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The numerical method for solving the nonlinear eigenvalue problem has been developed by using the col-
location Element-Free Galerkin Method (EFGM) and its performance has been numerically investigated. The
results of computations show that the approximate solution of the nonlinear eigenvalue problem can be obtained
stably by using the developed method. Therefore, it can be concluded that the developed method is useful for
solving the nonlinear eigenvalue problem.
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1. Introduction
As is well known, the Grad-Shafranov (G-S) equa-

tion describes the magnetohydrodynamics equilibrium of
plasma in terms of the poloidal magnetic flux ψ. Once
a set of parameters is given, this equation and its associ-
ated boundary conditions constitute a nonlinear boundary-
value problem with an eigenvalue λ. Many numerical
methods have been so far proposed and have yielded ex-
cellent results in the fields of plasma physics and nuclear
fusion [1, 2].

On the other hand, many meshless methods [3,4] have
been proposed and have been used in the fields of engi-
neering and science. In spite of the convenience, meshless
methods are plagued by two difficulties. First, the method
for implementing the essential boundary condition is dif-
ferent according to meshless methods. Second, both the
essential boundary condition and the natural one are not
exactly fulfilled on the boundary. If a new implementation
method of not only the essential boundary condition but
also the natural one were proposed without dependence on
meshless methods, the above demerit could be completely
resolved.

In the previous studies, Kamitani et al. [5] have
proposed the new method for implementing the essen-
tial boundary condition to the meshless Galerkin/Petrov-
Galerkin approach. The results of computations have
shown that the accuracy of the Kamitani’s meshless
method is higher than that of the standard one. In addi-
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tion, Saitoh et al. [6] have extended the above method and
have applied it to the nonlinear Poisson problem.

The purpose of the present study is to develop the
numerical method for solving the nonlinear eigenvalue
problem by using the collocation Element-Free Galerkin
Method (EFGM) [5] and to numerically investigate its per-
formance.

2. Numerical Method of Nonlinear
Eigenvalue Problem

2.1 Linearization
For simplicity, we consider the following nonlinear

eigenvalue problem in axisymmetric coordinate system
(r, z):

−L̂ψ = ρ(λ, r, ψ) inΩ, (1)

ψ = 0 on ∂Ω. (2)

Here, Ω denotes a domain bounded by a simple closed
curve ∂Ω, and ρ(λ, r, ψ) is a known function in Ω. Fur-
thermore, L̂ denotes the G-S operator defined by

L̂ ≡ ∂2

∂z2
+ r

∂

∂r

(
1
r
∂

∂r

)
.

Since (1) has a nonlinearity, the above problem is dif-
ficult to solve analytically. In this study, an approximate
solution is calculated in such a way that the total plasma
current is always preserved through the iteration. In the
kth step, we solve the following linear problem for ψ(k+1):

−L̂ψ(k+1) = ρ(λ(k), r, ψ(k)) inΩ, (3)

ψ(k+1) = 0 on∂Ω, (4)
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where the superscript (k) is an iteration number label. Sub-
sequently, the eigenvalue λ(k+1) is calculated by use of the
relation:

Ip =

�
Ω

1
r
ρ(λ(k+1), r, ψ(k+1)) dzdr, (5)

where Ip is a constant. Finally, the approximate solu-
tion and the approximate eigenvalue are updated by use
of the underrelaxation ω: ψ(k+1) = ψ(k) + ω

[
ψ(k+1) − ψ(k)

]
and λ(k+1) = λ(k) + ω

[
λ(k+1) − λ(k)

]
. The above step

is repeated until both |λ(k+1) − λ(k)|/|λ(k+1)| ≤ 10−6 and
||ψ(k+1)−ψ(k)||/||ψ(k+1)|| ≤ 10−6 are satisfied. Here, the max-
imum norm is adopted for the definition of || ||. Throughout
the present study, the above iteration is called an outer iter-
ation. In this way, the nonlinear eigenvalue problem (1)-(2)
is reduced to the problem in which (3) and (4) are solved
by use of the iterative method.

As is well known, (3) is satisfied if and only if the
following weak form is fulfilled:

∀w s.t. w
∣∣∣
∂Ω
= 0 :

�
Ω

1
r
∇w · ∇ψ(k+1) dzdr

−
�

Ω

w
ρ(λ(k), r, ψ(k))

r
dzdr = 0, (6)

where ∀w s.t. w
∣∣∣
∂Ω
= 0 denotes an arbitrary function w(x)

that satisfies w = 0 on ∂Ω.
As mentioned in the section 1, the method for imple-

menting the essential boundary condition is different ac-
cording to meshless methods. For example, as the imple-
mentation method, the Lagrange multiplier and the penalty
method are used in the standard EFGM [3] and the mesh-
less local Petrov-Galerkin method [4], respectively. In the
present study, the collocation EFGM, in which the above
demerit is resolved, is adopted as the discretization of (6).

2.2 Discretization
In order to discretize (6), let us first place nodes,

x1, x2, · · · , xN , in Ω ∪ ∂Ω. Next, shape functions φi’s are
determined by using the Moving Least-Squares (MLS) ap-
proximation [3]. Finally, both the trial function ψ(k+1)(x)
and the test function w(x) are assumed to be contained
in the functional space V ≡ span (φ1, φ2, · · · , φN), i.e.,
ψ(k+1)(x) and w(x) are assumed as

ψ(k+1) (x) =
N∑

i=1

φi (x) ψ̂(k+1)
i ,

w (x) =
N∑

i=1

φi (x) ŵi,

where ψ̂(k+1)
i and ŵi (i = 1, 2, · · · ,N) are all constants. In

the following, M denote the number of nodes on ∂Ω. In ad-
dition, {e1, e2, · · · , eN} and {e∗1, e∗2, · · · , e∗M} are the orthog-
onal system of the N-dimensional vector space and that of
M-dimensional vector space, respectively.

Fig. 1 Domain Ω and its boundary ∂Ω.

From the standard manner of the collocation EFGM,
the weak form (6) and its associated boundary condition
(2) are discretized. The resulting equations can be written
in the following form:

[
A C

CT O

] [
ψ̂(k+1)

ν̂(k+1)

]
=

[
f (k)

0

]
. (7)

Here, ψ̂(k+1) and ν̂(k+1) are defined by

ψ̂(k+1) =

N∑
i=1

ψ̂(k+1)
i ei, ν̂(k+1) =

M∑
i=1

ν̂(k+1)
i e∗i ,

where ν̂(k+1)
i (i = 1, 2, · · · , M) are all constants. In addition,

A, C and f (k) are given by

A =
N∑

i=1

N∑
j=1

�
Ω

1
r
∇φi · ∇φ j dzdr ei eT

j ,

C =
N∑

i=1

M∑
p=1

φi(x(sp)) ei e∗Tp ,

f (k) =

N∑
i=1

�
Ω

φi
ρ(λ(k), r, ψ(k))

r
dzdr ei,

where sp denotes an length along the boundary from x1 to
xp.

By solving (7) iteratively, we can get the approximate
solution of the nonlinear eigenvalue problem. Note that the
coefficient matrix in (7) becomes symmetiry and sparse. In
this study, we adopt the Incomplete Cholesky Conjugate
Gradient (ICCG) method as the solver of (7) [7].

3. Numerical Results
The numerical method for solving the nonlinear

eigenvalue problem has been developed on the basis of the
collocation EFGM. In this section, we numerically investi-
gate its performance.

Throughout the present study, the domain Ω is given
by Ω = (1, 2) × (−1/2, 1/2) (see Fig. 1). Moreover, the
nodes are uniformly placed in Ω∪∂Ω. In the MLS approx-
imation, a linear basis pT (x) = [1, x, y] and the Gaussian-
type weight function are assumed. The explicit form of the
weight function is given by
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Fig. 2 Dependence of the relative error εS on the dimensionless
support radius R/h. Here, � : N = 411 and � : N = 969.

wi(x) = w (|x − xi|) ,

w(r̃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp[−(r̃/c)2]−exp[−(R/c)2]

1−exp[−(R/c)2] ; r̃ ≤ R,

0 ; r̃ > R,

where R denotes a support radius and c is a constant. In
this study, the value of c is equal to the minimum distance
h between two nodes.

3.1 Performance evaluation of developed
method

In the section 3.1, we compare the performance of
the developed method with the method based on the
Finite Element Method (FEM) by solving the boudnary-
value problem of the linear G-S equation. In the present
section, ρ is assumed as ρ = −

[
(π(1 − 4z2)) cosπr + (8

+π2(1 − 4z2))r sin πr
]
/4r, i.e., the analytic solution of the

G-S problem is given by

ψ =

(
1
4
− z2

)
sin [π (r − 1)] .

Let us first investigate the influence of the support ra-
dius on the accuracy of the numerical solution. As the
measure of the accuracy, we adopt the relative error: εS ≡
||ψA − ψN ||/||ψA|| where subscript notations, A and N, in-
dicate analytic and numerical solutions, respectively. The
relative error εS is calculated as a function of the dimen-
sionless support radius R/h and is depicted in Fig. 2. We
see from this figure that the relative error roughly decreases
with R/h until it becomes almost constant for R/h � 2.5.
These behaviors do not change qualitatively regardless of
the value of N. In the following, the value of R/h is fixed
as R/h = 2.5.

Next, we compare the accuracy of the developed
method with that of the method based on the FEM. In the
following experiments, triangular elements are generated
by dividing the domain Ω into Nx × Ny pieces of small
rectangles and inserting a diagonal line to each rectangle.
Therefore, the number N of nodes and the number M of
elements satisfy N = (Nx + 1) × (Ny + 1) and M = 2NxNy,
respectively. The relative error εS is calculated as a func-
tion of the number N of nodes and is depicted in Fig. 3.
Both relative error of the developed method and that of the
method based on the FEM are almost proportional to N−β.

Fig. 3 Dependence of the relative error εS on the number N of
nodes. Here, �: the collocation EFGM and � : the FEM.

Power indeces of the developed method and the method
based on the FEM satisfy β ≈ 1.24 and β ≈ 1.09, respec-
tively. In other words, the convergence rate of the devel-
oped method is higher than that of the method based on the
FEM.

From these results, we can conclude that the accuracy
of the developed method is higher than that of the method
based on the FEM.

3.2 Application to nonlinear eigenvalue
problem

In accord with these results of the section 3.1 , we
apply the developed method to the nonlinear eigenvalue
problem. In the following, ρ(λ, r, ψ) is given by

ρ(λ, r, ψ) = λψ

[
1 − γ

(
ψ

ψmax

)]
,

where γ is a constant and ψmax is the maximum value of
ψ(x). In addition, the initial eigenvalue λ(1) and the initial
solution ψ(1) are defined by

λ(1) = 2π2, (8)

ψ(1) = sin

[
π

(
z − 1

2

)]
sin [π (r − 1)] . (9)

Let us first investigate the number of the outer itera-
tion for the case with γ = 0. Hereafter, the number of the
outer iteration required for the convergence is called the
convergence iteration number. In the inset of Fig. 4, we
show the dependence of the convergence iteration number
kC on the number N of nodes. This figure indicates that kC

satisfies kC ≈ 13. In other words, the convergence iteration
number becomes almost constant regardless of N. As a re-
sult, we can get the convergent solution for the case with
N < 103.

Next, we investigate the influence of the number of
nodes on the accuracy of the developed method. The an-
alytic eigenvalue can be determined if and only if γ = 0.
Therefore, we adopt the relative error εL defined by εL ≡
|λA − λN| / |λA | as the measure of the accuracy. Figure 4 in-
dicates the dependence of the relative error εL on the num-
ber N of nodes for the case with γ = 0. We see from this
figure that the relative error drastically improves with an
increase in N for N � 102. After that, it gradually en-
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Fig. 4 Dependence of the relative error εL on the number N of
nodes. The inset indicates the dependence of the conver-
gent iteration number kC on the number N of nodes. In
these above figures, the parameters are fixed as follows:
γ = 0 and ω = 1.

Fig. 5 Dependence of the convergent iteration number kC on the
constant γ for the case with N = 969 and ω = 1.

hances with an increase in N.
Finally, we investigate the influence of the constant γ

on the number of the outer iteration. The convergence iter-
ation number kC is calculated as a function of the constant
γ and is depicted in Fig. 5. We see from this figure that kC

becomes almost constant until it drastically increases for
0.85 � γ ≤ 0.9. In addition, for the case with γ > 0.9, the
approximate solution cannot be obtained.

Residual norm histories of the eigenvalue and the so-
lution are shown in Figs. 6 (a) and 6 (b), respectively. For
the case with ω = 1 and ω = 0.85, both the residual norms
of the eigenvalue and the solution do not converge. In con-
trast, the termination condition is fulfilled for ω = 0.75.
Hence, the approximate solution can be obtained by using
the appropriate value of ω.

From these results, we can conclude that the devel-
oped method is useful as the numerical method of the
boudnary-value problem of the nonlinear G-S equation.

4. Conclusion
The numerical method for solving the nonlinear

eigenvalue problem has been developed on the basis of the
collocation EFGM and its performance has been numeri-
cally investigated. The results of computations show that
the approximate solution of the nonlinear eigenvalue prob-
lem can be obtained stably by using the developed method.

Fig. 6 The residual norm histories of (a) the eigenvalue and (b)
the solution for the case with N = 969 and γ = 0.95.
Here, (−−) : ω = 0.75, (· · · ) : ω = 0.85 and (—): ω = 1.

Therefore, it can be concluded that the developed method
is useful for solving the nonlinear eigenvalue problem.

We have applied the developed method to the nonlin-
ear eigenvalue problem. However, its performance has not
been investigated in detail. As the future work, we will
compare the simulation result with the experiment one by
using a physical parameter. In addition, it will be also nec-
essary to investigate the suitable solver for the nonlinear
eigenvalue problem.
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