dendronized 

samples leading to chain entanglement that hampers assembly. 

 

 

A notable result from these studies was that dendronized block copolymers possessed 

significantly narrower bandwidths in the visible range compared to previous BBCPs. This was 

quantified by comparing gap–midgap ratios (GMRs), calculated as the full width at half λmax divided by λmax (GMR = Δλ / λmax) for dendronized and poly(isocyanate) block copolymers. GMR 

values for dendritic samples (9–18%) were significantly smaller than those featuring 

poly(isocyanate) brushes (GMR = 17–27%). Low GMRs imply more uniform domain sizes, which 

was attributed to the elimination of side group dispersity for the materials featuring discrete 

monomers. Annealing samples for 24 h at 100 °C caused red-shifting of λmax values by 75–335 

nm, accompanied by bandwidth broadening and decreased reflectance intensity (Figure 13). 

This behavior may be due to uneven thickening of lamellae throughout these films during 

thermal annealing. 

 

 

4. Strategies Toward Tuning of Optical Properties 

The grafting-through method employing ruthenium-catalyzed ROMP represents a 

significant advancement toward the synthesis of high molecular weight BBCPs with low 

molecular weight distributions. However, synthetic challenges remain that hinder the design 

and processability of BBCPs and their potential use in photonic applications. Such challenges 

include increasing dispersity at ultra-high molecular weights, required optimization of 
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polymerization conditions for each BBCP, and the incorporation of functional groups not 

compatible with ROMP catalysts. A number of strategies have been developed to post-

synthetically tune the photonic properties of LBCPs,[50] but it could not be assumed that these 

would be similarly effective for BBCPs, which exhibit comparatively rigid structures due to 

densely grafted side chains. However, recent studies of polymer blends have suggested that in 

some cases, tuning BBCP optical properties does not require the synthesis of discrete high 

molecular weight BBCPs to reflect specific wavelengths of light. The following Section describes 

different blending strategies to affect the photonic properties of BBCPs, including blends with 

linear polymers, brush polymers, and nanoparticles. 

4.1. Blends with Linear Homopolymers 

Macfarlane et al. reported blending of PS/PLA BBCPs with linear homopolymer (HP) 

additives.[51] A symmetric BBCP (Mn = 987 kDa) was blended with PS and PLA HPs (PS:PLA = 

1:1) of similar molecular weights as the side chains (≈3 kDa) (Figure 14). After thermal 

annealing at 140 °C overnight, the self-assembled blends exhibited a positive linear correlation 

between lamellar domain spacing and the HP:BBCP weight ratio (Figure 15A). Higher 

molecular weight BBCPs could accommodate higher HP loadings (up to a HP:BBCP weight ratio 

of 3:1), and arrays were observed to swell up to 180% of the domain spacings of the unblended 

BBCPs, allowing for reflection at long wavelengths in the telecommunications regime (λ = 1200–
1650 nm) (Figure 15B). Self-consistent field theory demonstrated that the HPs are 

incorporated into the lamellar blocks that contain brushes of the same composition. The HPs are 

evenly distributed throughout the BBCP blocks, with only slightly higher amounts of HPs at the 

block interfaces and the centers of the lamellae.  
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The highly ordered nature of blends with intermediate HP levels was attributed to the 

tendency of low-molecular-weight HPs to increase the homogeneity of lamellar packing, reducing any scattering from diffuse interfaces. Specifically, GMR values (Δλ / λmax) narrow upon 

addition of HP additives. For one BBCP sample (Mn = 987 kDa), the GMR decreased from 24% to 

20% upon addition of 65 wt% of HPs. Blending low molecular weight HP additives provided a 

simple method for generating an array of PCs with different optical properties and large domain 

spacings, without necessitating the synthesis of individual high molecular weight BBCPs. 

Furthermore, the addition of HPs bearing functional groups that inhibit ROMP provided a 

convenient route to introduce these functionalities into well-ordered PCs. This study was the 

first to generate PCs by blending BBCPs with copolymers bearing various functional groups. 

Gaining a stronger understanding of blending effects on the refractive index and reflectivity, 

effective , and stability of polymer films requires further study.  

 

 

4.2. Blends with Brush Block Copolymers  

Another facile approach to rapidly tune the photonic band gap is the blending of block 

copolymers of two different molecular weights. The self-assembly of this type of polymer blend 

has been investigated for LBCPs,[52] but only recently have similar polymer blends been 

investigated for the comparatively rigid BBCPs. Miyake et al. reported that poly(isocyanate) 

BBCPs could exhibit reflections between 334 and 1120 nm by altering backbone chain length 

(Figure 10 and 11).[44] In a later report, Miyake et al. demonstrated that by simply blending two 

poly(isocyanate)-based BBCPs of different molecular weights (Mw = 1512 and 4167 kDa) in 

different ratios, a spectrum of PCs reflecting from visible to NIR light could be quickly generated 

by controlled evaporation from DCM (Figure 16A).[53] The peak wavelength of reflectance (λmax) 
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is highly predictable based on a linear correlation with the blend ratio (Figure 16B), indicating 

the convenience of this strategy toward practical application. Furthermore, SEM images 

confirmed the formation of lamellar morphologies of both the polymer blends and the parent 

BBCPs (Figure 16C), suggesting that despite the rigid architecture of the poly(isocyanate) 

BBCPs, blends of these polymers are able to assemble to uniform, layered structures. Although 

this result has not yet been observed for other BBCP architectures, this study lays the 

groundwork for tailoring BBCP photonic crystals to specified desired optical properties by 

simply blending polymers with different molecular weights.  

 

4.3.  Brush Block Copolymer Nanocomposites 

BBCPs exhibit reduced chain entanglement[32a, 39b] compared to linear analogues and 

rapidly self-assemble to nanostructures with large domain spacing. These characteristics make 

BBCPs favorable candidates as platforms for templating nanoparticles (NPs) into ordered 

domains, a strategy previously utilized to tune the optical properties of LBCPs.[54] Watkins and 

co-workers have demonstrated that BBCPs can accommodate high NP loading concentrations 

by designing strong, preferential interactions between NPs and one block of a BBCP. These 

interactions prevent NP aggregation and promote uniform distribution of the NPs in one 

domain.[55]  

Song et al. have investigated the incorporation of gold NPs into 

polystyrene/poly(ethylene oxide) (PS-b-PEO) BBCPs (Figure 17).[55c] Gold NPs with ≈2 nm core 

diameter supported by 4-mercaptophenol ligands were utilized, as strong hydrogen-bond 

interactions with these ligands allow for the selective incorporation of gold NPs in the PEO 

domains of these BBCPs. Composite films with NP loadings as high as 67.2 wt% (Au% = 48.4 

wt%) could be prepared by drop casting THF solutions of BBCPs and gold NPs. By varying the 
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NP concentration in the PEO layer or by increasing BBCP molecular weight, lamellar domain 

spacings (as determined by SAXS and TEM) could be controlled from 120 to 260 nm. These structures resulted in photonic band gaps that were tunable from the visible to the NIR (λmax = 

458–1010 nm) (Figure 18A and Figure 18B). For a film containing 58.3 wt% of gold NPs, 

thermal annealing at 120 °C for 8 hours led to a red shift in λmax from 598 to 736 nm (Figure 

18C). Change in the reflectance occurred with lengthened annealing times (Figure 18D), which 

was attributed to an increase in the gold NP size.[56] While manipulation of the gold NP/PEO 

layer allowed for reflection from visible to NIR light and increased refractive indices, the gold 

NPs absorb visible light, which may limit applications of these materials as coatings.  

 

The problem of low reflectance was addressed by the Watkins group in a later report, 

using blends of functionalized zirconium oxide (ZrO2) NPs, which are transparent to visible 

light, and PtBA-b-PEO (PtBA = poly(tert-butyl acrylate)) BBCPs to form photonic 

nanocomposites with high refractive index contrast (n).[55b] The refractive index of the NP/PEO 

layer increased linearly with NP concentration (Figure 19A). Although for typical polymeric 

PCs n  0.1, the ZrO2 NP/BBCP nanocomposites reached refractive index contrasts up to n  

0.27 (Figure 19B). These high n values can improve performance of photonic coatings by 

reducing the number of layers necessary to achieve high reflectivity (Figure 19C and Figure 19D 

and Equation 3). Furthermore, photoluminescence studies showing multiphoton excitation 

emission suggest that related hybrid materials containing CdSe NPs can be useful in nonlinear 

optical applications.[55a] The generation of well-ordered NP arrays via BBCP self-assembly lends 

an abundance of new applications and tuning capabilities for photonic hybrid materials.  
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 Recently, Song et al. have reported symmetrical PtBA-b-PEO BBCPs that can self-

assemble to architectures with long-range order.[57] A highly oriented lamellar morphology with 

a domain spacing of 97 nm was observed by SAXS after thermally annealing a 1850 kDa sample 

at 110 °C for 5 min. Layer orientations throughout a polymer sample were measured by 

continuous SAXS scan measurements. Grain sizes that correspond to an area of 5.40 mm2 and a 

volume of 3.56 mm3 were observed, which are significantly larger than those observed for 

LBCPs. Gold NPs (~2 nm core diameter supported by 4-mercaptophenol ligands) were 

selectively incorporated into the PEO domains of the PtBA-b-PEO structure. Upon increasing 

gold NP loading from 0 to 60 wt% (29 vol%), the domain spacing increased from 97 to 125 nm. 

Long-range ordering was maintained upon incorporation of gold NPs. This work provides a 

straightforward method to prepare highly ordered structures with millimeter-scale grain sizes 

both in the presence and absence of nanoparticle additives. 

5. Conclusion and Outlook 

Brush block copolymers (BBCPs) have been demonstrated as promising materials for 

the bottom-up synthesis of photonic crystals. The reduced entanglement, ability to access large 

domain spacings, and superior self-assembly kinetics associated with this architecture motivate 

the use of these materials. Through control of side chain rigidity, exceptionally fast self-

assembly has been realized. Fabrication of BBCP thin films is now feasible by controlled solvent 

evaporation under ambient conditions, which enables applications that necessitate inexpensive 

and rapid fabrication. 

The advancements in our understanding of BBCPs also raise new questions and suggest 

further research opportunities. Additional fundamental studies of BBCP self-assembly are 

needed to understand the thermodynamics of ordering and how it differs from LBCPs.[37a] The 

effect of specific bottlebrush structural parameters, such as branch length, backbone length, or 
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grafting density, on assembled structure is not well understood. In several reports of BBCP photonic crystals, a linear relationship between λmax and molecular weight is reported, which 

was attributed to highly extended conformations of these materials.[7, 25, 44, 49] However, recent 

work by Dalsin et al. (Section 2.2) has demonstrated that the scaling of domain spacing depends on the length of the backbone relative to that of the side chains, reaching a maximum value of α ≈ 0.9 for high N samples.[34] Furthermore, self-consistent field theory suggests that BBCPs may 

be more flexible than previously assumed, and there may be considerable bending of the 

backbones in the lamellar morphology, particularly near the center of the domains.[34] While the 

majority of reported BBCPs feature lamellar morphologies, limited examples of cylindrical,[35, 40a] 

spherical,[40a] and gyroid[58] phases have been observed by manipulation of macromonomer 

design. This motivates further investigations of the unique phase behavior of the bottlebrush 

block copolymer architecture with the goal of creating predictive models for self-assembly.  

Continued attention should be paid to determining the factors that control the 

uniformity of self-assembly for BBCPs. In particular, achieving well-ordered BBCPs that reflect 

NIR light (λ = 750–1500 nm) remains challenging. Both slow diffusion rates and relatively high 

dispersities for ultra-high molecular weight BBCPs are challenges to producing well-ordered 

NIR-reflecting photonic crystals. Although the peak wavelength of reflection (λmax) in BBCPs can 

be readily tuned by backbone degree of polymerization, the bandwidths of these materials are somewhat large and broaden with increasing λmax.[49] Better control of bandwidths in these 

photonic crystals is desirable for some applications.[6] Furthermore, for practical fabrication of 

BBCP photonic crystals, alternative self-assembly methods may be required. In particular, shear 

alignment techniques may be beneficial in fabricating paintable BBCP photonic coatings. Shear 

alignment of colloidal materials and linear block copolymers is well known;[59] however, to our 

knowledge, no reports utilize this technique to prepare BBCP films. 
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Responsive photonic crystals[19a, 19c, 60] represent another avenue of research in which 

BBCPs may be advantageous. Reversible color changes in response to a physical or chemical 

stimulus are desired in applications as sensors, indicators, or color displays.[61] To borrow 

concepts from other classes of chromotropic materials, it may be possible to prepare BBCP 

photonic crystals that are sensitive to temperature,[62] strain,[63] ionic strength and pH,[64] or the 

presence of an electric field.[65] The development of “switching” mechanisms for these structures 
would provide new routes to responsive materials. 

In conclusion, BBCPs have been successfully applied to improve the viability of polymer-

based photonic crystals as practical optical elements. This represents an exciting field with both 

interesting fundamental and technological facets. Significant synthetic effort over the last 

decade has improved our understanding of the design, fabrication, and tuning of these 

materials. Opportunities exist for further development of BBCP photonic crystals both through 

optimizing existing materials and designing new systems and self-assembly methods.  
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Brush block copolymers have emerged as promising components in the bottom-up 
synthesis of photonic crystals from common organic chemical feedstocks. This polymer 
architecture permits fabrication of photonic crystal films under ambient conditions driven by 
self-assembly. Photonic properties can be controlled by the backbone length of the brush block 
copolymer or by utilizing blending techniques.  
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Figure 1. Comparison of linear (top) and bottlebrush (bottom) block copolymers. 
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Figure 2. Comparison of ordered phases favored for linear (top) and bottlebrush (bottom) 
diblock copolymers. Cylindrical phases are favored by asymmetric block lengths for linear 
copolymers or brush lengths for bottlebrush copolymers. Reproduced with permission.[35] 

Copyright 2011, American Chemical Society.  

 

Figure 3. General synthetic methods to prepare brush polymers. 
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Figure 4. Synthesis of comb block copolymers with one PS-grafted block and one ungrafted 
block. 

 

Table 1. Domain sizes and morphologies of polystyrene/hexanoate brush-coil copolymers. 

Entry x:y
a) Polystyrene 

(mol%) 
Morphologyb) 

Domain size 

(nm)b), c) 

1 100:2033 61 Lamellae 145 ± 26 

2 250:2033 75 Cylinders 258 ± 27 

3 150:1524 77 Cylinders 147 ± 18 

4 450:2033 84 Spheres 226 ± 13 

5 200:1016 89 Spheres 132 ± 7 
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a)Ratio of the polystyrene-decorated backbone monomer, x, to the hexanoate-substituted 
monomer, y; b) Determined by SEM; c) The domain size is the repeat unit of the morphology; for 
cylinders and spheres, this is defined as the center-to-center spacing.  

 

 

Figure 5. Grafting-from synthesis of polylactide/polystyrene brush block copolymers. 

 

Figure 6. Reflection of blue light (left) and SEM image (right) of a polystyrene/polylactide 
bottlebrush block copolymer (Mn = 2400 kDa, fPLA = 0.37). Reproduced with permission.[25] 

Copyright 2009, American Chemical Society.  



 

    

 

This article is protected by copyright. All rights reserved. 

 - 36 - 

 

 

Figure 7. Synthesis of polylactide/poly(n-butylacrylate) bottlebrush copolymers by ROMP. 

 

Figure 8. Assembly of symmetric brush random and block copolymers. Domain spacing is 
controlled by brush length for the random copolymers, while the brush copolymers assemble 
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with spacing dictated by the backbone length. Reproduced with permission.[39b] Copyright 2009, 
American Chemical Society. 

 

 

Figure 9. (A) Reflectance spectra for photonic crystal films (Mn = 2940 kDa) prepared by 
controlled evaporation from DCM (blue), THF (green), after thermal treatment (red), or by 
thermal annealing under compression (orange). SEM cross-sections of films prepared by (B) 
evaporation from DCM; (C, D) evaporation from THF before (C) and after (D) thermal annealing; 
and (E) direct thermal annealing under compression. The insets are photographs of the 
samples. Reproduced with permission.[7] Copyright 2012, National Academy of Sciences. 

 

 

Figure 10. Synthesis of poly(isocyanate)-based brush block copolymers by ROMP. Depictions of 
rigid-rod helical poly(isocyanate) side chains are shown below the structures. Reproduced with 
permission.[44] Copyright 2012, American Chemical Society. 
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Figure 11. Left: Photograph of poly(isocyanate)-based photonic crystals prepared by controlled 
evaporation from DCM. Right: (a) Reflectance spectra for poly(isocyanate)-based BBCP thin 
films with Mw = 1512 (blue), 2918 (green), 4167 (red), 5319 (purple), and 7119 (black) kDa; (b) 
plot of λmax as a function of Mw. Reproduced with permission.[44] Copyright 2012, American 
Chemical Society. 

 

 

Figure 12. Synthesis of dendronized block copolymers by ROMP. Reproduced with 
permission.[49] Copyright 2013, American Chemical Society. 
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Figure 13. Plot of reflectance as a function of wavelength for dendronized block copolymer thin 
films with Mw = 480 kDa (purple), 570 kDa (blue), 1250 kDa (red), 1390 kDa (black). Samples 
were prepared by controlled evaporation (solid line) or thermal annealing (dashed line). 
Reproduced with permission.[49] Copyright 2013, American Chemical Society. 

 

 

Figure 14. Synthesis and self-assembly of polystyrene/polylactide BBCPs to lamellar arrays. 
Addition of low molecular weight PS and PLA homopolymers swells these arrays and improves 
long range order. Reproduced with permission.[51] Copyright 2014, American Chemical Society.  
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Figure 15. A) SEM images of PS-b-PLA BBCP film cross-sections with 0–67.5 wt% HP and 
corresponding photographs of colored films with increasing wavelengths of reflected light. Scale 
bars represent 550 nm. B) UV–Vis spectra of a BBCP blended with varying levels of HP showing 
improved ordering at low to moderate wt%. Reproduced with permission.[51] Copyright 2014, 
American Chemical Society.  

 

Figure 16. A) Photograph of films derived from blends of two BBCPs of different molecular 
weights at varying concentrations from 100% of one unblended polymer to 100% of the other. 

(B) Linear relationship suggesting the predictability of max by manipulating blend ratio. (C) 
SEM image of a cross-section of an 80:20 blend of a low and high molecular weight BBCP.  
Reproduced with permission.[53] Copyright 2012, Wiley-VCH.  
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Figure 17. Selective incorporation of gold NPs into the PEO domains of a PS-b-PEO BBCP. 
Thermal annealing at 120 °C increases the size of the gold NPs and their distribution in the PEO 
layers, leading to a red shift in λmax. Reproduced with permission.[55c] Copyright 2015, Wiley-
VCH. 

 

Figure 18. A) Images of nanocomposite films derived from the self-assembly of a BBCP with 
increasing gold NP loading concentrations. B) Changes in domain spacing and wavelength of 
reflection according to NP loading. C) Color change observed following thermal annealing and 
increased NP size. D) Kinetics of the effect of thermal annealing on wavelength of reflection.  
Reproduced with permission.[55c] Copyright 2015, Wiley-VCH.  
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Figure 19. A) Increase in refractive index of the ZrO2/PEO layer with increasing NP 

concentration. B) Refractive index contrast (n) between PtBA and NP/PEO at 70 wt% NP 
loading. C) Photographs of films derived from the self-assembly of a BBCP with increasing ZrO2 
NP loading, showing increased reflectivity (left to right). D) Enhanced reflectivity and longer 
peak wavelength of reflection with increasing wt% NP. Reproduced with permission.[55b] 
Copyright 2015, American Chemical Society.  
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