
Application of CLIPS Expert System to Malware Detection System

Zhou Ruili, Pan Jianfeng, Tan Xiaobin, Xi Hongsheng
Department of Automation, University of Science and Technology of China

relly@ustc.edu, pjf@ustc.edu, xbtan@ustc.edu.cn, xihs@ustc.edu.cn

Abstract

Malware detection is a crucial aspect of software

security. Traditional signature-based detection method
cannot detect zero-day attacks and some malware
adopting some circumvention techniques such as
polymorphic, metamorphic, obfuscation and packer. So
some anomaly-based detection techniques are
introduced to overcome this drawback, but these
techniques have high false alarm rate and the
complexity involved in determining what features
should be learned in the training phase. In order to
overcome these shortcomings, we propose a malware
detection system based on expert systems in this paper.
This system integrates signature-based analysis and
anomaly-detection technique together. The signature is
anomaly behavioral signatures. Accord to expertise
about malware’s major suspicious behaviors, we build
the knowledge base of the expert system. And we
design a behavior gathering component to intercept
anomaly behaviors happened in the operating system
and get significant traces leaved by malware, then
present these behaviors and traces as facts. The expert
system uses the knowledge base and behaviors facts to
infer and give the results. This system can detect not
only known malware, but some zero-day attacks using
known techniques and also malware adopting low-
level techniques, such as polymorphic and packer.

1. Introduction

Malware is a program with malicious intent that has
the potential to harm the machine on which it executes
or the network over which it communicates [1].The
damage caused by malware has dramatically increased
in the past few years [2]. So malware detection is a
crucial aspect of software security. Nwokedi and
Aditya [3] categorize techniques used for detecting

malware broadly into two categories: anomaly-based
detection and signature-based detection.

An anomaly-based detection technique uses its
knowledge of what constitutes normal behavior to
decide the maliciousness of a program under
inspection. There are many anomaly-based detection
techniques, including data mining approach [4,5],
static analysis based approach [6,7], Finite State
Automata (FSA) based approach[8], the frequency of
system calls based approach [9], Fileprint (n-gram)
analysis based approach [10], “cross-view diff-based”
approach [11], Instruction Block Signatures based
approach[12],etc. The key advantage of anomaly-based
detection is its ability to detect zero-day attacks. But
there are two fundamental limitations of this technique
that are its high false alarm rate and the complexity
involved in determining what features should be
learned in the training phase.

Signature-based detection uses its characterization
of what is known to be malicious to decide the
maliciousness of a program under inspection. There are
many signature-based detection techniques, including
string signatures scanning [13], sequence of Windows
API calls signatures based approach [14], templates
signatures based approach [15], black-box signature
based approach [16], etc. Currently, those signature-
based detection techniques primarily rely on human
expertise in creating the signatures that represent the
malicious behavior exhibited by programs. Once a
signature has been created, it is added to the signature-
based method’s knowledge. But the major drawback of
the signature-based method for malware detection is
that it cannot detect zero-day attacks.

At present, expert systems [17] used in information
security are mainly in intrusion detection [18, 19, 20].
The mainly intrusion detection techniques are: misuse
detection, anomaly detection and expert system based
detection. Misuse detection has low false alarm
because of its nature. But the main shortcomings of

2008 International Conference on Computational Intelligence and Security

978-0-7695-3508-1/08 $25.00 © 2008 IEEE

DOI 10.1109/CIS.2008.100

309

Authorized licensed use limited to: Old Dominion University. Downloaded on October 12, 2009 at 10:40 from IEEE Xplore. Restrictions apply.

misuse detection are: known intrusion patterns have to
be hand-coded; it is unable to detect any new or
unknown attack that has no matched pattern stored in
the system. Anomaly detection can detect new and
unknown intrusion, but it has the shortcoming of false
alarm rate. Expert system detection collects data
through monitoring system, events, safety records and
system records and intercepting the original IP packet.
When the collected data showed suspicious activity, it
will trigger the rules. The reasons for choosing an
expert system are its accurate, high performance, real-
time detection of the attacks, and it can give a detailed
explanation of results and add new rules without
changing existing rules and without creating any
undesired dependency. Because of these reasons, we
introduce expert system to our malware detection
system.

In this paper, we propose a malware detection
system based on expert systems. It uses expertise that
is the suspicious behaviors of different kinds of
malware. While detecting, the system uses its
behaviors gathered component to gather behaviors
happened in the host, and then use the CLIPS inference
engine to reason. Our system integrates signature-
based analysis and anomaly-detection technique. The
signatures are suspicious behaviors, such as inline
hook. So the advantages of our system are: its accurate
and high performance; it can detect known or unknown
malware no matter even it is hidden and resident; it
also has considerable ability to detect malware
adopting some circumvention techniques such as
polymorphic, metamorphic, obfuscation and packer;
and it can give a detailed explanation of results and add
new rules without changing existing rules and without
creating any undesired dependency.

The rest of the paper is organized as follows. In
Section 2, profiles Expert Systems. In Section 3,
presents our framework for malware detection. In
Section 4 shows our experiment results and discussions.
Section 5 concludes the paper.

2. Expert Systems

An expert system is a program which is specifically
intended to model human expertise or knowledge. The
expert system tool exploited in this paper is CLIPS (C
Language Integrated Production System) [21]. CLIPS
is an expert system shell originally developed in 1984
by the Artificial Intelligence Section of NASA’s
Johnson Space Center and is written in C. CLIPS uses
a forward-chaining inference strategy based on the
Rete pattern-matching algorithm. The CLIPS shell
provides the basic elements of an expert system [22]:

1. fact-list and instance-list: Global memory for
data

2. knowledge-base: Contains all the rules, the rule-
base

3. inference engine: Controls overall execution of
rules

A program written in CLIPS may consist of rules,
facts, and objects. The inference engine decides which
rules should be executed and when. A rule-based
expert system written in CLIPS is a data-driven
program where the facts, and objects if desired, are the
data that stimulate execution via the inference engine.

Fact[17] is consists of relation name(a symbol
field)、followed with zero or some slot(also symbol
field) and their relevant value. The deftemplate [17]
construct is used to create a template which can then be
used by non-ordered facts to access fields of the fact by
name.The syntax of the deftemplate construct [23] is:

(deftemplate <deftemplate-name> [<comment>]

<slot-definition>*)
<slot-definition> ::= <single-slot-definition>

| <multislot-definition>

One of the primary methods of representing
knowledge in CLIPS is an IF THEN rule. A rule [23]
is composed of an antecedent and a consequent. The
antecedent of a rule is a set of conditions (or
conditional elements) which must be satisfied for the
rule to be applicable. Rules are defined using the
defrule construct [23].The syntax of the defrule
construct is:

(defrule <rule-name> [<comment>][<declaration>] ;

<conditional-element>* ; Left-Hand Side (LHS)
=>

<action>*) ; Right-Hand Side (RHS)

3. Framework of Malware Detection
System

Fig.1 shows the framework of Malware detection
system based on expert system. The system consists of
five main parts, Knowledge Base, Fact List, Inference
Engine, Behaviors Gathering Component, User
Interface. These parts are described in the following.

310

Authorized licensed use limited to: Old Dominion University. Downloaded on October 12, 2009 at 10:40 from IEEE Xplore. Restrictions apply.

Fig.1. Framework of Our Malware Detection System

3.1. Knowledge Base

This part consists of domain knowledge and
behavioral knowledge in the form of deductive rules.
The domain knowledge is knowledge about the
Operating System (Windows), including system
processes list, system services list, file system,
Windows Registry entries, etc. For example, the
knowledge of system processes list:

(defclass SYS-PROC (is-a USER)
 (slot name))
(definstances system-process
(of SYS-PROC (name "C:\\WINDOWS\\system32\\csrss.exe"))
…
 (of SYS-PROC (name "C:\\WINDOWS\\system32\\smss.exe"))
)

The behavioral knowledge is expertise about what
major suspicious behaviors of different kinds of
malware. Using memory-resident malware as example,
we discuss the construction of behavioral knowledge
base. Such malware typically follow these steps:
1. The malware gets control of the system.
2. It allocates a block of memory for its own code.
3. It relocates its code to the allocated block of
memory.
4. It activates itself in the allocated memory block.
5. It hooks the execution of the code flow to itself.
6. It infects new files and/or system areas.

This is the most typical pattern, but several other
methods exist that do not require all of the preceding
steps. Then the major suspicious behaviors of this kind
of malware are: allocates a block of memory in some
process’s memory space; writes data to the allocated
block of memory; does some kind of hook. Presents
the behavioral signature knowledge as rules:

(defrule check-malicious-process
? allocate -memory <- (allocate-memory
 (srcPrc ?srcprc)(dstPrc ?dstprc&~?srcprc))
? write -memory <- (write-memory
 (srcPrc ?srcprc)(dstPrc ?dstprc&~?srcprc))
?inline-hook <- (inline-hook

 (scrAddr ?srcAddr)(dstAddr ?dstAddr)
 (dstName ?dstName)(modName ?modName))
(test(=(length$ (find-all-instances((?p SYS-PROCESS))
 (eq ?p:name ?srcprc))) 0))
(not (malicious-process (process ?srcprc)))
=>
(printout t ?srcprc " is malicious..." crlf)
(assert (malicious-process (process ?srcprc))))

The templates using in the rules will be described in
the part of Fact List.

3.2. Behaviors Gathering Component

The Behaviors Gathering Component is responsible
for collecting various kinds of information data of the
system, including behavioral information of malware
using some low-level stealth techniques.

It consists of system services intercepted and trace
scan. The system services intercepted can intercept
efficiently amount of behaviors of malware in user
mode or kernel mode. In order to achieve their aims,
malware have some special behaviors, and these
behaviors would leave a variety of significant traces.
Scanning these traces can be effective with found and
judge the presence of malware. But the intercepted
behavioral data can not be directly delivered expert
system modules. The data should be transformed to be
presented as facts or instances which can be identified
by the expert system. The examples of intercepted
behavioral data are giving:

Create process:

C:\hxdef100r\hxdef100.exe
C:\WINDOWS\system32\smss.exe

Allocate memory:10000
C:\hxdef100r\hxdef100.exe
C:\WINDOWS\system32\smss.exe
IsParent:1

Write memory:10000
C:\hxdef100r\hxdef100.exe

C:\WINDOWS\system32\smss.exe

The first one means process named hxdef100.exe

whose path is “C:\hxdef100r\hxdef100.exe” creates a
process named smss.exe whose path is
“C:\WINDOWS\system32\smss.exe”. The second
means process hxdef100.exe allocates a block of
memory whose base address is 10000 in the memory
space of process smss.exe. The last one means process
hxdef100.exe writes data to the memory space of
process smss.exe, and the base address is 10000. The
above examples after being preprocessed by this
component will be:

(create-process

(srcPrc "C:\WINDOWS\system32\services.exe")
(dstPrc "C:\hxdef100r\hxdef100.exe"))

(allocate-memory
(baseaddr 10000)

Knowledge
Base

Inference
Engine

Fact
List

User
Interface

Behaviors
Gathering

Component

311

Authorized licensed use limited to: Old Dominion University. Downloaded on October 12, 2009 at 10:40 from IEEE Xplore. Restrictions apply.

(srcPrc "C:\hxdef100r\hxdef100.exe")
(dstPrc "C:\WINDOWS\system32\smss.exe"))

(write-memory
(baseaddr 10000)
(srcPrc "C:\hxdef100r\hxdef100.exe")
(dstPrc "C:\WINDOWS\system32\smss.exe"))

The behavioral data after being preprocessed will be
stored in the Fact List, for the Inference Engine module
reasoning, to determine whether the procedures are
malicious.

3.3. Fact List

The behavioral data after being preprocessed will be
presented as facts. So we need define templates to
describe facts. And the structure of each template is
based on the behavioral signatures. For example, the
“allocate memory” behavior, its description includes
the following slots: the source process, the source
process’s PID value, the destination process, the
destination process’s PID value, and the base address
being allocated. That is:

(deftemplate allocate-memory

(slot baseaddress)(slot srcPid)
(slot srcPrc)(slot dstPid)(slot dstPrc))

After we define these templates, the behavioral data

gathered by Behaviors Gathering Component will be
presented as facts using these templates.

3.4. Inference Engine

Inference Engine is a mechanism provided by
CLIPS which automatically matches patterns against
the current state of the fact-list and list of instances and
determines which rules are applicable. Once a
knowledge base (in the form of rules) is built and the
fact-list and instance-list is prepared, CLIPS is ready to
execute rules. In a conventional language, the starting
point, the stopping point, and the sequence of
operations are defined explicitly by the programmer.
With CLIPS, the program flow does not need to be
defined quite so explicitly. The knowledge (rules) and
the data (facts and instances) are separated, and the
inference engine provided by CLIPS is used to apply
the knowledge to the data. The basic execution cycle
[23] is as follows:

1. If the rule firing limit has been reached or there is
no current focus, then execution is halted. Otherwise,
the top rule on the agenda of the module which is the
current focus is selected for execution. If there are no
rules on that agenda, then the current focus is removed
from the focus stack and the current focus becomes the
next module on the focus stack. If the focus stack is

empty, then execution is halted, otherwise step 1 is
executed again.

2. The right-hand side (RHS) actions of the selected
rule are executed. The use of the return function on the
RHS of a rule may remove the current focus from the
focus stack. The number of rules fired is incremented
for use with the rule firing limit.

3. As a result of step 2, rules may be activated or
deactivated. Activated rules (those rules whose
conditions are currently satisfied) are placed on the
agenda of the module in which they are defined. The
placement on the agenda is determined by the salience
of the rule and the current conflict resolution strategy.
Deactivated rules are removed from the agenda. If the
activations item is being watched, then an
informational message will be displayed each time a
rule is activated or deactivated.

4. If dynamic salience is being used, the salience
values for all rules on the agenda are reevaluated.
Repeat the cycle beginning with step 1.

3.5. User Interface

User interface is for users to interact with the expert
system. It includes menu for the choice of knowledge
base, button for starting reasoning and detecting, and
the show column of detection results.

4. Experiments and discussions

This section details the experiments undertaken to
evaluate the detection performance of our malware
detection system. Since there are no other existing
publicly available detection systems that based on
expert systems we were unable to compare our
performance to other system based on expert systems.
To validate the claim that our detection technique is
accurate, we compare our performance to some known
anti-virus tools, such as Bitdefender, F-PROT, ESET
NOD32, Kaspersky, McAfee and Norton.We choose
Hxdef (Hacker defender) Rootkit [24] as malware
sample. It is a user-mode rootkit that modifies several
Windows and Native API functions, which allows it to
hide information from other applications. We pack or
protect Hxdef to generate some variants of Hacker
defender. The packers used are: UPX, PeCompact,
Upack, Petite, NsPack, FSG; and encryption protectors
are: ACProtect ,ASProtect, Armadillo Custom,
EXECryptor, MSLRH, Obsidium, PC Guard, PE-
Armor, PeLock, PESpin, SDProtector, Themida,
Winlicense, tElock, Yoda's Protector.

In our experiments, we use aforementioned packers
and encryption protectors to process Hxdef, so we get
21 variants of Hxdef. Then we use 5 well known anti-

312

Authorized licensed use limited to: Old Dominion University. Downloaded on October 12, 2009 at 10:40 from IEEE Xplore. Restrictions apply.

virus tools, which are Bitdefender, F-PROT, ESET
NOD32, Kaspersky and Norton, to scan these 22
malware samples. The scan results of these anti-virus
tools are presented in Table.1. And then we run these
malware samples and use our system presented in this
paper to detect the system. The detection results are
also showed in Table.1.

Object Name Bitdefender F-Prot Kaspersky Norton Nod32 Our
system

Hxdef D D D D D D
Hxdef
_ACProtect D N N N D D

Hxdef
_Armadillo D D N D D D

Hxdef
_ASProtect D D N N D D

Hxdef
_EXECryptor N N N N N D

Hxdef
_FSG D D D D D D

Hxdef
_MSLRH N D D N D D

Hxdef
_Nspack D D D D D D

Hxdef
_Obsidium D D D D N D

Hxdef
_PCGuard N N D N D D

Hxdef
_PEArmor

*D N N N D D

Hxdef
_PEcompact D N D D D D

Hxdef
_PeLock D D D N N D

Hxdef
_PESpin

*D D D N D D

Hxdef
_ Petite D N D D D D

Hxdef
_SDProtector N N D D D D

Hxdef
 _tElock D D D D D D

Hxdef
_Themida N N N N *D D

Hxdef
_Upack D D D D D D

Hxdef
_UPX D D D D D D

Hxdef
_WinLicense N N N N *D D

Hxdef
_yoda Protector D D D D D D

Scanned files 22 22 22 22 22 22
Infected objects 16 13 15 12 19 22
Detect ratio 72.7% 59.1% 68.2% 54.5% 86.4% 100%

Table.1.Scan results of anti-virus tools and our system.

Note1: The “D” means the program is detected as
malware; the “N” means the program is not detected,
that is the anti-virus tool doesn’t think it is suspicious.

Note2: The “ *D ” means the tool just detects the
program been packed by some packer, but can’t judge
whether the program is a threat or not.

From Table.1, we can see that our system’s
detection ratio is up to 100 percent. The detection ratio
of the remaining anti-virus tools from high to low are
Nod32 86.4%, Bitdefender 72.7%, Kaspersky 68.2%,
F-PROT 59.1%, and Norton 54.5%. We need to pay
attention to the “ *D ” in Table.1, which means the tool
just detects the program been packed by some packer
or protector, but can’t judge whether the program is a
threat or not. In fact, many of the normal software use
packer to process themselves in order to prevent

reverse engineering and disassemble. Then if not
including the “ *D ”, the detection ratio of Bitdefender
and Nod32 will be 63.6% and 77.3%.

From the experiments, we can draw that our system
can detect malware using known techniques, even low-
level techniques, for example rootkit. It also can detect
those malware even after they have being packed or
encryption protected by any packer or protector. But
the nature of the technique used in our system decides
the main drawback of the system, which is the system
can detect it just when the malware is running,
otherwise it can’t detect the malware. But these anti-
virus tools do not require the malware is active.

5. Conclusions

This research has demonstrated suspicious
behaviors can be valuable signatures in unknown
malicious detection. Even if there are different
malicious programs, such as Backdoor, but they all
have similar behaviors. Using the system presented in
this paper, we can detect malware using low-level
techniques, such as rootkit, and these malware being
packed by any packers or protectors. But the drawback
of this method is we can detect malware just when it is
running. So in order to having better performance,
should use some static detection methods.

In future we intend to expand our behaviors
knowledge base for more processes, and categorize
behaviors signatures, so we can define and give the
species of malware.

6. Acknowledge

This work is supported by the National 863 High-
tech Program of China (No. 2006AA01Z449) and the
42nd National Science Foundation for Post-doctoral
Scientists of China (No. 20070420738).

7. References

[1] M. D. Preda, M. Christodorescu, S. Jha, S. Debray.
A Semantics-Based Approach to Malware Detection.
POPL’07 January 17–19, 2007, Nice, France.

[2] R. Richardson, S. Peters. Computer Crime and
Security Survey. Technical report, Computer Security
Institute (CSI), 2007

[3] N. Idika, and A. P. Mathur, Survey of Malware
Detection Techniques. Department of Computer
Science Purdue University, February 2, 2007.

313

Authorized licensed use limited to: Old Dominion University. Downloaded on October 12, 2009 at 10:40 from IEEE Xplore. Restrictions apply.

[4] W. Lee and S. Stolfo. Data mining approaches for
intrusion detection. In Proceedingsof the 7th USENIX
Security Symposium, 1998

[5] Guangzhi Qu, Salim Hariri, Mazin S. Yousif.
Multivariate statistical analysis for network attacks
detection. AICCSA 2005: 9

[6] J. Bergeron, M. Debbabi, M.M. Erhioui, and B.
Ktari. Static analysis of binary code to isolate
malicious behavior. In 8th Workshop on Enabling
Technologies: Infrastructure for Collaborative
Entrerprises, 1999

[7] J. Bergeron, M. Debbabi, J. Desharnais, M.M.
Erhioui, and N. Tawbi. Static detection of malicious
code in executable programs. Int. J. of Req. Eng., 2001

[8] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati.
A fast automaton-based approach for detecting
anomalous program behaviors. In IEEE Symposium on
Security and Privacy, 2001

[9] I. Sato, Y. Okazaki, and S. Goto. An improved
intrusion detection method based on process profiling.
IPSJ Journal, 43:3316 – 3326, 2002

[10] W. Li, K.Wang, S. Stolfo, and B. Herzog.
Fileprints: Identifying file types by n-gram analysis.
6th IEEE Information Assurance Workshop, June 2005

[11] Y. M. Wang, D. Beck, B. Vo, R. Roussev, and C.
Verbowski. Detecting stealth software with strider
ghostbuster. In Proceedings of the 2005 International
Conference on Dependable Systems and Networks,
pages 368–377, 2005

[12] M. Milenkovic, A. Milenkovic, and E. Jovanov.
Using instruction block signatures to counter code
injection attacks. ACM SIGARCH Computer
Architecture News,33:108–117, March 2005

[13] Peter Szor .The Art of Computer Virus Research
and Defence. Addison Wesley Professional,ISBN 0-
321-30454-3,February 2005, Chapter 11

[14] A. Sung, J. Xu, P. Chavez, and S. Mukkamala.
Static analyzer of vicious executables(save). In
Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC ’04), 00:326–334,
2004

[15] M. Christodorescu, S. Jha, S. Seshia, D. Song, and
R. Bryant. Semantics-aware malware detection. In
Proceedings of the 2005 IEEE Symposium on Security
and Privacy, pages 32–46, 2005

[16] E. Filiol. Malware pattern scanning schemes
secure against black-box analysis. Journal of Computer
Virol., 2006

[17] Joseph C. Giarratano, Gary D. Riley. Expert
Systems Principles and Programming Fourth Edition,
February 22, 2006

[18] T.F. Lunt, A. Tamaru, F. Gilham et al. A real-time
intrusion detection expert system (IDES) final
technical report. Technical report, Computer Science
Laboratory, SRI International, Menlo park, California,
1992.

[19] Debra Anderson, Thane Frivold, Alfonso Valdes.
Next-generation Intrusion Detection Expert System
(NIDES) A Summary. Computer Science Laboratory,
SRI-CSL-95-07, 1995.

[20] De-gang Yang，Chun-yan Hu，Yong-hong Chen.
A framework of Cooperating Intrusion Detection based
on Clustering Analysis and Expert System. Proceeding
of the InfoSecu04, Nov. 14-16, 2004.

[21]
http://clipsrules.sourceforge.net/WhatIsCLIPS.html

[22] Joseph C. Giarratano, Ph.D. CLIPS User’s Guide
Version Quicksilver Beta,December 31st 2007.
http://clipsrules.sourceforge.net/OnlineDocs.html

[23] CLIPS Reference Manua Volume I Basic
Programming Guide Quicksilver Beta, December 31st
2007.http://clipsrules.sourceforge.net/OnlineDocs.html

[24] http://rootkit.host.sk/

314

Authorized licensed use limited to: Old Dominion University. Downloaded on October 12, 2009 at 10:40 from IEEE Xplore. Restrictions apply.

