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Abstract 

 
Malware detection is a crucial aspect of software 

security. Traditional signature-based detection method 
cannot detect zero-day attacks and some malware 
adopting some circumvention techniques such as 
polymorphic, metamorphic, obfuscation and packer. So 
some anomaly-based detection techniques are 
introduced to overcome this drawback, but these 
techniques have high false alarm rate and the 
complexity involved in determining what features 
should be learned in the training phase. In order to 
overcome these shortcomings, we propose a malware 
detection system based on expert systems in this paper. 
This system integrates signature-based analysis and 
anomaly-detection technique together. The signature is 
anomaly behavioral signatures. Accord to expertise 
about malware’s major suspicious behaviors, we build 
the knowledge base of the expert system. And we 
design a behavior gathering component to intercept 
anomaly behaviors happened in the operating system 
and get significant traces leaved by malware, then 
present these behaviors and traces as facts. The expert 
system uses the knowledge base and behaviors facts to 
infer and give the results. This system can detect not 
only known malware, but some zero-day attacks using 
known techniques and also malware adopting low-
level techniques, such as polymorphic and packer. 
 
1. Introduction 
 

Malware is a program with malicious intent that has 
the potential to harm the machine on which it executes 
or the network over which it communicates [1].The 
damage caused by malware has dramatically increased 
in the past few years [2]. So malware detection is a 
crucial aspect of software security. Nwokedi and 
Aditya [3] categorize techniques used for detecting 

malware broadly into two categories: anomaly-based 
detection and signature-based detection.  

An anomaly-based detection technique uses its 
knowledge of what constitutes normal behavior to 
decide the maliciousness of a program under 
inspection. There are many anomaly-based detection 
techniques, including data mining approach [4,5], 
static analysis based approach [6,7], Finite State 
Automata (FSA) based approach[8], the frequency of 
system calls based approach [9], Fileprint (n-gram) 
analysis based approach [10], “cross-view diff-based” 
approach [11], Instruction Block Signatures based 
approach[12],etc. The key advantage of anomaly-based 
detection is its ability to detect zero-day attacks. But 
there are two fundamental limitations of this technique 
that are its high false alarm rate and the complexity 
involved in determining what features should be 
learned in the training phase. 

Signature-based detection uses its characterization 
of what is known to be malicious to decide the 
maliciousness of a program under inspection. There are 
many signature-based detection techniques, including 
string signatures scanning [13], sequence of Windows 
API calls signatures based approach [14], templates 
signatures based approach [15], black-box signature 
based approach [16], etc. Currently, those signature-
based detection techniques primarily rely on human 
expertise in creating the signatures that represent the 
malicious behavior exhibited by programs. Once a 
signature has been created, it is added to the signature-
based method’s knowledge. But the major drawback of 
the signature-based method for malware detection is 
that it cannot detect zero-day attacks. 

At present, expert systems [17] used in information 
security are mainly in intrusion detection [18, 19, 20]. 
The mainly intrusion detection techniques are: misuse 
detection, anomaly detection and expert system based 
detection. Misuse detection has low false alarm 
because of its nature. But the main shortcomings of 
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misuse detection are: known intrusion patterns have to 
be hand-coded; it is unable to detect any new or 
unknown attack that has no matched pattern stored in 
the system. Anomaly detection can detect new and 
unknown intrusion, but it has the shortcoming of false 
alarm rate. Expert system detection collects data 
through monitoring system, events, safety records and 
system records and intercepting the original IP packet. 
When the collected data showed suspicious activity, it 
will trigger the rules. The reasons for choosing an 
expert system are its accurate, high performance, real-
time detection of the attacks, and it can give a detailed 
explanation of results and add new rules without 
changing existing rules and without creating any 
undesired dependency. Because of these reasons, we 
introduce expert system to our malware detection 
system.  

In this paper, we propose a malware detection 
system based on expert systems. It uses expertise that 
is the suspicious behaviors of different kinds of 
malware. While detecting, the system uses its 
behaviors gathered component to gather behaviors 
happened in the host, and then use the CLIPS inference 
engine to reason. Our system integrates signature-
based analysis and anomaly-detection technique. The 
signatures are suspicious behaviors, such as inline 
hook. So the advantages of our system are: its accurate 
and high performance; it can detect known or unknown 
malware no matter even it is hidden and resident; it 
also has considerable ability to detect malware 
adopting some circumvention techniques such as 
polymorphic, metamorphic, obfuscation and packer; 
and it can give a detailed explanation of results and add 
new rules without changing existing rules and without 
creating any undesired dependency. 

The rest of the paper is organized as follows. In 
Section 2, profiles Expert Systems. In Section 3, 
presents our framework for malware detection. In 
Section 4 shows our experiment results and discussions. 
Section 5 concludes the paper. 
 
2. Expert Systems 
 

An expert system is a program which is specifically 
intended to model human expertise or knowledge. The 
expert system tool exploited in this paper is CLIPS (C 
Language Integrated Production System) [21]. CLIPS 
is an expert system shell originally developed in 1984 
by the Artificial Intelligence Section of NASA’s 
Johnson Space Center and is written in C. CLIPS uses 
a forward-chaining inference strategy based on the 
Rete pattern-matching algorithm. The CLIPS shell 
provides the basic elements of an expert system [22]: 

1. fact-list and instance-list: Global memory for 
data 

2. knowledge-base: Contains all the rules, the rule-
base 

3. inference engine: Controls overall execution of 
rules 

A program written in CLIPS may consist of rules, 
facts, and objects. The inference engine decides which 
rules should be executed and when. A rule-based 
expert system written in CLIPS is a data-driven 
program where the facts, and objects if desired, are the 
data that stimulate execution via the inference engine. 

Fact[17] is consists of relation name(a symbol 
field)、followed with zero or some slot(also symbol 
field) and their relevant value. The deftemplate [17] 
construct is used to create a template which can then be 
used by non-ordered facts to access fields of the fact by 
name.The syntax of the deftemplate construct [23] is: 

 
(deftemplate <deftemplate-name> [<comment>] 

<slot-definition>*) 
<slot-definition> ::=  <single-slot-definition>  

| <multislot-definition> 
 

One of the primary methods of representing 
knowledge in CLIPS is an IF THEN rule. A rule [23] 
is composed of an antecedent and a consequent. The 
antecedent of a rule is a set of conditions (or 
conditional elements) which must be satisfied for the 
rule to be applicable. Rules are defined using the 
defrule construct [23].The syntax of the defrule 
construct is: 

 
(defrule <rule-name> [<comment>][<declaration>] ;  

<conditional-element>* ; Left-Hand Side (LHS) 
=> 

<action>*) ; Right-Hand Side (RHS) 
 

3. Framework of Malware Detection 
System 
 

Fig.1 shows the framework of Malware detection 
system based on expert system. The system consists of 
five main parts, Knowledge Base, Fact List, Inference 
Engine, Behaviors Gathering Component, User 
Interface. These parts are described in the following. 
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Fig.1. Framework of Our Malware Detection System
 
3.1. Knowledge Base 
 

This part consists of domain knowledge and 
behavioral knowledge in the form of deductive rules.  
The domain knowledge is knowledge about the 
Operating System (Windows), including system 
processes list, system services list, file system, 
Windows Registry entries, etc. For example, the 
knowledge of system processes list: 
 
(defclass SYS-PROC  (is-a USER)  
   (slot name)) 
(definstances system-process 
(of SYS-PROC (name "C:\\WINDOWS\\system32\\csrss.exe")) 
… 
 (of SYS-PROC (name "C:\\WINDOWS\\system32\\smss.exe")) 
) 
 

The behavioral knowledge is expertise about what 
major suspicious behaviors of different kinds of 
malware. Using memory-resident malware as example, 
we discuss the construction of behavioral knowledge 
base. Such malware typically follow these steps: 
1. The malware gets control of the system.  
2. It allocates a block of memory for its own code. 
3. It relocates its code to the allocated block of 
memory.  
4. It activates itself in the allocated memory block. 
5. It hooks the execution of the code flow to itself. 
6. It infects new files and/or system areas.  

This is the most typical pattern, but several other 
methods exist that do not require all of the preceding 
steps. Then the major suspicious behaviors of this kind 
of malware are: allocates a block of memory in some 
process’s memory space; writes data to the allocated 
block of memory; does some kind of hook. Presents 
the behavioral signature knowledge as rules: 

 
(defrule check-malicious-process 
? allocate -memory <- (allocate-memory 
 (srcPrc ?srcprc)(dstPrc ?dstprc&~?srcprc)) 
? write -memory <- (write-memory 
 (srcPrc ?srcprc)(dstPrc ?dstprc&~?srcprc)) 
?inline-hook <- (inline-hook 

 (scrAddr ?srcAddr)(dstAddr ?dstAddr) 
 (dstName ?dstName)(modName ?modName)) 
(test(=(length$ (find-all-instances((?p SYS-PROCESS)) 
  (eq ?p:name ?srcprc))) 0)) 
(not (malicious-process (process ?srcprc))) 
=> 
(printout t ?srcprc " is malicious..." crlf) 
(assert (malicious-process (process ?srcprc)))) 
 

The templates using in the rules will be described in 
the part of Fact List. 
 
3.2. Behaviors Gathering Component 
 

The Behaviors Gathering Component is responsible 
for collecting various kinds of information data of the 
system, including behavioral information of malware 
using some low-level stealth techniques. 

It consists of system services intercepted and trace 
scan. The system services intercepted can intercept 
efficiently amount of behaviors of malware in user 
mode or kernel mode. In order to achieve their aims, 
malware have some special behaviors, and these 
behaviors would leave a variety of significant traces. 
Scanning these traces can be effective with found and 
judge the presence of malware. But the intercepted 
behavioral data can not be directly delivered expert 
system modules. The data should be transformed to be 
presented as facts or instances which can be identified 
by the expert system. The examples of intercepted 
behavioral data are giving:  

 
Create process: 

C:\hxdef100r\hxdef100.exe 
C:\WINDOWS\system32\smss.exe 

Allocate memory:10000 
C:\hxdef100r\hxdef100.exe 
C:\WINDOWS\system32\smss.exe 
IsParent:1 

Write memory:10000 
C:\hxdef100r\hxdef100.exe 

C:\WINDOWS\system32\smss.exe 
 
The first one means process named hxdef100.exe 

whose path is “C:\hxdef100r\hxdef100.exe” creates a 
process named smss.exe whose path is 
“C:\WINDOWS\system32\smss.exe”. The second 
means process hxdef100.exe allocates a block of 
memory whose base address is 10000 in the memory 
space of process smss.exe. The last one means process 
hxdef100.exe writes data to the memory space of 
process smss.exe, and the base address is 10000. The 
above examples after being preprocessed by this 
component will be: 

 
(create-process  

(srcPrc "C:\WINDOWS\system32\services.exe")  
(dstPrc "C:\hxdef100r\hxdef100.exe")) 

(allocate-memory  
(baseaddr 10000) 

Knowledge 
Base 

Inference 
Engine 

Fact 
List 

User 
Interface 

Behaviors 
Gathering 

Component 
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(srcPrc "C:\hxdef100r\hxdef100.exe") 
(dstPrc "C:\WINDOWS\system32\smss.exe")) 

(write-memory  
(baseaddr 10000) 
(srcPrc "C:\hxdef100r\hxdef100.exe") 
(dstPrc "C:\WINDOWS\system32\smss.exe")) 
 

The behavioral data after being preprocessed will be 
stored in the Fact List, for the Inference Engine module 
reasoning, to determine whether the procedures are 
malicious. 
 
3.3. Fact List 
 

The behavioral data after being preprocessed will be 
presented as facts. So we need define templates to 
describe facts. And the structure of each template is 
based on the behavioral signatures. For example, the 
“allocate memory” behavior, its description includes 
the following slots: the source process, the source 
process’s PID value, the destination process, the 
destination process’s PID value, and the base address 
being allocated. That is: 

 
(deftemplate allocate-memory 

(slot baseaddress)(slot srcPid) 
(slot srcPrc)(slot dstPid)(slot dstPrc)) 

 
After we define these templates, the behavioral data 

gathered by Behaviors Gathering Component will be 
presented as facts using these templates. 
 
3.4. Inference Engine 
 

Inference Engine is a mechanism provided by 
CLIPS which automatically matches patterns against 
the current state of the fact-list and list of instances and 
determines which rules are applicable. Once a 
knowledge base (in the form of rules) is built and the 
fact-list and instance-list is prepared, CLIPS is ready to 
execute rules. In a conventional language, the starting 
point, the stopping point, and the sequence of 
operations are defined explicitly by the programmer. 
With CLIPS, the program flow does not need to be 
defined quite so explicitly. The knowledge (rules) and 
the data (facts and instances) are separated, and the 
inference engine provided by CLIPS is used to apply 
the knowledge to the data. The basic execution cycle 
[23] is as follows: 

1. If the rule firing limit has been reached or there is 
no current focus, then execution is halted. Otherwise, 
the top rule on the agenda of the module which is the 
current focus is selected for execution. If there are no 
rules on that agenda, then the current focus is removed 
from the focus stack and the current focus becomes the 
next module on the focus stack. If the focus stack is 

empty, then execution is halted, otherwise step 1 is 
executed again.  

2. The right-hand side (RHS) actions of the selected 
rule are executed. The use of the return function on the 
RHS of a rule may remove the current focus from the 
focus stack. The number of rules fired is incremented 
for use with the rule firing limit. 

3. As a result of step 2, rules may be activated or 
deactivated. Activated rules (those rules whose 
conditions are currently satisfied) are placed on the 
agenda of the module in which they are defined. The 
placement on the agenda is determined by the salience 
of the rule and the current conflict resolution strategy. 
Deactivated rules are removed from the agenda. If the 
activations item is being watched, then an 
informational message will be displayed each time a 
rule is activated or deactivated. 

4. If dynamic salience is being used, the salience 
values for all rules on the agenda are reevaluated. 
Repeat the cycle beginning with step 1. 
 
3.5. User Interface 
 

User interface is for users to interact with the expert 
system. It includes menu for the choice of knowledge 
base, button for starting reasoning and detecting, and 
the show column of detection results.  
 
4. Experiments and discussions 
 

This section details the experiments undertaken to 
evaluate the detection performance of our malware 
detection system. Since there are no other existing 
publicly available detection systems that based on 
expert systems we were unable to compare our 
performance to other system based on expert systems. 
To validate the claim that our detection technique is 
accurate, we compare our performance to some known 
anti-virus tools, such as Bitdefender, F-PROT, ESET 
NOD32, Kaspersky, McAfee and Norton.We choose 
Hxdef (Hacker defender) Rootkit [24] as malware 
sample. It is a user-mode rootkit that modifies several 
Windows and Native API functions, which allows it to 
hide information from other applications. We pack or 
protect Hxdef to generate some variants of Hacker 
defender. The packers used are: UPX, PeCompact, 
Upack, Petite, NsPack, FSG; and encryption protectors 
are: ACProtect ,ASProtect, Armadillo Custom, 
EXECryptor, MSLRH, Obsidium, PC Guard, PE-
Armor, PeLock, PESpin, SDProtector, Themida, 
Winlicense, tElock, Yoda's Protector. 

In our experiments, we use aforementioned packers 
and encryption protectors to process Hxdef, so we get 
21 variants of Hxdef. Then we use 5 well known anti-
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virus tools, which are Bitdefender, F-PROT, ESET 
NOD32, Kaspersky and Norton, to scan these 22 
malware samples. The scan results of these anti-virus 
tools are presented in Table.1. And then we run these 
malware samples and use our system presented in this 
paper to detect the system. The detection results are 
also showed in Table.1. 
 
 

Object Name Bitdefender F-Prot Kaspersky Norton Nod32 Our 
system 

Hxdef D D D D D D
Hxdef 
_ACProtect D N N N D D 

Hxdef 
_Armadillo D D N D D D 

Hxdef 
_ASProtect D D N N D D 

Hxdef 
_EXECryptor N N N N N D 

Hxdef 
_FSG D D D D D D 

Hxdef 
_MSLRH N D D N D D 

Hxdef 
_Nspack D D D D D D 

Hxdef 
_Obsidium D D D D N D 

Hxdef 
_PCGuard N N D N D D 

Hxdef 
_PEArmor 

*D  N N N D D 

Hxdef 
_PEcompact D N D D D D 

Hxdef  
_PeLock D D D N N D 

Hxdef  
_PESpin 

*D  D D N D D 

Hxdef 
_ Petite D N D D D D 

Hxdef 
_SDProtector N N D D D D 

Hxdef 
 _tElock D D D D D D 

Hxdef 
_Themida N N N N *D  D 

Hxdef 
_Upack D D D D D D 

Hxdef 
_UPX D D D D D D 

Hxdef 
_WinLicense N N N N *D  D 

Hxdef 
_yoda Protector D D D D D D 

Scanned files 22 22 22 22 22 22
Infected objects 16 13 15 12 19 22 
Detect ratio 72.7% 59.1% 68.2% 54.5% 86.4% 100% 

 

Table.1.Scan results of anti-virus tools and our system. 
 
 

Note1: The “D” means the program is detected as 
malware; the “N” means the program is not detected, 
that is the anti-virus tool doesn’t think it is suspicious. 

Note2: The “ *D ” means the tool just detects the 
program been packed by some packer, but can’t judge 
whether the program is a threat or not. 
 

From Table.1, we can see that our system’s 
detection ratio is up to 100 percent. The detection ratio 
of the remaining anti-virus tools from high to low are 
Nod32 86.4%, Bitdefender 72.7%, Kaspersky 68.2%, 
F-PROT 59.1%, and Norton 54.5%. We need to pay 
attention to the “ *D ” in Table.1, which means the tool 
just detects the program been packed by some packer 
or protector, but can’t judge whether the program is a 
threat or not. In fact, many of the normal software use 
packer to process themselves in order to prevent 

reverse engineering and disassemble. Then if not 
including the “ *D ”, the detection ratio of Bitdefender 
and Nod32 will be 63.6% and 77.3%. 

From the experiments, we can draw that our system 
can detect malware using known techniques, even low-
level techniques, for example rootkit. It also can detect 
those malware even after they have being packed or 
encryption protected by any packer or protector. But 
the nature of the technique used in our system decides 
the main drawback of the system, which is the system 
can detect it just when the malware is running, 
otherwise it can’t detect the malware. But these anti-
virus tools do not require the malware is active. 
 
5. Conclusions 
 

This research has demonstrated suspicious 
behaviors can be valuable signatures in unknown 
malicious detection. Even if there are different 
malicious programs, such as Backdoor, but they all 
have similar behaviors. Using the system presented in 
this paper, we can detect malware using low-level 
techniques, such as rootkit, and these malware being 
packed by any packers or protectors. But the drawback 
of this method is we can detect malware just when it is 
running. So in order to having better performance, 
should use some static detection methods. 

In future we intend to expand our behaviors 
knowledge base for more processes, and categorize 
behaviors signatures, so we can define and give the 
species of malware.  
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