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ABSTRACT

One of the most important applications of gravity surveys in

regional geophysical studies is determining the depth to base-

ment. Conventional methods of solving this problem are based

on the spectrum and/or Euler deconvolution analysis of the

gravity field and on parameterization of the earth’s subsurface

into prismatic cells. We have developed a new method of solv-

ing this problem based on 3D Cauchy-type integral represen-

tation of the potential fields. Traditionally, potential fields have

been calculated using volume integrals over the domains oc-

cupied by anomalous masses subdivided into prismatic cells.

This discretization can be computationally expensive, espe-

cially in a 3D case. The technique of Cauchy-type integrals

made it possible to represent the gravity field and its gradients

as surface integrals. In this approach, only the density contrast

surface between sediment and basement needed to be discre-

tized for the calculation of gravity field. This was especially

significant in the modeling and inversion of gravity data for

determining the depth to the basement. Another important

result was developing a novel method of inversion of gravity

data to recover the depth to basement, based on the 3D

Cauchy-type integral representation. Our numerical studies de-

termined that the new method is much faster than conventional

volume discretization method to compute the gravity response.

Our synthetic model studies also showed that the developed

inversion algorithm based on Cauchy-type integral is capable

of recovering the geometry and depth of the sedimentary

basin effectively with a complex density profile in the vertical

direction.

INTRODUCTION

There is strong interest in developing effective methods of

inverting gravity data for depth-to-basement and density contrast

estimation. Many research papers have been published over the past

decade on this subject (e.g., Barbosa et al., 1997, 1999a, 1999b;

Silva et al., 2001, 2006, 2007, 2010a, 2010b; Gallardo-Delgado

et al., 2003; Martins et al., 2010, 2011a, 2011b). The conventional

approach to solving depth-to-basement gravity inverse problems is

based on parameterization of the earth’s subsurface, containing the

sedimentary pack, into prismatic cells with known horizontal di-

mensions and known density contrast, and on estimation of the

cell’s thicknesses. We present a novel approach to the solution

of this problem based on 3D analogs of Cauchy-type integrals, in-

troduced by Zhdanov (1980, 1984, 1988). These integrals extend to

the 3D case all the major properties of classical Cauchy integrals of

the theory of functions of complex variables. In a 2D case, Cauchy

integrals can be used to provide an effective representation of the

gravity field of 2D density distributions and to solve the problems of

the upward and downward analytic continuation of the potential

field data. It was demonstrated in papers by Zhdanov (1980) that

3D analogs of Cauchy-type integrals make it possible to extend

a large body of the research developed for 2D potential fields into

3D cases. For example, in the paper by Zhdanov and Liu (2013), 3D

Cauchy-type integrals are applied for solving the problem of terrain

correction for gravity and gravity gradiometry data. In the paper by

Zhdanov and Cai (2013), the authors apply 3D Cauchy-type inte-

grals to modeling and inversion of gravity fields caused by
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sediment-basement interface with constant density contrast. Cai and

Zhdanov (2015) introduce the method of inverting magnetic field

data to recover the depth to basement using Cauchy-type integrals.

In the present paper, we apply the method of 3D Cauchy-type

integrals to solving forward and inverse problems for a density con-

trast model. This type of models is used, for example, in the inver-

sion of the gravity data for the depth to basement. In our study, we

consider a model formed by two quasihorizontal layers, the upper

layer representing the sediments and the lower layer describing the

basement. We assume that the density does not vary in the horizon-

tal direction, but, in a general case, it may vary vertically, having a

discontinuity at the surface of the basement. The goal is to find the

surface of the basement, which is a density contrast surface in

this case.

We develop an inversion scheme to determine the density con-

trast surface. Gravity field and/or full-tensor gravity gradiometry

data can be used for the inversion. The inversion scheme is based

on the reweighted regularized conjugate gradient method (Zhdanov,

2002). Note that the method based on the Cauchy-type integrals

requires the discretization of the contrast surface only, which re-

duces dramatically the computing resources in comparison with

the conventional methods based on volume discretization into pris-

matic cells.

The conventional methods of solving this problem are based on

the spectrum and/or Euler deconvolution analysis of the gravity

field. However, these methods have several limitations. In the

framework of the spectrum method, the gravity field needs to be

analyzed within a moving window and the size of the window needs

to be determined based on an expected depth to the source, which is

usually either unavailable or not accurate (Chávez et al., 1999). A

complex source structure can complicate the spectrum analysis,

which may result in significant errors of the depth estimation (Ode-

gard, 2011). The conventional Euler deconvolution method can be

used for fast depth estimation, but it requires the input of the source

structure index to estimate the depth to the source, which simplifies

the source to some specific geometries, such as sphere, cylinder, etc.

(Lafehr and Nabighian, 2012). Even though an extended Euler de-

convolution method can be used to estimate the source depth and

the structure index simultaneously, it is still difficult to deal with a

complex source structure (Lafehr and Nabighian, 2012). Moreover,

the spectrum and Euler deconvolution methods do not provide a

direct comparison between the observed and predicted gravity field

data, which makes it difficult to evaluate the correctness of the sol-

ution for the depth to basement. In comparison with those methods,

our method is based on direct evaluation of the misfit between the

observed and predicted data. In addition, as we will see below, the a

priori information can also be incorporated into the inversion in the

framework of the method based on the Cauchy-type integrals.

The developed method was tested for inversion of the gravity data

computer simulated for typical contrast surface models. We also

apply this method to field gravity data in the Big Bear Lake area

in California to recover the depth to the basement.

CAUCHY-TYPE REPRESENTATION OF A
GRAVITY FIELD CAUSED BY A 3D BODY

The gravity field at location r 0 (outside the source) caused by a

3D body with constant density ρ0 can be calculated by the following

equation:

gðr 0Þ ¼ −G

Z Z Z

D

ρ0∇
1

jr − r 0j
dv; (1)

where G is the universal gravitational constant, D is the domain

filled by constant density ρ0, and radius vectors r 0 and r denote

the locations of the points of observation and integration, respec-

tively.

For complex geometry, this integral needs to be evaluated nu-

merically. The common approach is to discretize the volume into

a grid of prisms. This method can be computationally expensive

for large-scale modeling and inversion.

It is shown by Zhdanov (1988) and Zhdanov and Liu (2013) that

the gravity field caused by a 3D body D with surface S and a con-

stant density can be expressed as follows:

gðr 0Þ ¼
4πGρ0

3
½Csðr 0; rÞ − Csðr 0; r 0Þ�

¼
4π

3
Gρ0Csðr 0; r − r 0Þ; (2)

where 3D analog of the Cauchy-type integral Cs was introduced by

Zhdanov (1988) as follows:

Csðr 0;φÞ ¼
−1

4π

Z Z

S

�
ðn × φÞ∇

1

jr − r 0j
þ ðn × φÞ

× ∇
1

jr − r 0j

�
ds: (3)

For completeness, the definition and major properties of the

Cauchy-type integral are given in Appendix A.

The previous equation can be rewritten in a matrix notation for

the scalar components of the gravity field as follows:

gα ¼ −
Gρ0

3

Z Z

S

Δαβγη

ðrβ − r 0βÞðrη − r 0ηÞ

jr − r 0j3
nγds;

α; β; γ; η ¼ x; y; z;

(4)

where the four-index Δ-symbol is expressed in terms of the sym-

metric Kronecker symbol δαβ as

Δαβγη ¼ δαβδγη þ δαηδβγ − δαγδβη; δαβ ¼¼

�
1; α ¼ β

0; α ≠ β
;

(5)

and all the notations are described in Appendix A.

We can use equation 4 to calculate the gravity gradient tensor

whose scalar components are equal to the derivatives of the corre-

sponding scalar components of the gravity field with respect to the

spatial coordinates:

gαv ¼
∂gα

∂v 0 ; α; v ¼ x; y; z: (6)

After some algebra, one can express equation 6 in a matrix no-

tation as follows:
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gαvðr 0Þ ¼ Gρ0

Z Z

S

Δαβγηrβ

jr − r 0j5
½3ðrv − r 0vÞðrη − r 0ηÞ

− jr − r 0j2δvη�nγds: (7)

From equations 4 and 7, we can see that the gravity field caused

by a volume D filled by masses with some constant density ρ0 can

be represented as the Cauchy-type integral over the surface S of the

volume. Thus, the original formula for calculating the gravity field

as a volume integral is reduced to the surface integral.

It is also important to point out that the density distribution inside

volume D may not necessarily be a constant value. It is shown by

Zhdanov (1988) and Zhdanov and Liu (2013) that one can incor-

porate arbitrary analytic density-depth distribution within the vol-

ume in this formula. The advantage is that in applications, we can

use this method to simulate the potential field due to the sedimen-

tary basin, which is usually characterized by the density change

with depth.

CAUCHY-TYPE REPRESENTATION OF THE
GRAVITY FIELD AND ITS GRADIENT FOR A

DENSITY CONTRAST SURFACE

Let us consider a model of the sediment-basement interface with

a density contrast at some surface Γ, shown in Figure 1. We assume

that surface Γ is described by equation z ¼ hðx; yÞ −H0, and a hori-

zontal plane P is given by equation z ¼ −H0 with

H0 ≥ hðx; yÞ ≥ 0 (8)

and

hðx; yÞ −H0 → 0 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
→ ∞; (9)

whereH0 is a constant. Let us draw a sphereOR of radius Rwith the

center in the origin of the Cartesian system of coordinates. We de-

note by ΓR and PR the parts of the surfaces Γ and P, respectively,

located within the sphere OR. For the first model, we assume that

the real sediment-basement interface ΓR is located above plane P.

We also assume that the sediment layer has a constant density ρs and

the basement has a constant density ρb ðρb > ρsÞ. We also assume

that Γ and P extend infinitely in the horizontal direction and ΓR →

P at infinity. The gravity anomaly is caused by the density volume

DR, which is bounded by a closed surface, formed by ΓR and PR

and the parts of the sphereOR between these two surfaces as shown

in Figure 1.

It is demonstrated by Zhdanov (1988) that the gravity field

caused by volume DR is expressed by

gðr 0Þ ¼ 4πGρ0CΓRðr 0; ðzþH0ÞdzÞ; (10)

in the case where ΓR→∞ → P at infinity. As a result, the Cauchy-

type integral in equation 10 is calculated along an infinitely ex-

tended surface Γ.

In equation 10, ρ0 is the density contrast between the sediments

and the basement:

ρ0 ¼ ρb − ρs > 0: (11)

For the model shown in Figure 1, we always have a positive grav-

ity anomaly. Now, we consider another model presented in Figure 2,

in which the density contrast surface is below the horizontal plane

P. In this case, we have a negative density anomaly caused by the

deficit of masses located within domain DR.

Similarly, the gravity field can be expressed as

gðr 0Þ ¼ 4πGð−ρ0ÞCΓRðr 0; ðzþH0ÞdzÞ: (12)

We have the following expressions for the scalar components of

the normal vector pointing outside domainDR for a model shown in

Figure 1:

Figure 1. Density contrast model for a sediment-basement interface
with a positive anomaly. The horizontal plane P is located at the
average depth of the sediment-basement interface, and ΓR is the ac-
tual sediment-basement interface.

Figure 2. Density contrast model for a sediment-basement interface
with a negative anomaly. The horizontal plane P is located at the
average depth of the sediment-basement interface, and ΓR is the ac-
tual sediment-basement interface.
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nxds ¼ −
∂hðx; yÞ

∂x
dxdy ¼ bxðx; yÞdxdy;

nyds ¼ −
∂hðx; yÞ

∂y
dxdy ¼ byðx; yÞdxdy; and nzds

¼ dxdy ¼ bzðx; yÞdxdy; (13)

where

bxðx; yÞ ¼ −
∂hðx; yÞ

∂x
; byðx; yÞ ¼ −

∂hðx; yÞ

∂y
;

bzðx; yÞ ¼ 1; h ¼ zþH0:

(14)

Similarly, for the model shown in Figure 2, the scalar compo-

nents of the normal vector pointing outside domain DR are equal

to the following equations:

nxds ¼
∂hðx; yÞ

∂x
dxdy ¼ −bxðx; yÞdxdy;

nyds ¼
∂hðx; yÞ

∂y
dxdy ¼ −byðx; yÞdxdy; and nzds

¼ −dxdy ¼ −bzðx; yÞdxdy. (15)

It is important to note that, although for the models in Figures 1

and 2, the equations for the normal vector have a different sign, as

shown in equations 13 and 15, respectively, the final expressions for

the fields are exactly the same because the signs for the anomalous

densities for models 1 and 2 are also different. Thus, in matrix no-

tations, the gravity field caused by the density anomaly for model 1

(Figure 1) and model 2 (Figure 2) can be expressed using a unified

equation as follows:

gαðr 0Þ ¼ −Gρ0

Z Z

S

Δαzγη

hðx; yÞðrη − r 0ηÞ

jr − r 0j3
bγdxdy;

α; γ; η ¼ x; y; z:

(16)

Similarly, the gravity gradient for the models in Figures 1 and 2

can also be unified as

gαvðr 0Þ ¼ −Gρ0

Z Z

S

Δαzγηhðx; yÞ

jr − r 0j5
½3ðrv − r 0vÞðrη − r 0ηÞ

− jr − r 0j2δvη�bγdxdy; (17)

where α; γ; η ¼ x; y; z.

As we mentioned above, in a general case, the density contrast

value is a function of depth:

Δρ ¼ fðzÞ: (18)

In this case, the representation of the gravity field caused by the

sediment-basement interface takes the following form (Zhdanov,

1988; Zhdanov and Liu, 2013):

gðr 0Þ ¼ 4πGCΓRðr 0; ½RðzÞ − Rð−H0Þ�dzÞ; (19)

where

RðzÞ ¼
Z

z

−H0

fðzÞdz: (20)

Similar equations can be derived for the gravity gradient compo-

nent by taking the spatial derivative of the forward operator for the

gravity field.

Equations 16 and 17 represent the gravity and gravity gradient

fields in the form of Cauchy-type integrals over the density contrast

surface corresponding to the sediment-basement interface. These

expressions provide an analytic basis for a fast method of numerical

modeling of gravity and gravity gradiometry data. Both of these two

equations need to be discretized to be solved numerically. In the

paper by Zhdanov and Liu (2013), rectangular and triangular dis-

cretizations of the density contrast surface are introduced. Numeri-

cally, rectangular is simpler than triangular discretization. However,

triangular discretization is demonstrated to have higher accuracy

than rectangular. In our forward modeling part, both of these

two types of discretization are implemented. In the inversion part,

only the rectangular discretization is used for simplicity.

In particular, we can approximate the density contrast surface

within each cell k by an element of the horizontal plane (Zhdanov

and Liu, 2013):

z ¼ hðx; yÞ −H0 ¼ hðkÞ − b
ðkÞ
x ðx − xkÞ − b

ðkÞ
y ðy − ykÞ −H0

(21)

and

b
ðkÞ
x ðx; yÞ ¼ 0; b

ðkÞ
y ðx; yÞ ¼ 0: (22)

In such special cases, equation 19 can be represented as follows:

gαðr 0nÞ ¼
XNm

k¼1

f
ðnkÞ
α hðkÞ; (23)

where

f
ðnkÞ
α ¼ G½RðzkÞ − Rð−H0Þ�δαη

r
ðkÞ
η − r

ðnÞ 0

η

jrðkÞ − r 0nj
3
ΔxΔy; (24)

where Nm is the number of cells and n is the index of the point of

observation r 0n.
We can obtain a similar formula for the gravity gradient fields:

gαvðr 0nÞ ¼
XNm

k¼1

f
ðnkÞ
αv hðkÞ; (25)

where

f
ðnkÞ
αv ¼

G½RðzkÞ − Rð−H0Þ�δαη

jrðkÞ − r 0nj
5

½3ðr
ðkÞ
v − r

ðnÞ 0

v Þðr
ðkÞ
η − r

ðnÞ 0

η Þ

− jrðkÞ − r 0nj
2δvη�ΔxΔy: (26)

We note that equations 23–26 may not be accurate enough for

forward modeling because the accuracy of approximation by the

piecewise horizontal surface may not be sufficient. However, these

equations are very effective for calculating the Fréchet derivative
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matrix in the inversion process because of their simplicity. More

accurate numerical forms of the Cauchy-type integrals can be found

in Zhdanov and Liu (2013).

INVERSION FOR A DENSITY CONTRAST
SURFACE BASED ON 3D CAUCHY-TYPE

INTEGRALS

In the previous sections, we discuss the forward modeling of

gravity and gravity gradient fields based on 3D analogs of

Cauchy-type integrals. In our forward modeling process, the model

parameters were the elevations hðkÞ ¼ hðxk; ykÞ of the density con-

trast surface with respect to the horizontal plane P, assuming the

value of the density contrast is given. As we can see from the

forward modeling equations, the forward operator is nonlinear. Cor-

respondingly, the inversion is also a nonlinear problem. The tradi-

tional inversion of potential field data to find the density distribution

is a linear problem, and the Fréchet derivative can be easily found

and it does not change during the iterative inversion. In our inver-

sion, the Fréchet derivative is a function of model parameters and

may change from iteration to iteration.

Fortunately, in our inversion, the Fréchet derivative has an ana-

lytic form. In Appendices B and C, we derive the explicit expres-

sions for the Fréchet derivative for the gravity and gravity

gradient data.

As usual, the inversion of gravity and gravity gradient data is an

ill-posed problem. To obtain stable and geologically reasonable re-

sult, we need to apply regularization to impose some restrictions on

our solution. The inversion is based on the minimization of the Ti-

khonov parametric functional (Tikhonov and Arsenin, 1977):

Pαðm;dÞ ¼ ðWdAðmÞ −WddÞTðWdAðmÞ −WddÞ

þ ðWmm −WmmaprÞ
TðWmm −WmmaprÞ; (27)

where A is the forward modeling operator,Wd is the data weighting

matrix, d is the vector of observed data,m is the vector of the model

parameters h, andWm is a diagonal matrix of the model parameters

weights based on integrated sensitivity:

Wm ¼ diagðFTFÞ1∕2; (28)

where F is the Fréchet derivative matrix.

The minimization problem 27 can be reformulated using a space

of weighted parameters:

mw ¼ Wmm: (29)

In the weighted parameter’s space, the Tikhonov parametric

functional is given as follows:

Pαðmw; dÞ ¼ ðAwðmwÞ − dÞTðAwðmwÞ − dÞ

þ αðmw −mw
aprÞ

Tðmw −mw
aprÞ; (30)

whereAw is a new forward operator in the space of weighted param-

eters, which can be related to the forward operator A in the original

space as

Aw ¼ AW−1
m : (31)

The minimization of the Tikhonov parametric functional is based

on the reweighted regularized conjugate gradient method. With

index nþ 1 referring to the iteratively updated model n, the algo-

rithm is given as follows (Zhdanov, 2002):

rwn ¼ Awðmw
n Þ − d ¼ AðmnÞ − d; (32)

lαnwn ¼ FT
wnrwn þ αnðmwn

n −mwn
aprÞ; (33)

β
αn
n ¼ klαnwnk2∕kl

αn−1
wðn−1Þk

2; (34)

flαnwn ¼ lαnwn þ β
αn
n lαn−1

wðn−1Þ;
flα0w0 ¼ lα0w0; (35)

k
αn
n ¼ ðflαnwnT lαnwnÞ∕½flαnwnTðFT

wnFwn þ αnIÞflαnwn�; (36)

mwn

nþ1 ¼ mwn
n − k

αn
n
flαnwn; (37)

mnþ1 ¼ W−1
m mwn

nþ1; (38)

mwnþ1

nþ1 ¼ Wmmnþ1; (39)

swnþ1

nþ1 ¼ ðmwnþ1

nþ1 −mwnþ1
apr Þ; swn

nþ1 ¼ ðmwn

nþ1 −mwn
aprÞ; (40)

γ ¼ kswnþ1

nþ1 k
2∕kswn

nþ1k
2; (41)

and

αnþ1 ¼

�
αn; γ ≤ 1

αn∕γ; γ > 1
: (42)

We solve our problem in the space of the weighted model param-

eters. In the algorithm given above, rwn is a residual vector between

the predicted and observed data; lαnwn is the steepest ascend direction;
and flαnwn is the conjugate gradient direction, which is a combination

of the current steepest ascend direction and the previous conjugate

gradient direction with the coefficient β
αn
n . We can see from equa-

tion 35 that the conjugate gradient direction is the same as the steep-

est ascend direction at the first iteration. The step length k
αn
n is

obtained using a linear line search scheme. The regularization

parameter αn is selected using an adaptive method as shown in

our algorithm. Parametermwn
apr represents an a priori model, selected

based on all known information about the model parameters.

During the inversion process, the Fréchet derivative matrix

changes in every iteration. One of the most expensive parts of in-

version is the computation of the Fréchet derivative matrix. To

speed up the inversion, the Fréchet derivative can be updated not

on every iteration but after every five or 10 iterations.

We implement the developed theory and method in a computer

code that is tested on several synthetic models as discussed below.
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MODEL STUDIES

In this section, we present two model studies for the modeling

and inversion of gravity data caused by density-contrast surface

with a density contrast that is variable with the depth. In the first

study, we consider a model of a sediment-basement interface with

the density contrast varying linearly with the depth. Forward mod-

eling based on the Cauchy-type integral method is compared with

forward modeling based on the traditional method.

In the second case study, we assume a more complicated model

with the density contrast between the sediment and basement

changing exponentially with depth. We also apply the same inver-

sion to the data simulated for the second model because a similar

exponential density profile will be used for the inversion of the field

data in the following section.

Model 1: Linear density variation

We assume that the density of the basement has a constant value

of ρb ¼ 3000 kg∕m3 and the density of the sediment at the surface

is ρ0 ¼ 2000 kg∕m3 and it increases linearly with the depth accord-

ing to the following formula:

ρs ¼ ρ0 þ az; (43)

where

ρ0 ¼ 2000 kg∕m3; a ¼ 5 × 10−4 kg∕m4: (44)

We compare the forward modeling result obtained by the new

method of Cauchy-type integrals with the result based on the tradi-

tional method, using volume integrals over the domain occupied by

anomalous masses subdivided into the prismatic cells. The density

inside each prismatic cell was set to be a constant. Figure 3 shows

the representation of the density contrast distribution in model 1

using prismatic cells.

Gravity and vertical gravity gradient components were computed

using these two methods. Figure 4 shows a comparison of forward

modeling results obtained using the Cauchy-type integral and the

traditional volume integral methods. We observe a very good fit

between these results. A small difference can be attributed to the

errors of the prismatic approximation of the volume density distri-

bution in the traditional method and discretization of the surface for

Cauchy-type integral calculation, respectively. We need to note that,

for this model, the ratio of computation time required by the con-

ventional method and by the Cauchy-type integral method is almost

30 on the same desktop PC.

Model 2: Exponential density variation

Model 2 has the same geometry of the depth-to-basement inter-

face as model 1. However, the density contrast between sediment

and basement varies exponentially with the depth according to the

following expression:

Δρ ¼ ae−bz þ ce−dz; (45)

where

a ¼ 251.5 kg∕m3; b ¼ −0.007;

c ¼ 197 kg∕m3; d ¼ 5.2656 × 10−6: (46)

Figure 5 shows the representation of the density contrast distri-

bution in model 2 using prismatic cells. We present the gravity re-

sponses computed using Cauchy-type integral and the traditional

volume integral methods in Figure 6. One can see that the result

Figure 3. Model 1. Representation of the density contrast distribu-
tion using prismatic cells.

Figure 4. Model 1 — Comparison of forward modeling results
obtained using Cauchy-type integral (dotted line) and traditional
volume integral (solid line) methods.

Figure 5. A prism approximation of the density contrast surface
with the density contrast changing exponentially with depth.

Figure 6. Model 2 — Comparison of forward modeling results
obtained using Cauchy-type integral (dotted line) and traditional
volume integral (solid line) methods.

G86 Cai and Zhdanov

D
o
w

n
lo

ad
ed

 0
7
/0

5
/1

7
 t

o
 1

9
2
.3

8
.3

3
.1

9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



produced by the new method practically coincides with that of the

traditional method.

We apply the inversion algorithm introduced in the previous sec-

tions to the inversion of the synthetic data simulated for the model

with exponential density variation.

Figure 7 shows the inversion result for the synthetic model with

exponential density variation with depth. One can see that the den-

sity contrast surface was recovered well by this inversion.

INVERSION OF GRAVITY DATA AT THE BIG
BEAR LAKE AREA

U.S. Geological Survey gravity survey
at the Big Bear Lake area

Gravity surveys are widely used for basin study. The depth to

basement can be well estimated based on isostatic Bouguer gravity

data because the gravity anomaly is caused primarily by the density

contrast between the sediments and the basement. Many gravity

measurements were made in the 1960s and 1970s by various groups

to produce gravity maps covering California at a scale of 1:250,000

for the California Division of Mines and Geology (Roberts et al.,

2002). The U.S. Geological Survey (USGS) also conducted a new

gravity survey in the Big Bear Lake area. The new survey data were

merged with the previous gravity survey to produce a new gravity

grid (Roberts et al., 2002). We should note that in this paper we have

gridded and used for the inversion only the data from the new USGS

survey.

USGS applied the conventional prism inversion method to the

combined new gravity data to recover the depth to basement. In

their inversion, the subsurface was discretized to a grid of prisms,

whose horizontal size was 2000 × 2000 m. The density distribution

along each column of prisms was assumed to be known from the

well-log data, and the thickness of the prisms was determined by

fitting to the isostatic Bouguer gravity anomaly. The USGS inver-

sion was well constrained by the well-log data and bedrock loca-

tions. In addition, at several locations, the thickness of the prisms

was assumed to be known and stayed unchanged during the inver-

sion (Roberts et al., 2002).

Due to a data ownership issue, USGS only released the new data

they collected and the well-log data were not made available.

Geologic background of the Big Bear Lake area

The Big Bear Lake area is located in the southeast part of Cal-

ifornia. The area is characterized by a deep sedimentary basin sur-

rounded by uplifted bedrock. USGS produced a basin model from

the surface geology, well logs, and potential field data. Figure 8

shows that the whole basin area can be divided into three parts from

the northeast to the southwest: the Deadman Lake, Surprise Spring,

and Joshua Tree basins. The average depth and density variations

between sediment and bedrock may be slightly different.

Figure 9 presents a digital elevation model (DEM) of the area.

From the surface geology, we can observe three fault belts trending

from the northwest to the southeast and one fault belt trending from

Figure 7. Inversion result for the model with the density contrast
varying exponentially with depth.

Figure 8. A USGS model of the basin for the Big Bear Lake area
(Roberts et al., 2002). The dark zones indicate the location of out-
crops. Figure 9. DEM of the Big Bear Lake area.
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the west to the east. Different basins in this area are separated by

these four main fault structures.

Processing of U.S. Geological Survey data

Figure 10 presents the released USGS data with the locations of

the gravity stations shown by the black dots. As one can see, the

original gravity data were collected in an irregular grid. It is well

known that gridded data have a significant advantage over scattered

data for inversion in terms of the robustness because having regular

gridded data helps produce a robust inversion result. There are dif-

ferent gridding methods available. The traditional mathematical

gridding approach can produce significant artifacts, especially in

areas with a few observation stations. We use a gridding approach

based on the equivalent-source concept (Cordell, 1992). According

to this concept, on the first step, we determine an equivalent layer

with some surface density distribution recovered based on the in-

version of the data collected in an irregular grid. On the next step,

we compute the gravity data at the regular grid using the equivalent

layer as the source.

Note that the gridded gravity data can be used directly for inver-

sion if we assume that the isostatic Bouguer anomaly is caused

purely by a deficiency in the density of the sediments. By making

this assumption, we assume that the density of the bedrock is the

same as in the reference density model of the earth’s crust. How-

ever, in a real case, the density of the bedrock may be different from

the reference model. Therefore, the isostatic Bouguer gravity

anomaly can be written as a sum of the bedrock component and

the sediment component as

g ¼ gb þ gs: (47)

The bedrock gravity component gb can be estimated initially

based on the gravity data observed on the bedrock (Roberts et al.,

2002). Figure 11 shows the gridded bedrock component. One can

see that in the southern part, there is a strong negative anomaly for

the bedrock gravity component. The gridded bedrock component of

the gravity anomaly was subtracted from the gravity grid in Fig-

ure 10 to obtain the gravity anomaly caused by the sediment only.

Figure 12 shows the gravity anomaly obtained after removal of the

bedrock component. This grid represents the final data that we used

for inversion.

We note that the approximation of the bedrock component of

gravity anomaly by interpolating the anomaly observed on outcrops

is not a rigorous approach due to the presence of a nearby sedimen-

tary basin with low density. We use an iterative method to remove

the bedrock gravity component. In our approach, the bedrock com-

ponent of the gravity field is initially computed by simple extrapo-

lation from the gravity observations on the bedrock outcrop. Inside

the inversion, it is corrected based on the inverted basin depth. The

corrections are terminated when there is no significant change in the

bedrock component of the gravity field (Roberts et al., 2002).

Figure 10. Gridded gravity data from the USGS survey. The black
dots are the gravity stations, and the square markers denote the sta-
tions located on the bedrock.

Figure 11. A gravity grid for the bedrock component of the isostatic
Bouguer gravity anomaly. The square markers indicate the locations
of the gravity stations on the outcrops.

Figure 12. Isostatic Bouguer gravity grid after removal of the bed-
rock component.
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Inversion of U.S. Geological Survey gravity data

One needs to know the density variation with the depth to get an

accurate model of the depth to the basement. As we mentioned

above, this information can be obtained from well-log data. The

density models of the Deadman Lake and Surprise Spring basins

are slightly different from that of the Joshua Tree basin. The USGS

report states that in the northern part, a density contrast of 400, 350,

300, 250, and 200 kg∕m3 with bottom depths of 50, 100, 150, and

300 m is a good approximation of the basin density (Roberts et al.,

2002). The USGS report also states that this model may not be suit-

able for the Deadman Lake basin well because there are very limited

well constraints in the Deadman Lake basin (Roberts et al., 2002).

In the southern part (Joshua Tree basin), a constant density contrast

value of 550 kg∕m3 is suitable (Roberts et al., 2002). The northern

part (the Deadman Lake and Surprise Spring basins) and the

southern part (Joshua Tree basin) of the survey area will be inverted

separately. To speed up the inversion and get the most reasonable

result, the well-known Bouguer slab formula (Chakravarthi and

Sundararajan, 2006) could be applied to generate an initial model:

z ¼
gBΔρ0

41.89Δρ20 þ agB
; (48)

where gB is the Bouguer gravity anomaly and Δρ0 is the density

contrast between the sediment and basement on the earth’s surface

and this density contrast decreases in the vertical direction with the

gradient a.

However, our inversion algorithm does not depend on the selec-

tion of the starting model. The selection of a flat surface as a starting

model produces almost the same result as using the Bouguer slab

formula as a starting model.

In the inversion, we used a grid size of 300 × 300 m in the x- and

y-directions, which is much finer than the USGS model grid for

prismatic inversion (2000 × 2000 m).

Inversion of gravity data in the Deadman
Lake and Surprise Spring basins

To take the variable density contrast into account, we need to use

some analytic function of depth to approximate the density contrast.

For the USGS model, we found that it was better to use equation 45

to approximate the true density contrast. The optimized values for

parameters in equation 45 are given in equation 46.

Figure 13 presents plots of the USGS staircase density variation

model and our approximation by the exponential function. The re-

sults of the inversion are shown in Figure 14 overlapped with the

DEM and the fault structure. One can see that the northwest–south-

east-trending faults correspond well to the edge of Surprise Spring

and Deadman Lake basins. The east edge of the recovered Deadman

Lake basin fits well with the mountain belt. Figure 15 shows an

overlap of the inversion result with the USGS basin and bedrock

models. In this figure, one can see that the recovered location of

the basin is similar to the USGS model.

Figure 16 shows a comparison of our inversion result with the

inversion result provided by USGS for the Deadman Lake and Sur-

prise Spring basins. One can see that the recovered basin geometry

obtained by our method correlates well with the USGS model.

However, the recovered maximum depths are slightly different

(4500 m for the USGS inversion result). The USGS report men-

tioned that the recovered depth of the basement for the Deadman

Figure 13. An approximation of the USGS staircase density varia-
tion model by the exponential function.

Figure 14. Results of the inversion of the gravity data for the Dead-
man Lake and Surprise Spring basins overlapped with the DEM
map indicated by the gray background with isolines.

Figure 15. Results of the inversion of the gravity data for the Dead-
man Lake and Surprise Spring basins overlapped with the USGS
model of the outcrops and sediment basin.
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Lake basin in their inversion may be underestimated due to the ab-

sence of the well-log data (Roberts et al., 2002).

Figure 17 shows a comparison of the observed and predicted

data. The final normalized misfit was 10%, and the convergence

became flat after 20 iterations. This tolerance was a reasonable

number considering the noise level of the real data. However,

we ran our inversion with a constant density contrast of 300,

400, and 500 kg∕m3, and all of these inversions provided much bet-

ter data fitting with the final normalized misfit being less than 5%.

Based on these results, we conclude that the USGS density model

for the Deadman Lake and Surprise Spring ba-

sins may not be optimal.

Inversion of gravity data
in the Joshua Tree basin

For the inversion of the gravity data in the

Joshua Tree basin, the USGS used several differ-

ent density models. They found that a constant

density contrast of 550 kg∕m3 is a good approxi-

mation of the true density distribution (Roberts

et al., 2002). We used the same value in our in-

version.

Figure 18 shows our inversion results over-

lapped with the DEM and fault structure. One

can see that the edges of the inverse gravity

model of the basin correspond well to the Pinto

Mountain belt. Figure 19 presents our inversion

results overlapped with the USGS density model

of the basin and bedrock models. We can see in this figure that the

recovered location of the basin is very similar to the USGS model.

The recovered depth is close to zero on the bedrock.

Figure 20 shows a comparison of our inversion results with the

inversion result provided by USGS for the Joshua Tree basin. One

Figure 16. Panel (a) shows the inverted basin depth for the Deadman Lake and Surprise
Spring basins, and panel (b) is the inversion result produced by USGS (after Roberts
et al., 2002).

Figure 18. Results of the inversion of the gravity data in the Joshua
Tree basin overlapped with the DEM map indicated by the gray
background with isolines.

Figure 19. The results of the inversion of the gravity data for the
Joshua Tree basin overlapped with the USGS model of the outcrops
and sediment basin.

Figure 17. A comparison of the (a) observed and (b) predicted data
for the inversions of the gravity data in the Deadman Lake and Sur-
prise Spring basins. Panel (c) shows the difference between the ob-
served and predicted data.
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can see that the basin geometry recovered using our method corre-

lates well with the USGS model. The maximum depth determined

by our inversion is also in a good agreement with the USGS model

(1100 m for the USGS inversion result).

Figure 21 presents a comparison between the observed and pre-

dicted data. The final normalized misfit was 5%, and it took only

five iterations to reach the given misfit level.

CONCLUSIONS

We have developed a new method for modeling gravity data

caused by a sediment-basement interface with a variable density

contrast distribution in the vertical direction. Our method is based

on the Cauchy-type integral approach, which reduces the volume

integration to the surface integration.

We validate our forward-modeling algorithm for linear and ex-

ponential density contrast distributions with depth by comparing

our result with conventional prism-based modeling. Based on the

forward modeling, we also develop an inversion algorithm to re-

cover the depth to basement for the models with variable density

contrast with depth. The inversion is tested on a synthetic model

of the basin with an exponential density contrast distribution.

We demonstrate with the synthetic models that the depth to base-

ment can be recovered well.

We also apply our method for inversion of the field data collected

by the USGS in the Big Bear Lake area. The recovered basin shape

and depth correspond well to the results produced by the USGS and

to the known geology.

In conclusion, we would like to emphasize that using surface

Cauchy-type integrals reduces the computational expenses signifi-

cantly in comparison with the conventional volume integral meth-

ods. The developed approach to interpretation of the gravity data for

the study of basins makes it practical to invert gravity data on a large

scale while using very fine discretization of the sediment-basement

interface.
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APPENDIX A

A 3D ANALOG OF THE CAUCHY-TYPE INTEGRAL
AND ITS PROPERTIES

A 3D analog of the Cauchy-type integral and its derivation is

introduced by Zhdanov (1988) as follows:

Figure 20. Panel (a) shows the inverted basin depth for the Joshua
Tree basin, and panel (b) is the inversion result produced by USGS
(after Roberts et al., 2002).

Figure 21. A comparison of the (a) observed and (b) predicted
gravity data for the inversions in the Joshua Tree basin. Panel
(c) shows the difference between the observed and predicted data.
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Csðr 0;φÞ ¼
−1

4π

Z Z

S

�
ðn × φÞ∇

1

jr − r 0j
þ ðn × φÞ

× ∇
1

jr − r 0j

�
ds; (A-1)

where S is some closed surface bounding a domain D; φ ¼ φðrÞ is
some vector function defined on the closed surface S; and n is the

normal vector to the surface S, pointing outsideD. The vector func-

tion Cs is called the vector density of the Cauchy-type integral. It is

demonstrated by Zhdanov (1988) that everywhere outside of S, the

vector function Cs represents the Laplace vector field, which sat-

isfies the following equations:

∇ · Cs ¼ 0; ∇ × Cs ¼ 0: (A-2)

Thus, the scalar components of vector function Cs are harmonic

functions. In a special case where φðrÞ stands for the boundary val-
ues on S of the gradient of a function harmonic inside domain D, a

3D Cauchy-type integral can be calculated using the following for-

mula:

Csðr 0;φÞ ¼

�
φðr 0Þ; r 0 ∈ D

0; r 0 ∈ CD
; (A-3)

where CD is a complement of the closed domain D with respect to

the whole space.

It is shown by Zhdanov (1988) that one can formulate a 3D ana-

log of the Pompei formula for the Cauchy-type integral, which is

given by the following expression:

Csðr 0; fðrÞÞ þ
1

4π

Z Z Z

D

ð∇ × fÞ∇
1

jr − r 0j
dv

¼

�
fðr 0Þ; r 0 ∈ D

0; r 0 ∈ CD
; (A-4)

where vector field f is an arbitrary potential field that satisfies the

following equations:

∇ × f ¼ q; ∇ × f ¼ 0: (A-5)

In equation A-5, we consider q as a general source, and it takes

the value of −4πGρ for the gravity problem.

In a special case where f is a Laplace field in D, equation A-4

reduces to a 3D Cauchy integral formula that is given in equa-

tion A-1.

The Cauchy-type integral formulas can be represented using ma-

trix notations. The matrix form makes them suitable for numerical

computation, which is important in practical applications. We take

the convention that the z-axis is directed upward. In a Cartesian

coordinate system fdx; dy; dzg, we can represent the vectors

Cs;φ; n, and ∇ 1
jr−r 0 j as follows:

Cs ¼ Cs
αdα; φ ¼ φβdβ; n ¼ nγdγ; (A-6)

and

∇
1

jr − r 0j
¼ −

rη − r 0η

jr − r 0j3
dη; (A-7)

where rη ¼ η; α; β; γ; η ¼ x; y; z, and we also use the convention

that the twice recurring index indicates a summation over the index.

Using these notations, we can write the scalar components of the

Cauchy-type integral as follows:

Cs
α ¼

−1

4π

Z Z

S

Δαβγηφβ

rη − r 0η

jr − r 0j3
nγds;

α; β; γ; η ¼ x; y; z;

(A-8)

where the four-index Δ-symbol is expressed in terms of the sym-

metric Kronecker symbol δαβ as

Δαβγη ¼ δαβδγη þ δαηδβγ − δαγδβη; δαβ ¼¼

�
1; α ¼ β

0; α ≠ β
:

(A-9)

APPENDIX B

FRÉCHET DERIVATIVE CALCULATION FOR A
GRAVITY ANDGRAVITY GRADIENT OPERATORS
FOR A DENSITY CONTRAST MODEL WITH CON-

STANT DENSITY CONTRAST

For simplicity, we approximate the density contrast surface with a

piecewise horizontal surface as we have shown in equations 23–26.

We will start with the vertical component of the gravity field:

gzðr 0nÞ ¼
XNm

k¼1

f
ðnkÞ
z hðkÞ; (B-1)

where

f
ðnkÞ
z ¼ −Gγρ0

zðkÞ − zðnÞ
0

jrðkÞ − r 0nj
3
ΔxΔy

¼ −Gρ0
hðkÞ −H0 − zðnÞ

0

jrðkÞ − r 0nj
3

ΔxΔy: (B-2)

The matrix of the Fréchet derivative can be found by direct differ-

entiation of the forward-modeling equation B-1 as follows:

Fnl ¼
∂gzðr 0nÞ

∂hðlÞ
¼

∂
PNm

k¼1 f
ðnkÞ
z hðkÞ

∂hðlÞ

¼
XNm

k¼1

�
∂f

ðnkÞ
z

∂hðlÞ
hðkÞ þ f

ðnkÞ
z

∂hðkÞ

∂hðlÞ

�
: (B-3)

We note that

∂hðkÞ

∂hðlÞ
¼ δkl; (B-4)

and
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∂f
ðnkÞ
z

∂hðlÞ
¼−Gρ0ΔxΔy

∂

∂hðlÞ

�
hðkÞ−H0−z

ðnÞ0

jrðkÞ−r0nj
3

�

¼Gρ0ΔxΔy

�
3
ðhðlÞ−H0−z

ðnÞ0Þ2

jrðlÞ−r0nj
5

−
1

jrðlÞ−r0nj
3

�
: (B-5)

By substituting equations B-4 and B-5 into equation B-3 and ap-

plying some algebra, we finally arrive at the solution for the Fréchet

derivative matrix as follows:

Fnl ¼
Gρ0ΔxΔy

jrðlÞ − r 0nj
3

�
3ðhðlÞ −H0 − zðnÞ

0
Þ2

jrðlÞ − r 0nj
2

hðlÞ

− ð2hðlÞ −H0 − zðnÞ
0
Þ

�
: (B-6)

The derivation of the Fréchet derivative matrix for gravity gra-

dient data is very similar to that of vertical gravity component,

but more complicated math will be involved. Still, we use the piece-

wise horizontal surface to approximate the density contrast surface

within each cell. By taking the derivative of equation 25 with re-

spect to hðlÞ, after reduction, we arrive at the solution for the Fréchet

derivative matrix for gravity gradiometry as shown in the following

equation:

F
ðnlÞ
αv ¼

Gρ0ΔxΔyh
ðlÞ

jrðlÞ−r0nj
5

½3δzvðr
ðlÞ
α −r

ðnÞ0

α Þþ3δzαðr
ðlÞ
v −r

ðnÞ0

v Þ

þ2δvαðh
ðlÞ−H0−z

ðnÞ0Þ�

þ
Gρ0ΔxΔyp

ðnlÞ
αv

jrðlÞ−r0nj
5

�
1−5hðlÞ

ðhðlÞ−H0−z
ðnÞ0Þ

jrðlÞ−r0nj
2

�
: (B-7)

APPENDIX C

FRÉCHET DERIVATIVE CALCULATION FOR
GRAVITY ANDGRAVITY GRADIENT OPERATORS
FOR DENSITY CONTRAST MODEL WITH VARIA-

BLE DENSITY CONTRAST

For a model with variable density contrastΔρðzÞ, the gravity field
can be written in the matrix form as follows:

gzðr 0nÞ ¼
XNm

k¼1

f
ðnkÞ
z ½Rð−H0Þ − RðzkÞ�; (C-1)

where the kernel is defined by the following equation:

f
ðnkÞ
z ¼ G

ðhðkÞ −H0 − zðnÞ
0
Þ

jrðkÞ − r 0nj
3

ΔxΔy: (C-2)

In the last equation, we use the following notations:

RðzÞ ¼
Z

z

−H0

ΔρðzÞdz: (C-3)

The matrix of the Fréchet derivative can be found by direct differ-

entiation of the forward-modeling operator C-1 as follows:

Fnl ¼
∂gzðr 0nÞ

∂hðlÞ
¼

∂
PNm

k¼1 f
ðnkÞ
z

∂hðlÞ
¼

XNm

k¼1

�
∂f

ðnkÞ
z

∂hðlÞ

�
: (C-4)

We note that

∂hðkÞ

∂hðlÞ
¼ δkl: (C-5)

After some algebra, we can find an analytic expression for the

Fréchet derivative in a discretized form as follows:

Fnl ¼
G½RðhðlÞ −H0Þ − Rð−H0Þ�

jrðlÞ − r 0nj
3

×

�
3
ðhðlÞ −H0 − zðnÞ

0
Þ2

jrðlÞ − r 0nj
2

− 1

�
ΔxΔy

− GΔρðhðlÞÞ
ðhðlÞ −H0 − zðnÞ

0
Þ

jrðlÞ − r 0nj
3

ΔxΔy: (C-6)

The derivation of the Fréchet derivative matrix for gravity gra-

dient data is also very similar to that of vertical gravity component,

but more complicated math will be involved. Here, we will show the

expression of the Fréchet derivative matrix for gravity gradient data

in the case of variable density distribution without the details of

derivation:

F
ðnlÞ
αv ¼ GΔρðhðlÞÞδαηAΔxΔy

þ G½RðhðlÞ −H0Þ − Rð−H0Þ�δαηBΔxΔy; (C-7)

where

A ¼
3ðr

ðlÞ
v − r

ðnÞ 0

v Þðr
ðlÞ
η − r

ðnÞ 0

η Þ − jrðlÞ − r 0nj
2δvη

jrðlÞ − r 0nj
5

(C-8)

and

B¼
½5jrðlÞ − r 0nj

2δvη − 15ðr
ðlÞ
v − r

ðnÞ 0

v Þðr
ðlÞ
η − r

ðnÞ 0

η Þ�ðhðlÞ −H0 − zðnÞ
0
Þ

jrðlÞ − r 0nj
7

þ
3δzηδzv − 2ðhðlÞ −H0 − zðnÞ

0
Þδvη

jrðlÞ − r 0nj
5

. (C-9)
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