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Abstract—Compressive Sensing (CS) has received much at-
tention in several fields such as digital image processing, wireless
channel estimation, radar imaging, and Cognitive Radio (CR)
communications. Out of these areas, this survey paper focuses on
the application of CS in CR communications. Due to the under-
utilization of the allocated radio spectrum, spectrum occupancy
is usually sparse in different domains such as time, frequency
and space. Such a sparse nature of the spectrum occupancy
has inspired the application of CS in CR communications. In
this regard, several researchers have already applied the CS
theory in various settings considering the sparsity in different
domains. In this direction, this survey paper provides a detailed
review of the state of the art related to the application of
CS in CR communications. Starting with the basic principles
and the main features of CS, it provides a classification of the
main usage areas based on the radio parameter to be acquired
by a wideband CR. Subsequently, we review the existing CS-
related works applied to different categories such as wideband
sensing, signal parameter estimation and Radio Environment
Map (REM) construction, highlighting the main benefits and the
related issues. Furthermore, we present a generalized framework
for constructing the REM in compressive settings. Finally, we
conclude this survey paper with some suggested open research
challenges and future directions.

Index Terms—Cognitive Radio, Compressive Sensing, Wide-
band Sensing, Radio Environment Map, Compressive Estimation

I. INTRODUCTION

Recently, Compressive Sensing (CS), also known as com-

pressive sampling or sparse sampling [1], [2], has been a topic

of extensive research in various areas such as digital image

processing [3], wireless channel estimation [4], [5], radar

imaging [6], Cognitive Radio (CR) [7], electromagnetics [8],

etc. Out of the wide range of the aforementioned application

areas, this survey paper focuses on the application of CS to

CR communications.

Spectrum scarcity is one of the most important challenges

faced by today’s wireless operators to provide high data rate

services to a large number of users. In this context, CR

communication has been considered as a potential candidate

to address the spectrum scarcity problem in the future gen-

eration of wireless communications, i.e., 5G. The concept
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of CR was firstly proposed by J. Mitola in the late 1990’s

[9] and after its conception, several researchers and indus-

trial/academic/regulatory bodies have been working towards

the implementation of this technology. It has a wide range

of application areas ranging from Television WhiteSpaces

(TVWSs) [10] to satellite communications [11], [12]. The

main functions of a CR are to be aware of its surrounding

radio environment, i.e., spectrum awareness, and to utilize

the available spectral opportunities effectively, i.e., spectrum

exploitation.

CS theory states that certain signals can be recovered from

far fewer samples or measurements than the samples required

by traditional methods [1], [2]. In this approach, a significantly

reduced number of measurements is obtained from the incom-

ing data stream and is expected to be reconstructible from

these small number of measurements. This method basically

combines the following key concepts: (i) sparse representation

with a choice of a linear basis for the class of the desired

signal, and (ii) incoherent measurements of the considered

signal to extract the maximum information using the minimum

number of measurements [13]. In sparse signals, most of the

signal energy is concentrated in a few non-zero coefficients.

Furthermore, to apply the CS theory, it’s not necessary for

the signal itself to be sparse but can be compressible within

sparse representations of the signal in some known transform

domain [14], [15]. For example, smooth signals are sparse in

the Fourier basis whereas piecewise smooth signals are sparse

in the wavelet basis [1].

Although there exist several survey papers in the areas of

CR communications covering a wide range of areas such as

Spectrum Sensing (SS) [16], spectrum occupancy measure-

ment campaigns [17], spectrum management [18], emerging

applications [19], spectrum decision [20], spectrum access

strategies [21], CR techniques under practical imperfections

[22], and CR networks [23], a comprehensive review on the

applications of CS in CR communications is missing from the

literature. Besides, there exist several applications of CS in CR

communications and they have been investigated for various

objectives. In this context, first, this survey paper categorizes

the application areas based on the acquired environmental

information. Subsequently, it provides a comprehensive review

of the existing state of art in these categories. Furthermore,

we identify the major issues associated with each of these

application areas and present a generalized framework for

Radio Environment Map (REM) construction in compressive

settings. Finally, we suggest some interesting open research

issues and future directions.



The remainder of this paper is structured as follows:

Section II-A provides the basic principles of CS and highlights

several important aspects such as uniqueness of a solution and

compressive signal processing. Section II-B briefly discusses

CR communications and classifies various application areas

of CS in CR communications based on the parameter to

be acquired. Subsequently, Section III identifies the practical

limitations for wideband sensing and reviews in detail the

CS-related prior work. Section IV describes the existing ap-

proaches for performing the compressive estimation of various

signal parameters while Section V discusses various aspects of

Radio Environment Map (REM) construction. Finally, Section

VI provides open research issues and Section VII concludes

this paper. To improve the flow of this paper, we provide

the structure of the paper in Fig. 1 and the definitions of

acronyms/notations in Table I.

II. CS AND ITS APPLICATIONS IN CR COMMUNICATIONS

In this section, we provide an overview of the basic

concepts related to CS theory. The detailed explanation about

the fundamental developments in CS can be found in [1], [2],

[13].

A. Compressive Sensing Basics

1) Basic Principle: CS [13], [24], [25] is a novel sens-

ing/sampling paradigm that allows, under certain assumptions,

the accurate recovery of signals sampled below the Nyquist

sampling limit. In order to briefly review the main ideas of CS,

consider the following finite length, discrete time signal x ∈
R

L. Representing a signal involves the choice of a dictionary,

which is the set of elementary waveforms used to decompose

the signal. Sparsity of a signal is defined as the number of

non-zero elements in the signal under some representation. A

signal is said to have a sparse representation over a known

dictionary Ψ =
[

ψ0 ψ1 · · · ψM−1

]

, with ψm ∈ R
L×1,

if there exists a sparse vector θ =
[

θ0 θ1 · · · θM−1

]T

such that

x =

M−1
∑

m=1

ψmθm or x = Ψθ, (1)

with ‖θ‖l0 = K << M . The l0-norm used throughout this

paper simply counts the number of non-zero components in

θ. A dictionary that leads to sparse representations can either

be chosen as a prespecified set of functions or designed by

adapting its content to fit a given set of signal examples [26].

The framework of CS aims at recovering the unknown

vector x from an underdetermined system of linear equations

y = Φx, (2)

where y ∈ R
κ×1 is the received data vector and matrix

Φ ∈ C
κ×L with K < κ < L is the sub-sampling matrix

or sensing matrix since the number of rows is less than the

number of columns. Since κ < L, this system has more

unknowns than equations, and thus the system is not invertible.

In particular, (2) has infinitely many solutions. Among the

infinitely many solutions of (2), we are only interested in

the sparsest one. Direct minimization of ‖θ‖l0 is an NP-hard

problem, which basically means that it requires an exhaustive

search and, in general, it is not a feasible approach. Special

cases of interest for convexity are all the lp-norms for p ≥ 1.

Among them, l1-norm is very interesting and popular due to

its tendency to sparsify the solution. In this context, Chen et

al. [27] stated that a sparse signal θ can be recovered from

only κ = O(K log(L/K)) linear non-adaptive measurements

by solving the following relaxation

min
θ

‖θ‖l1 subject to y ≈ ΦΨθ, (3)

where ‖θ‖l1 =
∑

i |θi|. Several methods are available in the

literature to solve the optimization problem in (3). The l1-

minimization is a convex problem and can be recast as a

Linear Program (LP) [28]. This is the foundation for the Basis

Pursuit (BP) techniques [27], [29], [30]. Alternatively, greedy

methods, known as Matching Pursuit (MP), can be used to

solve (3) iteratively [31], [32].

2) Uniqueness of a Solution: In general, the relationship

between the sensing matrix (Φ) and the signal model (Ψ)

affects the number of measurements required to reconstruct a

sparse signal.

Almost all theory of CS is based on the assumption that

D = ΦΨ is the concatenation of two orthogonal matrices.

These theories follow the uncertainty principle which states

that a signal cannot be sparsely represented both in Φ and

Ψ [33]. This claim depends on the similarity between Φ

and Ψ. A rough characterization of the degree of similarity

between the sparsity and measurement systems is depicted by

the mutual coherence, which is given by

µ(Φ,Ψ) = max
i,j
i6=j

∣

∣

∣
φH

i ψj

∣

∣

∣

‖φi‖l2 ·
∥

∥ψj

∥

∥

l2

. (4)

In other words, D should have columns di, i = 1, . . . , N
with small correlations. An explicit example of matrices which

have small coherence is the concatenation of the Identity and

Fourier matrices. Another suitable way to describe µ is to

compute the Gram matrix G = D̃T D̃, using matrix D after

normalizing each of its columns (D̃). The mutual coherence

is given in this case by the off-diagonal entry of G with the

largest magnitude.

On the other hand, another criterion for evaluating the qual-

ity of CS matrices that are nearly orthonormal, is the Restricted

Isometry Property (RIP) introduced in [30], initially called

as “uniform uncertainty principle”. The RIP is a sufficient

condition on D̃ for exact recovery of a K-sparse θ.

The matrix D̃ satisfies the RIP of order s ∈ N, s < L, if

there exists an isometry constant 0 < δs < 1 such that

(1− δs) ‖θ‖2l2 ≤
∥

∥

∥
D̃θ

∥

∥

∥

2

l2

≤ (1 + δs) ‖θ‖2l2 (5)

holds for all s-sparse vectors, where δs is the smallest number

satisfying (5). However, working with the RIP condition

is much more complex compared to the simple coherence

concept since for a given matrix, checking the validity of the

RIP condition is an NP-hard problem itself.
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Fig. 1. Structure of the paper

3) Compressive Signal Processing: Many signal process-

ing problems such as detection, estimation, and classification

do not require full signal recovery. The CS theory can be

further extended to address the detection, estimation and clas-

sification problems. In this context, the most relevant works are

the discussions of compressive parameter estimation in [34],

[35], compressive detection in [36], [42], [43] and compressive

classification in [36], [43], [46], [47].

It is possible to apply standard CS to continuous-valued

parameter estimation and the detection of signals in continuous

domains but it does not perform well due to the discretization

of the sparse domain. CS requires the signal to be sparse

over a finite basis whereas the parameters/signals could lie

anywhere on a continuum. This problem is known in the

literature as a basis-mismatch problem [44], [45]. Further,

basis-mismatch problems may arise in many other applications

including channel estimation discussed later in Section IV-D.

A comprehensive analysis on the performance of signal

classification based on compressive measurements is presented

in [46]. The first works where sparsity was leveraged to

perform classification with very few random measurements are

[36], [43], [47]. In particular, [43] focuses on the compressive

detection problem but provides some ideas for extensions to

classification. Later, [47] explored the use of a compressed

version of the matched filter referred to as the smashed

filter. The basic idea of the smashed filter is to implement

a matched filter directly in the compressed domain without

the requirement of reconstructing the original signal from

the compressed measurements. The utility of CS projection

observations for signal classification by means of an m-ary

hypothesis testing was proposed in [36]. In general, there are

many applications where it can be more efficient and accurate

to extract information for classification directly from a signal’s

compressive measurements than first recover the signal and

then extract the information.

B. Applications of CS in CR Communications

In this section, we provide the basics of CR communication

and briefly describe various applications of CS for enabling



TABLE I
DEFINITIONS OF ACRONYMS AND NOTATIONS

Acronyms/Notations Definitions Acronyms/Notations Definitions
ADC Analog to Digital Converter REM Radio Environment Map
AIC Analog to Information Converter RF Radio Frequency
BP Basis Pursuit RIP Restricted Isometry Property
CDMA Code Division Multiple Access SSR Sparse Signal Representation
CR Cognitive Radio SS Spectrum Sensing
CS Compressive Sensing ST Secondary Transmitter
CMUX Compressive Multiplexer SVD Singular Value Decomposition
CSI Channel State Information SNR Signal to Noise Ratio
DoA Direction of Arrival WSS Wideband Spectrum Sensing
DCS Distributed Compressive Sensing WSN Wireless Sensor Network
DR Dynamic Range QoS Quality of Service
FC Fusion Centre UWB Ultra-Wideband
FFT Fast Fourier Transform x Nyquist-sampled signal
FIR Finite Impulse Response L Number of samples of x
GIS Geographic Information System Ψ Dictionary or sparsifying basis
i.i.d. independent and identically distributed θ Sparse vector
JSM Joint Sparsity Order M Number of samples of θ

LP Linear Program ‖θ‖lp

(

∑M
m=1

|θm|p
)1/p

, p ≥ 1

LASSO Least Absolute Shrinkage and Selection Operator ‖θ‖l0 = K number of non-zero components of θ

MP Marching Pursuit y Compressive-sampled signal
MMV Multiple Measurement Vector κ Number of samples of y
MWC Modulated Wideband Converter Φ Sensing matrix
NP Nondeterministic Polymonial D Product of Φ ·Ψ
OMP Orthogonal Matching Pursuit fs Sampling frequency
PT Primary Transmitter Neff Number of ADC effective bits
PR Primary Receiver

∑

Summation
PSD Power Spectral Density (·)T Transpose
PU Primary User (·)H Conjugate transpose
ISNR In-band Signal to Noise Ratio R Set of real numbers
RSNR Recovered Signal to Noise Ratio C Set of complex numbers
RD Random Demodulator ρ Compression factor
RSS Received Signal Strength ⊙ Element-wise product

CR communications. The detailed description on these appli-

cations will be provided in latter sections by referring to the

current state of the art.

1) CR Communications: Current wireless networks are

facing a spectrum scarcity problem due the limited available

spectrum and the increasing demand of high data-rate services.

On one hand, the usable spectrum seems to be scarce due

to spectrum segmentation and the static frequency allocation

policy. On the other hand, several spectrum measurement

compaigns show the under-utilization of the allocated spec-

trum in the time and space (geographical) domains [17]. In

this context, CR communications has been considered as a

promising candidate to address the spectrum scarcity problem

in future wireless networks. In CR communications, Primary

Users (PUs), also called incumbent or licensed users, are the

users who have legacy rights on the use of a specific part of

the spectrum. On the other hand, Secondary Users (SUs), also

called cognitive or unlicensed users, exploit this spectrum in

such a way that they do not provide harmful interference to

the normal operation of the licensed PUs.

A CR should be capable of acquiring various Radio

Frequency (RF) parameters in order to become aware of its

surrounding radio environment. This can be achieved with

the help of various spectrum awareness techniques such as

Spectrum Sensing (SS), database and the estimation of the

signal parameters such as Signal to Noise Ratio (SNR), Chan-

nel State Information (CSI), Directional of Arrival (DoA), etc.

After being aware of the RF environment, the next important

functionality for a CR is to exploit the available under-

utilized resource effectively, called spectrum exploitation. The

widely used paradigms for spectrum exploitation are inter-

weave, underlay and overlay [48]. Out of these paradigms, the

first paradigm consists of interference avoidance/opportunistic

techniques which require SUs to communicate opportunisti-

cally using the unused spectral holes in different domains

such as space, frequency, and time. The second paradigm

encompasses interference control/management schemes and

allows the coexistence of primary and secondary systems only

if the interference caused by Secondary Transmitters (STs) to

the Primary Receivers (PRs) can be properly controlled and

managed. On the other hand, the third paradigm encompasses

advanced coding and transmission strategies at the STs for

interference management and may require a higher level of

coordination between primary and secondary systems.

2) Applications: Although several contributions exist in

the literature dealing with the narrowband CR scenarios, in

practice, a CR should be capable of monitoring the surround-

ing radio environment over a wide spectrum range in order to

utilize the benefits of CR communications efficiently. This en-

vironmental knowledge over a wideband spectrum helps a CR

to apply adaptive resource allocation and spectrum exploitation

techniques for the effective utilization of the under-utilized

radio spectrum. However, due to the practical limitations

on the capability of receiver hardware components, mainly

Analog to Digital Converter (ADC), it’s difficult to implement

wideband spectrum awareness algorithms in practice. This

difficulty can be alleviated by utilizing the benefits of CS

discussed in Section II.

The RF awareness over a wideband can be acquired mainly

with the following mechanisms: (i) Wideband SS, (ii) Signal

parameter estimation, and (iii) Database information. The

important parameters acquired with these mechanisms are

depicted in Fig. 2. In the wideband SS mechanism, the RF

parameters to be acquired can be energy level and the power

spectrum. Furthermore, in the category of signal parameter

estimation, different parameters such as CSI, DoA, SNR and



TABLE II
EXISTING TECHNIQUES FOR THE APPLICATIONS OF CS IN CR COMMUNICATIONS

Awareness Mechanisms Parameters Applicable CS techniques References

Spectrum sensing Energy level Compressive spectrum sensing [7], [49], [50], [52], [53], [59], [63]–[70]
Power spectrum Compressive power spectrum estimation [71]–[73]

Signal parameter estimation Channel State Information (CSI) Compressive channel estimation [81], [82]
Direction of Arrival (DoA) Compressive DoA estimation [83]–[88]
Signal to Noise Ratio (SNR) Compressive SNR estimation [89], [90]
Sparsity order Compressive sparsity order estimation [91], [127], [147]

Database information Number of active Txs, Tx locations Compressive REM construction [92], [96]–[99]
Transmit power

Wideband Spectrum

Awareness Mechanisms

Signal Parameter

Estimation

Channel

Direction

of Arrival
Sparsity

order

Energy

SNR

Power

spectrum

Number of

active Txs

Tx location

Tx

power

Database

Information

Antenna

patterns

Spectrum

Sensing

Fig. 2. Wideband spectrum awareness techniques and the main
acquisition parameters

sparsity order can be estimated compressively by employing

the CS approach. Moreover, in the third category, parameters

such as number of active Transmitters (Txs), locations of the

active Txs, power levels, etc. can be estimated which are

subsequently useful to construct the Radio Environment Map

(REM). In Table II, we present various parameters involved

with these awareness mechanisms and the related techniques.

We further provide the mapping of the related existing tech-

niques with these techniques. The detailed description of these

techniques is provided in the subsequent sections.

3) Complexity Discussion: One of the main motivations

behind using CS in CR communications is that a CS-based CR

transceiver can sense wider spectrum with the same sampling

requirements or the same spectrum with reduced sampling

requirements, thus resulting in cheaper and more energy

efficient systems. However, CS-based receivers are relatively

complex due to the involved operations in reconstructing the

original sparse signal. For the recovery of the original sparse

signals, several recovery algorithms such as Greedy Pursuit,

matching Pursuit, Orthogonal Matching Pursuit (OMP), Stage-

wise Orthogonal Matching Pursuit (StOMP), Gradient Pursuit

(GP), Tree-based OMP (TOMP), re-weighted l1 minimization,

etc. have been proposed in the literature. These algorithms

offer different tradeoffs in terms of reconstruction complexity,

performance, robustness to noise, as well as the allowable

compression ratios for a certain sparsity level of the original

sparse signal [37]. Some recovery algorithms are simple to

implement, but may require a large number of samples in order

to satisfy a desired performance level.

For instance, based on the comparative results presented

in [37], the algorithms OMP and TOMP are greedy search

algorithms which are fast in computation, however, their

recovery accuracy is poor and they need a large number of

measurements in order to reach a comparable reconstruction

performance to BP and reweighted l1 algorithms. On the other

hand, BP and re-weighted l1 algorithms provide more accurate

solutions but are demanding in terms of computational costs.

Thus, in general, there exists a clear tradeoff between the sam-

pling cost and energy saving in computation and it is crucial to

balance this tradeoff in order to enhance the overall recovery

performance. Another example is that the simple and most

commonly used OMP algorithm can be implemented using

the following four different methods [38]: (i) naive approach,

(ii) Cholesky decomposition, (iii) QR decomposition, and (iv)

matrix inversion lemma. These four implementation aspects

have different complexities and memory requirements, and

depending on the size of the considered problem, any of these

four implementations can be the fastest. As the number of

samples increases, the computation time of the naive approach

becomes much longer than for the other three and for the large

problem sizes which require higher number of iterations, the

QR decomposition approach appears to be the fastest one [38].

The aforementioned complexity discussion is applicable

while carrying out CS-based spectrum sensing using the

following steps [7], [69]: (i) acquisition of the compressed

samples, (ii) reconstruction of the Nyquist rate signal from

the compressed samples, and (iii) spectrum sensing using

the reconstructed signal. In this procedure, there have been

several attempts to reduce the computational complexity of

the employed reconstruction step by utilizing prior information

( [39] and references therein). In this regard, authors in

[39] have recently proposed a data-assisted non-iteratively re-

weighted least squares based CS algorithm by exploiting the

prior data obtained from a geo-location database in order

to reduce the computational complexity of the previously

proposed iteratively re-weighted least squares algorithm [40].

However, as highlighted in Section II-A3, for signal detec-

tion/estimation/classification problem in CR applications, it’s

not necessary to reconstruct the entire original sparse signal.

The decision on the presence or the absence of PU signals

over the considered spectrum can be made based on the com-

pressed measurements only and the reconstruction step of the

commonly used CS technique can be completely illuminated,

thus reducing the computational complexity [41], [42]. In this

context, authors in [41] proposed a Bayesian formulation to

estimate the parameters of the sparse signal directly from

the compressed measurements and demonstrated that such a

Basysian formulation is computationally less expensive, more

accurate, and achieves a higher compression rate compared to
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Fig. 3. Schematic representation of a wideband channel with Nc

number of narrowband channels. Herein, sparsity order is the ratio
of the number of occupied channels to the total number of channels.

the traditional non-CS methods such as BP method. Moreover,

authors in [42] have shown that in several applications such

as detection, estimation and classification, it becomes more

efficient and accurate to extract information directly from com-

pressive measurements rather than the traditional approach of

first recovering the signal first and then extracting information

from the recovered signal.

III. WIDEBAND SPECTRUM SENSING

In CR networks, it is desirable for the SUs to identify

spectrum opportunities over a wideband spectrum rapidly and

accurately. Figure 3 depicts the schematic representation of a

wideband channel with Nc number of narrowband channels.

As reflected in the diagram, some of the channels are occupied

and the remaining are idle at a certain time. In this context,

a CR should be able to acquire information about which

channels are idle over the considered bandwidth in order to

use them in an opportunistic way. For this purpose, an SS

technique requires the radio to receive a wideband signal

through an RF front-end, sample it by a high speed ADC,

and subsequently perform measurements for the detection of

the PU signals. For the implementation of wideband SS, a CR

transceiver needs to have a wideband antenna, a wideband

filter and amplifier, and a high speed ADC. The solutions

of wideband antennas and wideband filters are available in

the literature [100], [101], however, the development of high-

speed ADC technology is lagging [102], [103] due to the chal-

lenges involved in building sampling hardware that operates

at a sufficiently high rate [104].

The traditional way for detecting spectrum holes over a

wideband is to divide the total band into many channels

and to perform channel-by-channel sequential scanning [105],

which might introduce large latency. Another possible way

is to use an RF front-end with a bank of narrow bandpass

filters. This approach solves the latency problem since multiple

channels can be processed simultaneously. However, it is

inefficient to implement due to the requirement of numerous

RF components. An alternative approach is to directly sense

the wide frequency range at the same time, called Wide-

band Spectrum Sensing (WSS) (see [106] and the references

therein). However, special attention should be paid to the

wideband processing which renders high-rate standard ADC

costly and even impractical. Clearly, the need to process very

wide bandwidth is the most critical challenge for the WSS

[107].

To address the aforementioned issues, many researchers

have considered CS techniques for wideband SS assuming

some sparsity basis. As the wideband spectrum is inherently

sparse due to the low percentage of spectrum occupancy, CS

becomes a promising technique to reduce the burden on the

ADCs in WSS. The important advantage of the CS approach

for wideband signal acquisition is that it can increase the

overall Dynamic Range (DR) of the acquisition system [49]. In

contrast to conventional Nyquist rate sampling systems, CS-

based ADCs, also called Analog to Information Converters

(AICs) [108] provide an important benefit in reducing the

required sampling rate in order to represent the same spectrum.

Further, fewer quantization operations are required in CS-

based receivers due to the reduction in the number of acquired

measurements, thus resulting in significant power savings

[109].

Several CS-based approaches have been developed to

detect the frequency occupancy of PUs using sub-Nyquist

rate samples. CS was first applied to WSS in [7], where

sub-Nyquist rate samples are utilized to detect and classify

frequency bands through a wavelet-based edge detector. Fur-

ther, authors in [52] studied a two-step CS scheme with

the aim of minimizing the sampling rate, where the actual

sparsity was estimated in the first time slot and the com-

pressed measurements were then adjusted in the second slot.

In [110], a sequential CS approach has been proposed where

each compressed measurement was acquired in sequence. In

this sequential CS approach, observations become available

sequentially and the process can be stopped as soon as there is

a reasonable certainty of correct reconstruction. This approach

does not require knowing how sparse is the signal, and allows

reconstruction using the smallest number of samples.

The problem of sampling a signal at the minimal rate

and reconstructing the original spectrum from the compressive

measurements has been discussed in [111]–[113]. Further,

power spectrum estimation methods based on sub-Nyquist rate

samples were presented in [114], [115], where the spectrum

of the uncompressed signal is retrieved by concentrating on

the autocorrelation function instead of the original signal

itself. Moreover, CS-based correlation matching approaches

for identification of the PUs were presented in [116]–[118] in

the context of a CR.

In [119], an adaptive SS algorithm, which can adaptively

adjust compressed measurements without any sparsity esti-

mation efforts, has been studied. Consequently, the wideband

signals are acquired block-by-block from multiple mini-time

slots, and gradually reconstruct the wideband spectrum using

compressed samples until the spectral recovery is satisfactory.

In [49], the performance of a CS-based receiver has been

studied with the help of a theoretical analysis of its expected

performance with a particular emphasis on noise and DR, and

simulation results that compare the CS receiver against the

performance expected from a conventional implementation. It

has been demonstrated that CS-based systems can potentially



attain a significantly large DR since they sample at a lower

rate. Consequently, it has been shown that CS-based systems

that aim to reduce the number of acquired measurements are

somewhat sensitive to noise, exhibiting a 3 dB SNR loss

per octave of subsampling similar to the classic noise-folding

phenomenon.

The sensing performance of a single node may degrade in

wireless channels for several reasons such as the hidden node

problem, shadowing, multipath fading, and interference/noise

uncertainty. To address these issues, cooperative spectrum

sensing, in which several nodes collaborate with each other

to enhance the overall sensing performance, has been inves-

tigated in several works [120]–[123]. Authors in [123] have

compared the performance of soft and hard schemes in which

a cooperative node forwards multiple bits of the raw data, i.e.,

soft cooperative scheme, and a single bit related to the decision

on spectrum availability, i.e., hard cooperative scheme, to

the fusion center, respectively. By incorporating the reporting

interval into the frame structure of a cooperative node and

independently of the employed local sensing technique, it has

been shown that the hard cooperative scheme provides better

performance than the soft cooperative scheme for short sensing

times and/or a large number of cooperative nodes. In this

particular example, compressive sensing can provide benefits

while sensing multiple channels over a wider bandwidth by

increasing the dynamic range of the ADC and also in reduc-

ing the number of cooperative nodes while sensing multiple

number of channels [64]. In the case of a soft cooperative

scheme, the CS further helps to reduce the cooperative burden

as well as the number of cooperative nodes and in the hard

cooperative scheme, the CS is more useful for local sensing.

Several works exist in the literature in the context of applying

CS for cooperative sensing in centralized [64], [68], [71] and

distributed [67], [69], [83], [124] settings. In Section III-B1

and Section III-B2, we provide a detailed discussion on the

application of CS in centralized and distributed cooperative

SS by referring to the current state of the art.

In the following, we present the main wideband sensing

issues, the existing works related to wideband compressive

collaborative SS and the hardware architectures.

A. Wideband Sensing Issues

1. Dynamic Range and Noise Folding: Dynamic Range

(DR) describes the range of the input signal levels that can

be reliably measured at the same time. In other words, it’s

the ability to accurately measure small signals in the presence

of the large signals. The DR is a useful parameter for any

measurement/acquisition system and it is determined by the

following two independent parameters [125]: (i) limitation by

noise and (ii) limitation by spurious signals.

The DR is defined as the ratio of the full scale amplitude

to the peak noise floor and for an Nb bit ADC, it is given by

DR = 6.021Nb + 1.763 dB. (6)

The above equation is valid only in the time domain without

digital filtering and a different expression is needed to define

the real achievable dynamic range of the system. For a simple

acquisition system without a preamplifier, the DR is mainly

limited by the ADC and the DR in (dBFS/
√
Hz) can be written

as [125]

DR = SNR+ 10× log(fs/2), (7)

where the SNR is given by

SNR = 6.02×Neff + 1.76, (8)

where fs is the sampling frequency, Neff is the number of

ADC effective bits.

From practical perspectives, the important advantage of

CS for wideband signal acquisition is that it can increase

the overall DR of the acquisition system as compared to

the conventional Nyquist rate acquisition system within the

same instantaneous bandwidth. Due to this advantage, it can

reduce the system size, weight, and power consumption, and

the monetary cost considerably but at the cost of increasing

the noise figure of the system. The exact value of the DR

improvement that can be achieved depends on the exact speed

and the exact ADC design. Generally, CS-enabled sampling

rate reduction can increase the system DR, approximately by

one bit (approx. by 6 dB) for every factor of 2 that CS permits

the ADC sampling rate to be reduced [126].

If (i) the noiseless input is sparse, (ii) the additive noise is

white, and (iii) the CS measurement process satisfies the RIP,

then the Recovered SNR (RSNR) is related to the In-band

SNR (ISNR), which measures the SNR by including only the

noise within the same bandwidth as the signal [49], of the

received signal in the following way [126]

ρ
1− δ

1 + δ
≤ ISNR

RSNR
≤ ρ

1 + δ

1− δ
, (9)

where ρ is the compression factor (decimation rate) and

δ ∈ (0, 1) is a constant determined by the CS measurement

process. The value of ρ must be less than a critical value

ρC = B/W (B being the instantaneous bandwidth and W
being the maximum signal bandwidth) i.e., the degree of

sparsity of the input signal. The above ratio can also be written

as [49]
ISNR

RSNR
≈ 10log10(ρ). (10)

From (10), it can be deduced that every time we double

the compression factor ρ (i.e., a one octave increase) up to

the value of ρC , the RSNR of the recovered signal decreases

by 3 dB. This 3dB/octave SNR degradation depicts an impor-

tant tradeoff while designing CS-based receivers. The main

conclusion is that for a fixed signal bandwidth W/2, there

is a practical limit to the instantaneous bandwidth B/2 for

which we can obtain a desired RSNR [126]. Although the

above noise folding behavior of CS systems imposes a very

real cost, the dominant advantage is that it increases the DR

of the acquisition system.

2. Sampling Rate and Sparsity Order: To determine a

suitable sampling rate, most existing works implicitly assume

that the sparsity order of the underutilized spectrum is known

beforehand. However, in practical CR applications, the actual

sparsity order level corresponds to the instantaneous spectrum

occupancy of wireless users which is time varying in nature.



Thus, the actual sparsity level is often unknown and only

its upper bound, which can be measured from the maximum

spectrum utilization observed statistically over a time period,

can be obtained. Hence, in practice, the conservative deter-

mination of the sampling rate based on its upper bound can

cause unnecessarily high acquisition costs [104].

From the above discussion, it can be noted that the

sampling rate depends on the sparsity level and we need

to adapt the CS system in such a way that the sampling

rate is adaptive in accordance with the dynamic variation

of the spectrum occupancy. One method of addressing this

aspect to estimate the sparsity order first and then apply the

suitable sampling rate based on the estimated sampling rate.

In this context, the authors in [127] have proposed a two-

step CS approach in which the sparsity order is estimated at

the first step by considering sufficiently smaller number of

measurements and then the sampling rate corresponding to

the estimated sparsity order is applied at the second step to

collect additional samples. Subsequently, the reconstruction of

the signal spectrum has been carried out using all the collected

samples in both steps. Finally, based on this reconstructed

signal spectrum, SS decision is made. The aspects of sparsity

order estimation are highlighted later in Section IV-B.

Another main benefit of CS-based CR transceiver is that

the reduction in the sampling rate of an ADC due to CS

directly translates into the power savings and it becomes more

power efficient solution than the traditional non-CS based

transceivers. The power consumed by an ADC increases at

a rate of 1.1fs, where fs is the sampling rate of the ADC.

For example, an 8-bit flash ADC at 200 Msps consumes 2320
mW of power (or 11.6 nJ/sample), while an 8-bit flash ADC

at 20 Msps consumes only 150 mW (or 7.5 nJ/sample) [109].

Therefore, in this example, by reducing the sampling rate

by a factor of 12.5, one can reduce the power consumption

approximately by a factor of 15.5.

B. Wideband Compressive Collaborative SS

As mentioned earlier, WSS is challenging due to the

requirement of complex and costly hardware circuitry at the

cognitive transceiver. One possible way to address this issue

is to perform collaborative SS among the CR nodes in com-

pressive settings which can improve the ability of monitoring

over the whole available spectrum band [64], [65] and also

can enhance the accuracy of the acquired information. In this

context, collaborative compressive SS has been widely studied

in the literature utilizing the efficient sampling that exploits the

underlying sparse structure of the measured radio spectrum.

However, to have the effective realization of the collaborative

CS in a CR network, the following main challenges need to

be addressed [65]

1) Conventional cooperation schemes require a Fusion Cen-

ter (FC) in order to collect measurements from all CRs

and to make the centralized sensing decision. This may

incur high overhead costs for the reporting links and

render the entire network vulnerable to the node failure.

2) The spatially separated cooperating CRs may not be

ideally synchronized to remain silent during the SS
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Fig. 4. Illustration of the centralized compressive collaborative SS approach
in [64], [129]

phase. Due to this, each CR may perceive not only

the common spectral components from the PUs but

also individualized spectral innovations arising from the

emissions of other CRs or interference in its local one-

hop region. These CR-dependent spectral innovation

components may make the cooperation among the CRs.

The existing literature basically deals with the following

two cooperative approaches: (i) centralized and (ii) distributed,

which are detailed in the following subsections.

1) Centralized: The centralized approach involves an FC

in order to collect the measurements from the spatially sep-

arated CRs and a suitable technique is applied at the FC in

order to process the collected measurements. In the context,

the contribution in [64] studied the centralized compressive

cooperative approach in which each CR node senses the linear

combinations of multiple channel information and reports

them to the FC. Subsequently, the occupied channels are

decoded at the FC from the collected reports by using a matrix

completion and a joint sparsity recovery algorithms.

In most centralized studies, it is assumed that the FC

receives and combines all CR reports assuming idle reporting

channels. However, the reports sent by the CRs are subject to

multipath fading and shadowing loss, and thus the entire report

data set may not be available at the FC. Further, it may be the

case that there are only a few CR nodes in a large network, and

thus are unable to gather enough sensing information. In this

context, each CR node can be assumed to be equipped with a

frequency selective filter, which linearly combines the multiple

channel information. Subsequently, these linear combinations

are sent as reports to the FC, where the occupied channels are

decoded from the reports utilizing suitable CS algorithms.

Figure 4 illustrates the aforementioned centralized collabo-

rative compressive approach studied in [64]. By following this

approach, both types of overheads, i.e., the amount of channel

sensing at the CRs and the number of reports sent from the

CRs to the FC, can be significantly reduced [64]. The two

compressive collaborative SS approaches proposed in [64] are



briefly described below.

1) Matrix completion problem: The aim of this method

is to reconstruct a matrix (typically low-rank) efficiently

from a relatively small number of observed entries

which can be considered as the linear combinations of

the channel powers. Each CR node equipped with p
frequency-selective filters takes p linear combinations

of channel powers and reports them to the FC. The

total pm linear combinations taken by m CRs form a

pm matrix at the FC. This matrix becomes incomplete

while incorporating the transmission loss and has the

properties enabling its reconstruction only from a small

number of its entries. Therefore, information about the

complete spectrum usage can be recovered from a small

number of reports from the CR nodes, thus reducing

the sensing and communication overloads significantly.

Two important properties of a matrix required to apply

the matrix completion problem are [128]: (i) low rank,

and (ii) incoherence property.

2) Joint sparsity recovery: This method relies on the fact

that the spectrum usage information collected by the

CR nodes contains a common sparsity pattern i.e., each

of the few occupied channels is typically observed by

multiple CRs. Let us represent the sensing information

gathered by M CRs in N channels by an N×M matrix

X, where each column corresponds to the channel

occupancy status received by the mth CR and each row

represents the occupancy status of the nth channel. Since

there are only a few number of occupied channels at a

time and only a few CRs collect information about a

single channel, the matrix X is jointly sparse without

considering the effect of the noise. However, X can

be considered to be approximately jointly sparse while

taking the noise into account [64]. There exist different

joint sparsity recovery algorithms as described later in

Section III-B2 and are applicable to both centralized and

distributed CS scenarios.

Similarly, authors in [71] have studied a centralized ap-

proach where each sensor collects sub-Nyquist rate samples

and forwards them to the FC together with the CSI and

the sampler coefficients. Subsequently, the FC calculates the

cross-spectra between all measurements and then the power

spectrum of the received signals is estimated by exploiting the

wide sense stationary property of the PU signals. Furthermore,

authors in [68] propose an adaptive sequential CS approach

to recover spectrum holes and further propose several fusion

techniques to apply the proposed approach in a collaborative

manner.

2) Distributed: Distributed CS (DCS) is considered a

powerful technique of distributed signal processing in many

applications such as sensor networks due to its capability

of simultaneous sensing and compression [66]. The theory

of DCS relies on the concept of the joint sparsity of a

signal ensemble and it exploits both intra- and inter-signal

correlation structures [130]. In a typical DCS approach, a

number of sensors measure signals (of any dimension) which

are each individually sparse in some basis and also may be

correlated from sensor to sensor. Each sensor independently

encodes its signal by projecting it onto another, incoherent

basis (such as a random one) and then transmits just a few

of the resulting coefficients to the FC. Subsequently, the FC

can jointly reconstruct all of the signals precisely exploiting

the joint sparsity of the signal ensemble. In this context, the

following two joint sparsity models have been proposed in

order to study the DCS problem [130].

• Joint Sparsity Model 1 (JSM-1): In this model, all the

signals share a common sparse component while each

individual signal contains a sparse innovation component.

If xj ∈ RN denotes the jth signal in a signal ensemble,

with j ∈ 1, . . . ,M , M being the number of signal

sources, i.e., CRs, this model implies the following

xj = z + zj , j ∈ 1, . . . ,M, (11)

where the signal zj is common to all of the xj with the

K sparsity level in the basis Ψ, and the signals zj are

the unique portions of the xj having Kj sparsity level

in the same basis. A wireless sensor network used for

recording temperature, light intensities, air pressure, etc.

can be considered as an example for this model.

• Joint Sparsity Model 2 (JSM-2): This model assumes

all signals being constructed from the same sparse set of

basis vectors, but with different coefficients, i.e., each

measurement vector independently encodes the sparse

signals while the ensemble of sparse signals share a com-

mon sparsity structure. This model implies the following

xj = Ψθj , j ∈ 1, . . . ,M, (12)

where each θj is supported only on the same ω ⊂
{1, . . . , N} with |ω| = K. In other words, all signals

are K sparse and are constructed from the same K
elements of Ψ, but with arbitrarily different coefficients.

This model is applicable to the scenarios such as acoustic

localization/DoA estimation [83], array processing etc.,

where multiple sensors acquire the same signal but with

phase shifts and attenuations caused by signal propaga-

tion.

Authors in [69] studied the distributed compressive SS

problem by using the JSM-2 model considered in [130].

Different CR sensing receivers acquire the same wide-band

signal from the licensed system at different SNRs and the

autocorrelation vectors of the compressed signal from the CRs

are collected at the FC. Subsequently, the distributed JSM-

2 model has been used to obtain an estimate of the signal

spectrum. Similarly, the correlation between the measurements

of different CRs may be utilized by using a Kronecker

product matrix as a basis, called Kronecker sparsifying basis

[67]. This basis helps to exploit the two dimensional sparse

structure in the measured spectrum using the collaborative

measurements taken by several spatially separated CRs. In this

context, authors in [67] proposed a modified JSM-2 (JSM2M)

model which relaxes the assumptions of the the original JSM-

1 and JSM-2 models and generates signals which have a

common sparse support in the frequency domain with different

amplitudes plus innovations due to the hidden PU problem.



In [124], two cooperative distributed wideband SS ap-

proaches for a CR network are proposed utilizing the CS

technique. The first approach jointly estimates the spectrum

of the PUs based on the compressive measurements obtained

by the individual CRs where CSI is assumed to be available.

In the second method, each CR user individually recovers the

spectrum of the received faded signal without the availability

of CSI and makes a local decision on the frequency occupancy

of the PU signal based on this spectrum estimate. Subse-

quently, all CR users collaboratively make a global decision

on the frequency occupancy by using a consensus algorithm

based on single-hop communication. Recently, authors in

[83] have proposed an Multiple-Sensing-Matrices-FOCUSS

(MSM-FOCUSS) algorithm for distributed CS and wideband

DoA estimation.

C. Hardware Architectures

Several hardware architectures have been proposed and

implemented in the test-bed environments enabling the com-

pressive samples to be acquired in practical settings. Some of

the widely discussed architectures are briefly described below.

In Table III, we provide their advantages, disadvantages and

the related references.

• Random Filtering: In this method, first, a

sparse/compressible signal is captured by convolving

it with a random-tap Finite Impulse Response (FIR)

filter, and then the filtered signal is downsampled to

obtain a compressed signal. The random taps of the

filter can be generated using (i) the N (0, 1) distribution

or (ii) the Bernoulli/Rademacher distribution of {±1}s.

This method is generic to summarize many types of

compressible signals and can be applied to streaming as

well as continuous-time signals but the number of taps

must be known in order to recover the signal from the

compressed data [50].

• Random Convolution: In this method, the measurement

process consists of convolving the signal of interest

with a random pulse followed by random subsampling

[131]. This procedure is random enough to be universally

incoherent with any fixed representation system, but

structured enough to allow fast computations with the

help of Fast Fourier Transform (FFT) operations. Random

convolution has the following two advantages compared

to the completely random strategies: (i) available implicit

algorithms based on the FFT, and (ii) many physical

systems take observations of a known (and controllable)

pulse with an unknown signal i.e., radar imaging.

• Random Demodulator (RD): In this method, a sig-

nal is demodulated by multiplying it with a high-rate

pseudonoise sequence, which smears the tones across

the entire spectrum [59]. Subsequently, a low-pass anti-

aliasing filter is applied and the signal is captured by sam-

pling it at a relatively low rate. The demodulation process

ensures that each tone has a distinct signature within the

passband of the filter. Since there are only a few tones

present in many applications such as in CR networks,

it is possible to identify the tones and their amplitudes

from the low-rate samples. The main advantage of this

approach is that it bypasses the need for a high-rate ADC,

thus allowing the use of robust, low-power and readily

available components. However, this benefit comes at the

cost of highly non-linear reconstruction process, i.e., the

need of additional digital processing.

• Modulated Wideband Converter (MWC): In 2010,

Mishali et al. proposed an architecture, called MWC,

which generally comprises of a bank of modulators

and low-pass filters. This architecture first multiplies the

analog signal by a periodic waveform, whose period cor-

responds to the multiband model parameters. A square-

wave alternating at the Nyquist rate is one choice; other

periodic waveforms are also possible. Subsequently, the

product is lowpass filtered and sampled uniformly at

a low rate. The goal of the modulator is to alias the

spectrum into baseband. The most distinguishing charac-

teristic of the MWC from that of the RD is that the RD

has sampling functions that have finite temporal extent

but infinite spectral support while the MWC employs

sampling functions that have finite spectral support but

infinite temporal support [138].

• Compressive Multiplexer (CMUX): This method does

not require the calibration of an analog low-pass filter

or integrator as required in the random modulator and

MWCs. Furthermore, the basic calibration in this method

can be simply achieved with the knowledge of a few

resistor values and unlike other parallel structures, it

requires only one ADC rather than one per channel

[53]. It can be considered to be analogous to coded

digital communications schemes such as Code Division

Multiple Access (CDMA). Instead of coding the signal

with orthogonal codes and transmitting into the same

channel, the CMUX effectively codes each channel with

a near orthogonal code and then combines the coded

channels together following the approach proposed in

[53]. Recently, authors in [54] have proposed a CMUX

architecture for the acquisition of the ensembles of cor-

related signals by exploiting the correlation structure of

the signal ensemble even though it is unknown a priori.

D. Comparison of CS and non-CS Detectors

Spectrum sensing in a CR involves deciding whether the

PU is present or not from the observed signals. Thus, spectrum

sensing can be formulated as a binary hypothesis testing

problem in the following way

y(n) =

{

w(n) H0,
s(n) + w(n) H1,

(13)

where y(n) denotes the received signal at the CR device at the

nth sampling instance, s(n) denotes the primary signal and

z(n) is the Additive White Gaussian Noise (AWGN). The CR

user has to decide if the primary signal is present (H1) or not

(H0) from the observations y(n) collected over the sensing

duration.



TABLE III
ADVANTAGES AND DISADVANTAGES OF THE EXISTING COMPRESSIVE ARCHITECTURES

Name and References Advantages Disadvantages

Random Filtering (RF) Applicable to many types of compressible signals Number of filter taps must be known
[50], [51] Measurement operator can be stored and applied efficiently Nonlinear reconstruction algorithm

Easy implementation

Random Convolution (RC) Available implicit algorithms based on the FFT Not applicable for all sparse/compressible signals
[131], [132] Utilization of the known pulse in many physical systems The pulse structure may not be known

Random Demodulator (RD) No need for a high-rate ADC Slow reconstruction process and high sampling delay
[59], [60], [62] Robust against noise and quantization errors Only suitable for signals having a finite set of pure sinusoids

Modulated Wideband Converter (MWC) Suitable for analog multiband signals Requires ideal low pass filters for reconstruction
[61], [63] Parameter choice is insensitive to the exact bandwidth Imperfections of non-ideal lowpass filters

Flexible control of sampling rate at each channel Limited number of bands and bandwidth
Fast reconstruction process and low sampling delay

Compressive Multiplexer (CMUX) It requires only one ADC rather than one per channel Undersampling factor is more restricted
[53], [54] Flexibility to increase the total bandwidth Inherent non-idealities in the RF tuner

Simpler calibration

In compressive settings, the above detection problem can

be written in the following way

y =

{

Φw H0,
Φ(s+w) H1,

(14)

where y is a κ×1 compressive-sampled received signal, Φ is

a κ× L compressive matrix, s is an L× 1 PU signal vector,

and w denotes the L× 1 AWGN vector. If we already know

the value of s during the design of Φ, the optimal strategy

is to choose the value of Φ as Φ = sT . However, since

this knowledge is difficult to obtain in practice for the case

of CR applications, the value of Φ should be universal and

is considered to be a random matrix in most of the existing

literature [42].

With regard to the detection problem (13), there exist

several CR techniques in the literature. The main SS tech-

niques are matched filter based detection, Energy Detection

(ED), feature-based detection, autocorrelation based detection,

covariance based detection, eigenvalue based detection, etc

[16], [22], [55]. Corresponding to the hypothesis testing prob-

lem in compressive settings represented in (14), a general

framework for signal processing of compressed measurements

for detection and estimation without reconstructing the original

signal has been detailed in [42]. A much more involved

analysis for the estimation setting was presented in [58], where

the behavior of the achievable estimation performance in the

sparse setting has been analyzed. Out of the aforementioned

SS techniques, in this paper, we analyze the performance of

the following detectors in compressive and non-compressive

settings.

• Matched Filter Detection: The matched filter is an

optimal detector in the presence of stationary Gaussian

noise since it maximizes the received SNR. However, it

requires a priori knowledge of the primary signal and

the performance may degrade if this information is not

accurate. In practice, most wireless systems have pilots,

preambles, synchronization words or spreading codes that

can be used for the coherent detection.

• Energy Detection: The energy detector is the most

common way of spectrum sensing because of its low

complexity (computational and implementation) [56]. It

can be considered as a semiblind technique since it only

requires the knowledge of the noise variance and does

not rely on any signal feature. The main drawback of the

energy detector is its inability to discriminate between

sources of received energy (the primary signal and noise)

making it susceptible to uncertainties in background noise

power, specially at a low SNR.

• Feature-based Detection: If some features of the primary

signal such as its carrier frequency or modulation type

are known a priori, more sophisticated feature detectors

may be employed to carry out spectrum sensing at the

cost of increased complexity. Cyclostationary detection

[57] and correlation matching detection [116]–[118] are

particularly appealing because of their ability to dis-

tinguish the primary signal from the interference and

noise. They can work in a very low SNR region due

to their noise rejection capability but sometimes they are

computationally complex and requires significantly long

observation time.

Next, we present some numerical results about the perfor-

mance of the aforementioned three types of SS techniques. To

analyze the performance in compressive settings, we consider

a multi-coset sampling (periodic non-uniform sampler) in

which the total number of received samples is divided into

blocks, and the same compressive matrix Φ is applied to each

block. Figure 5 depicts the probability of detection (Pd) versus

SNR results for a primary signal in AWGN considering a fixed

probability of false alarm Pf = 10−3. From the figure, it can

be noted that the matched filter outperforms the simple energy

detector since it is able to reliably detect low-power primary

signals. The value of ρ in Fig. 5 indicates the compression

ratio, i.e., the ratio of the number of rows to the number of

columns in Φ, defined in Section II, and the value ρ = 1
represents the Nyquist rate sampling, i.e., the conventional

non-CS approach. As the value of ρ decreases, i.e., we use

more compression, the detection performance of both matched

filter and the energy detector with respect to SNR decreases as

depicted in Fig. 5. This means that there exists a clear trade-

off between the detection performance and the sampling rate

for both matched filter and the energy detector.

In addition, we provide the performance comparison of

correlation matching detectors (which falls under the cate-

gory of feature-based detection [117]) in CS and non-CS

settings in Fig. 6. The scenario considers a desired Binary

Phase Shift Keying (BPSK) signal with SNR = 10dB at

the normalized frequency of 0.2 and a pure-tone interference

with SNR = 10dB located at the normalized frequency of
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Fig. 5. Probability of detection versus SNR of the energy detector and
matched filter with compressive measurements (Probability of false
alarm, Pf = 10

−3), Number of Nyquist rate samples=99.

0.7. Figure 6(a) uses the Euclidean metric (Frobenius norm)

which works as a conventional energy detector, and it can be

noted that this approach does not provide a good performance

in discriminating interference from the desired signal. On

the other hand, the result in Fig. 6(b) uses the minimum

eigenvalue technique presented in [117], [118] and this method

is able to distinguish the desired signal from the interference

effectively. Furthermore, the presented results in Figs. 6(a) and

6(b) show the degradation of the correlation matching-based

WSS techniques in terms of the capability of distinguishing

the desired signal from the interference with the decrease in

the compression ratio ρ = 1, i.e., with more compression.

However, in Fig. 6(b), it is interesting to note that the power

level estimation does not suffer due to compression since the

main peak is located at the true frequency with the level close

to the SNR value of 10dB.

IV. COMPRESSIVE SIGNAL PARAMETER ESTIMATION

As described in Section II-B, a CR may acquire different

signal parameters such as SNR, channel, sparsity order, etc.

for enabling CR communications. In contrast to the most

commonly used spectrum occupancy information required for

an interweave CR, the parameters such as SNR, DoA, CSI,

etc. will allow the CR to implement underlay CR techniques

such as cognitive beamforming [139], cognitive interference

alignment [140], Exclusion Zone (EZ), and power control

[141]. Due to the practical constraints in the acquisition

hardware, the CS-based approach can be utilized to estimate

these parameters compressively, leading to the saving in the

hardware resources [34]. In the following, we describe the

existing contributions which utilized the CS approach in order

to acquire these parameters.

A. Compressive SNR Estimation

In the existing literature, various data-aided and non data-

aided SNR estimators have been investigated in the context
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Fig. 6. Performance of CS-based correlation-matching wideband
detector [117], [118]. In the considered scenario, there is a desired
BPSK signal with SNR = 10dB at the normalized frequency of
0.2 and there is a pure-tone interference located at the normalized
frequency of 0.7 and with SNR = 10dB. The parameter ρ defines
the compression rate/ratio with ρ = 1 indicating the Nyquist rate
sampling, i.e., no compression. (a) detector based on the traditional
Euclidean metric (Frobenius norm), (b) detector based on the mini-
mum eigenvalue technique proposed in [117], [118].

of traditional legacy based systems (see [142] and reference

there in). SNR estimation is helpful for legacy based systems

in order to implement adaptive techniques such as handoff

algorithms, adaptive bit loading and optimal soft value calcu-

lation for improving the performance of channel decoders. In

addition to the aforementioned benefits, estimation of primary

SNR is useful for CR-based systems in order to implement

proper underlay transmission strategies [89].

Existing SNR estimation literature mostly focus on nar-

rowband CR systems [89], [143]–[145] where the applica-

tion of CS does not provide much benefit. However, in

practice, it is highly desirable to estimate the primary SNR

over the wideband spectrum in order to utilize the available

spectrum opportunities effectively. In this context, authors in

[90] recently studied an eigenvalue-based compressive SNR

estimation problem for a wideband cognitive receiver utilizing

the CS approach. The following two correlated scenarios have

been studied considering the equal received power across all

the carriers: (i) correlated noise, and (ii) correlated Multiple
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Fig. 7. Normalized Mean Square Error (MSE) versus Signal to Noise
Ratio (SNR) for the correlated noise scenario (sparsity order σ = 0.6,
correlation coefficient ζ = 0.6, N = 100) [90]. In the figure, ρ
denotes the compression ratio.

Measurement Vectors (MMVs). In practice, the correlated

noise case may arise due to filtering and oversampling op-

erations. Similarly, the correlated MMV case may arise due

to channel correlation or imperfections in frequency selective

filters present at the CR node.

Figure 7 depicts the normalized Mean Square Error (MSE)

versus SNR for the correlated noise scenario for both the

compressive and full measurement cases assuming correlation

knowledge at the CR receiver [90], [146]. It can be deduced

from the figure that the compressive case with the compression

ratio ρ = 0.8 has to sacrifice almost 0.3 % estimation error

in comparison to the full measurement case at SNR = 1 dB.

Furthermore, this estimation error increases with the decrease

in the value of ρ, i.e., increase in the compression. On the

other hand, the advantage is that ((1 − ρ) ∗ 100) % saving

can be obtained in terms of hardware resources in comparison

to the full measurement case. Various results on compressive

SNR estimation for the correlated noise and correlated MMV

cases can be found in [90].

B. Compressive Sparsity Order Estimation

For a wideband CR, sparsity order is another useful pa-

rameter to be acquired and it basically provides information

about what percentage of the licensed band is available for the

secondary usage. This awareness is helpful in implementing

CS-based wideband sensing. Since this is a time varying

parameter and is not known to the CR receiver as a priori,

it needs to be estimated in practice. If the information about

the sparsity order is available to the wideband CR transceiver,

it can dynamically adapt its sampling rate in order to fully

exploit the advantages of the CS technique. In this context,

estimating the sparsity order is crucial and has been studied

in some existing contributions [91], [127], [147].

Like in other parameter estimation problem, estimating

sparsity order over a wideband requires high sampling rate,

hence demanding the increased cost in the ADC hardware.

In this context, it is advantageous to estimate sparsity or-

der compressively by exploiting some sparsity basis. In this
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Fig. 8. Normalized Sparsity Order Estimation Error (SOEE) versus
sparsity order with compressive and full measurements for the varying
power scenario (Dynamic Range DR = 6.02dB, N=100, mean power
= 7.78 dBW) [91]. In the figure, ρ = 0.8 denotes the 20 %
compression, i.e., 20 % less measurements and the full measurement
case indicates the Nyquist rate sampling, i.e., ρ = 1.

context, authors in [91] have recently studied an eigenvalue-

based compressive sparsity order estimation technique using

asymptotic random matrix theory. The detailed theoretical

analysis for the signal plus noise case has been carried out

to derive the asymptotic eigenvalue probability distribution

function (aepdf) of the measured signals covariance matrix

for sparse signals. Subsequently, the sparsity order of the

wideband spectrum has been estimated based on the derived

aepdf expressions utilizing the maximum eigenvalue of the

measured signal’s covariance matrix.

In [91], the following three different scenarios have been

considered: (i) constant received power, (ii) varying received

power, and (iii) correlated scenario with the correlated MMVs.

The first scenario assumes equal received power across all the

carriers and uncorrelated non-zero entries across the MMVs.

The second scenario allows the received power levels to vary

across all the carriers vary but with a known distribution while

the third scenario considers the correlated scenario in which

the non-zero entries across the MMVs are correlated.

Figure 8 presents the comparison of the normalized Spar-

sity Order Estimation Error (SOEE) versus sparsity order

for full and compressive measurement cases with parameters

considering varying received power, which is modeled using a

modified semicircular distribution [91], [146]. From the figure,

it can be noted that sparsity order up to 0.5 can be estimated

with less than 2.9 % estimation error for the compressive case

(with ρ = 0.8) and with less than 2.5 % estimation error for

the full measurement case. Furthermore, it can be concluded

that there exists a tradeoff between estimation performance

(expressed in terms of sparsity order estimation error) and

the hardware cost (number of measurements). Based on the

presented results in Fig. 8, at the cost of 0.4 % estimation

error, 20 % hardware resources can be saved since 20 % less

measurements are utilized.



C. Compressive DoA Estimation

The DoA information is useful for CR networks or CR

based sensor networks for various objectives such as adaptive

beamforming, and active PU localization. For the DoA estima-

tion problem, CS has been widely used in the literature [84]–

[86]. Authors in [84] have studied a two dimensional (2D)

bearing estimation of multiple acoustic sources with a set of

sensors using a wireless channel under bandwidth constraints

and the l1-norm minimization was applied considering the

target bearings as a sparse vector.

Furthermore, a CS-based architecture has been presented

in [85] for array based applications by exploiting the CS in the

spatial domain. The main idea behind this architecture it that

a large size array can be transformed into a small size array

with the random selections of the array elements. Moreover,

the contribution in [86] focuses on parameter estimation using

a random linear array and the CS technology. The concept

behind the proposed approach in [86] is that a random linear

array removes the limitation of a uniform array, and when

combined with the CS reduces the burden in the design of the

array.

A number of joint sparse representation methods specific

to wideband DOA estimation has been studied in the literature

[87], [88], [148]. Some important of these are briefly described

below.

1) l1-Singular Value Decomposition (l1-SVD) recon-

struction: This method combines the SVD step of the

subspace algorithms with a sparse recovery method

based on l1-norm minimization [148]. This algorithm

can handle closely spaced correlated sources if the num-

ber of sources is known. However, it suffers from some

performance degradation when the number of sources is

unknown [88].

2) Joint l0 Approximation DOA (JLZA-DOA) method:

In this method, the snapshots of the measurements

are represented as some jointly sparse linear combi-

nations of the columns of an array manifold matrix

and subsequently the problem is solved by using a

mixed approximation approach, which is a member of

the smoothed l0 (SL0) approximation methodology [88].

These SL0 algorithms approximate the l0-norm using a

class of Gaussian functions. This algorithm can resolve

the closely spaced and highly correlated sources using

a small number of noisy snapshots, and does not need

the prior knowledge about the number of sources.

3) Aliasing free Sparse Signal Representation (SSR)

recovery method: This method is based on the the

SSR-based approach which constructs steering matrices

corresponding to different frequency components of the

target signal [87]. The main drawback of SSR based

approach is that this method is subject to ambiguity

resulting from not only spatial aliasing as in classical

beamforming but also from the over-completeness of

the dictionary. To overcome this issue, the aliasing free

SSR recovery method utilized MMVs to alleviate the

ambiguity resulting from an over-complete dictionary

and further uses multiple dictionaries to remove the

ambiguity resulting from spatial aliasing.

D. Compressive Channel Estimation

In CR networks, the knowledge of the CSI towards the

PRs is crucial in order to protect the PUs from the harmful

interference caused by the STs while employing underlay

CR techniques. Further, the channel information of the links

between STs and secondary receivers is important in order

to guarantee the Quality of Service (QoS) of the secondary

link. Since there is no cooperation between PUs and SUs

in practice, the estimation of crosslink channels is the main

challenge. Moreover, the knowledge of primary channel statis-

tics can be very helpful in making opportunistic spectrum

access decisions for a CR [74]. In addition, the knowledge

of the CSI information is essential for implementing advanced

precoding and beamforming algorithms at the CR transmitters.

Therefore, the estimation of the channel statistics efficiently

and accurately is an important issue in CR networks as in

legacy wireless networks. However, the conventional channel

estimation methods may lead to large pilot overheads and the

issue of pilot contamination in large CR networks. In this

context, CS plays an important role to reduce the estimation

overhead by exploiting the channel sparsity in wireless net-

works including the CR networks [4].

The wireless channel can often be modeled as a sparse

channel in which the delay spread could be very large, but the

number of significant paths is normally very small. The prior

knowledge of the channel sparseness can be effectively used

to improve the channel estimation using the CS theory. The

common assumption used in the application of CS for channel

estimation application is that a sparse multipath channel leads

to a baseband channel model in which most of the channel taps

are negligible [4]. The sparsity of the time domain channel can

be exploited by choosing the pilots randomly. In this way, a

random compressive measurement matrix can be constructed,

hence conserving the available bandwidth [75].

In order to efficiently utilize the available spectral opportu-

nities in an underlay CR network either by means of resource

allocation or interference mitigation, a secondary transmitter

should have the channel state information of multiple PU

channels over a wide frequency band towards multiple primary

receivers. In this context, CS can be helpful in reducing the es-

timation overhead as in other wireless networks. Furthermore,

in contrast to sparse channel estimation techniques in general

wireless communication channels, the pilot design in a CR

network can be based on the output of spectrum sensing [76].

For example, in Orthogonal Frequency Division Multiplexing

(OFDM)-based CR systems, after spectrum sensing is carried

out, the OFDM subcarriers occupied by the PUs can be deac-

tivated first, and then among the remaining active subcarriers,

some subcarriers can be assigned for pilot transmission and

the others to transmit data symbols for the SUs.

In the CR literature, a few works exist in the areas of

sparse channel estimation using the CS approach [76]–[78].

The CS-based pilot design for sparse channel estimation in

OFDM-based CR networks may help in improving the data

rate and the flexibility of SUs. In this regard, authors in [76]



studied the pilot design problem for sparse channel estimation

in OFDM-based CR systems. It has been shown that the

proposed spectrum sensing based sparse channel estimation

can achieve 11.5 % improvement in spectrum efficiency

while maintaining the same performance as the traditional

least square channel estimation. In the context of distributed

resource allocation problem for a CR, authors in [77] have

developed a CS based estimation algorithm in order to acquire

the channel and interference parameters needed for resource

allocation. Furthermore, authors in [78] proposed a sparsity

adaptive matching pursuit algorithm for channel estimation

in Non Continuous OFDM (NC-OFDM) systems. However,

the disadvantage of this sparsity adaptive matching pursuit

algorithm is that it requires quite large reconstruction time.

To address this issue, authors in [78] further modified the

proposed algorithm as an adaptive matching algorithm and

have shown that the modified adaptive matching algorithm

improves the computing speed and the reconstruction accuracy

as compared to those of the sparsity adaptive matching pursuit

algorithm.

The compressive channel estimation has also received

important attention in the area of Ultra-Wideband (UWB)

technology, which can be considered as an implementation

technology for the underlay CR. Due to very low Power Spec-

trum Density (PSD), this technology facilitates the coexistence

of SUs with the PUs that operate within the UWB’s wide

spectrum band, i.e., 3.1 to 10.6 GHz [79]. The transmission

of ultrashort pulses in UWB technology leads to several

desirable characteristics such as the rich multipath diversity

introduced by a large number of propagation paths existing in

a UWB channel. The rich multipath coupled with the fine

time resolution of the UWB creates a challenging channel

estimation problem. Fortunately, multipath wireless channels

tend to exhibit impulse responses dominated by a relatively

small number of clusters of significant paths, especially when

operating at large bandwidths and signaling durations and/or

with the numbers of antenna elements [80]. These channels are

often called as “sparse channels”. The conventional channel

estimation methods usually provide higher errors because they

ignore the prior knowledge about the sparseness of the wireless

channel.

In the above context, the UWB sparse channel estima-

tion problem has been studied in [81] under a time domain

sparse model point of view. In particular, [81] defined a

suitable dictionary formed by the delayed versions of the

UWB transmitted pulse in order to better match the UWB

signal. However, the spike basis achieves maximal incoherence

with the Fourier basis and due to this reason, it seems more

convenient to work with frequency domain measurements.

That approach was followed in [82], where the use of CS was

examined for the estimation of highly sparse channel by means

of a new sparse channel estimation approach based on the

frequency domain model of the UWB signal. By constructing

a dictionary that closely matches the received signal (either

in the time or frequency domain), the signal contributions

from the strongest paths of the UWB multipath channel can be

recovered from the set of random projections of the received

pilot signals.
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Fig. 9. Comparison of the CS-based channel estimation techniques in
[81] and [82] in terms of RMSE of the reconstructed channel versus
SNR.

Figure 9 depicts the Root Mean Square Error (RMSE) of

the recovered signal for both models ( [81] and [82]). It can

be observed that when the compression rate ρ is high, both

perform equally well but, as the compression rate decreases,

the error obtained with [81] increases faster than the error

obtained with [82] as we move to lower SNR region.

V. COMPRESSIVE RADIO ENVIRONMENT MAP (REM)

CONSTRUCTION

In this section, first, we highlight the importance of the

Radio Environment Map (REM) construction utilizing the

CS approach, i.e., compressive REM construction, for the

implementation of CR networks. Subsequently, we review the

existing related works in the context of compressive REM

construction highlighting the challenges in heterogeneous en-

vironment. Then we propose a generalized framework for

constructing the REM in REM settings along with the main

issues to be addressed.

A. Importance in CR Networks

The REM is an architectural concept for storing envi-

ronmental information for use in CR networks [149]. This

facilitates the geolocation database-assisted CR communica-

tions which is an alternative spectrum awareness mechanism

to obtain the knowledge of the RF environment. One way

of constructing the REM is to use the spectrum cartography

method which is the process of plotting an attribute of the

RF environment over a finite geographical area. Spectrum

cartography has important applications in network planning,

maintenance and optimization, and has been widely used by

the cellular network designers. In CR applications, spectrum

cartography can be used as a powerful tool to determine the

presence and the range of active PU transmitters [96], [99].

For the effective implementation of CR networks, an REM

can be extremely useful for the proper selection of the SU

channel and the transmit parameter. The accurate selection of

these parameters must be made considering the requirements

of PU interference control and the QoS of the secondary



link, of which the first requirement is the more crucial. This

interference control can only be guaranteed only if the PU

locations and the received powers levels from other PUs are

known by the SUs. Therefore, the locations of the transmitters

and their transmit power levels need to be accurately estimated

in order to construct an REM. Subsequently, the map of the

received power level throughout a two dimensional area can

be created utilizing the estimated locations and the transmit

power levels.

In practice, it is highly desirable to construct the REM over

a wide coverage area and over a wide spectrum band. However,

this requires a large number of sensors and a high overhead

on parameter acquisition and recovery while applying the

conventional non-CS based approaches. In this context, the

following two practical aspects motivate the use of the CS in

REM construction problems.

1) As mentioned earlier, there is a small number of active

carriers compared to the total number of carriers used

in the legacy systems, thus creating the sparsity in the

frequency domain.

2) There is a small number of active primary transmitters

compared to the total number of distributed sensors, thus

creating the sparsity in the spatial domain.

By utilizing the above sparsity bases, system designers can

take advantage of the CS method in constructing the REM

over a wideband area and a wideband spectrum band.

B. Related Literature

There exist several spectrum cartography works in the

literature [150]–[152], which do not exploit the sparsity of

the active PUs in space and frequency domains. In most of

these works, spatial interpolation, which is commonly used

in Geographic Information Systems (GIS), has been used. It

refers to any system manipulating geographical referenced data

for capture, storage, analysis and management purposes. The

main spatial interpolation techniques are the Inverse Distance

Weighting (IDW), the Nearest Neighbor Interpolation, Splines

and Kriging [153].

Determining the location and power level of the active

PTs considering the sparsity feature of the primary activity

significantly helps in constructing an REM. In this regard,

several researchers have exploited this sparsity in various set-

tings [92], [96], [97], [154]. One of the widely used CS-based

REM construction method relies on a location fingerprinting

approach [92], [96], [97]. In this approach, PUs and SUs

are assumed to be located in a random subset of the grid

points within a certain discretized geographic area. The RSS

from the target PUs is measured by each SU and this set of

measurements is used to recover the PU locations and transmit

power levels. In many cases, the sparsity is exploited assuming

that the number of active PUs is much smaller than the number

of grid points.

In a sparse target localization problem, the main objective

is to determine the locations of the targets, i.e., active transmit-

ters, simultaneously using a relatively small number of noisy

Received Signal Strength (RSS) measurements. In this context,

authors in [92] present a framework for localizing multiple
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Fig. 10. The flow chart of CS-based multiple target localization
approach [92]

targets/transmitters utilizing the CS theory. The multiple target

localization problem has been formulated as a sparse matrix in

the discrete spatial domain and an RSS-based algorithm has

been used to find the location of targets. The flow chart of

the CS-based multiple target localization approach studied in

[92] is depicted in Fig. 10 and the involved steps are briefly

summarized in the following paragraph.

The M × K input matrix Y in Fig. 10 consists of

compressive noisy RSS measurements taken by K targets

on M arbitrary reference points. For the considered target

localization problem in [92], the sparsity basis Ψ and the

measurement matrix Φ are coherent in the spatial domain and

CS theory can not be directly applied. In this context, one ap-

proach to apply the CS principle is to carry out pre-processing

operation on the measured matrix Y, which results in the

same effect as in orthogonalizing two matrices. After pre-

processing, the original sparse coefficients can be recovered

from the compressive noisy measurements using suitable l1
minimization algorithms such as BP, Basis Pursuit Denoising

(BPDN), etc. Then, post-processing operation is required in

order to compensate for the grid assumption error since the

targets may not be exactly located at these grid points. For this

purpose, the dominant coefficients, whose values are above a

certain threshold λ, can be found and then the centroid of

these grid points, which acts as the location indicator, can be

calculated as illustrated in [92].

Besides the application of CS in spectrum cartography

and target counting/localization, CS is relevant when creating

interference maps in various wireless networks such as IEEE

802.22 Wireless Regional Area Networks (WRAN), which

is the first CR-based wireless standard. In a typical cellular

network like WRAN, user terminals have to communicate via

the base station and they cannot communicate with each other

directly. To address this drawback and to take advantage of

both centralized control and the sharing of spectrum among

user terminals, Peer to Peer WRAN (P2PWRAN), which re-

quires the information regarding potential interference among

flows, i.e., interference map, has been proposed in [93]. The

accuracy of this interference map affects the channel allocation

as well as the network performance.

In the above context, authors in [94] have proposed self-

adapting interference mapping protocol in order to cope with

the unexpected events in P2PWRAN networks without consid-

ering CS aspects. In practice, it’s not realistic to capture the

global information about the spectrum usage in its surrounding

environment using a single CR transmitter. The problem of

reconstructing the spectrum map using incomplete information



becomes interesting since a CR transmitter can acquire only

the local data from a limited number of cooperative nodes.

Due to ability of the CS technique to sample and compress

simultaneously, it can serve the requirement of fast sensing in

a CR. Furthermore, a spectrum map facilitates the definition of

the QoS constraint based on Signal to Interference plus Noise

Ratio (SINR), thus enabling the simultaneous operation of the

routing and cooperative spectrum sensing [95]. Subsequently,

it is applicable in creating interference maps with the help of

CR sensors. In contrast to the statistical power spectral density

map creation for spatial frequency reuse in [154], authors

in [95] have proposed aggregated interference-based deter-

ministic power-level maps for routing using significantly less

measurements compared with the traditional non-CS methods.

Furthermore, authors in [154] proposed a Least Absolute

Shrinkage and Selection Operator (LASSO) based distributed

algorithm which exploits sparsity to construct PU Power

Spectral Density (PSD) and to reveal the unknown positions of

the active PUs. The following two forms of sparsity are used

in [154]: (i) the sparsity introduced by the narrow-band nature

of transmit-PSDs relative to the broad range of the usable

spectrum, and (ii) the sparsity emerging from sparsely located

active radios in the operational space. It has been demonstrated

that exploiting sparsity in the distributed CR sensing reduces

spatial and frequency spectrum leakage by 15 dB relative to

the least square alternatives.

In the similar context, authors in [96] propose an OMP

algorithm-based technique [155] considering the cartography

process as a CS problem. The proposed Orthogonal Matching

Pursuit Spatial Extension (OMPSE) algorithm exploits the

spatial correlation between two nearby reference points in

a neighbourhood and provides better performance over the

traditional OMP technique. Additionally, the authors in [99]

investigated the performance of CS-based cartography process

in a fading environment where real time channel estimation

may not be available. The well-known iteratively reweighted

l1 minimization approach has been extended by exploiting

spatial correlation between two points in space in order to

accommodate the lack of channel information.

In practice, Wireless Sensor Networks (WSNs) can be

used to acquire the information about the surrounding ra-

dio environment in order to construct an REM. In WSNs,

the following two problems can be addressed by the CS

approach [156]. First, there are a very limited number of

active sensors, i.e., the active PU transmitters, compared with

the total number of sensors in the network. Moreover, the

number of events is much less compared to the number of all

sources. Second, different events may happen simultaneously

and cause interference to detect them individually. As a result,

the received signals are superimposed all together, and an

efficient algorithm is required to separate the superimposed

signals.

Besides, it’s highly costly to deploy a WSN over a large

geographical area solely for the purpose of constructing the

REM. To address this issue, the network operators can oppor-

tunistically use the heterogeneous RF devices in the desired

area that are deployed for functions other than spectrum

mapping. In this context, the spectrum cartography system has

to account for different radio types, propagation environments,

and sensor densities as well as sparse receiver measurements.

Further, the system must be scaled based on the number of

users that must be supported [98].

In a practical heterogeneous environment which may con-

sist of heterogeneous sensor devices, there exist the following

challenges for creating a reliable dynamic spectrum mapping

system [98].

• Dedicated resources may not be available for the sensing

tasks and we may need to rely on the opportunistic use

of the devices deployed for other purposes. Besides, due

to several structural, operational, and economic practical

constraints, we have to rely on the sparse measurements.

• The spectrum awareness has to be carried out over a

wide frequency band that may be heavily occupied with

a large number of heterogeneous sources/PU transmitter

types. Although current methods utilize multiple, identi-

cal, broadband, high performance spectrum analyzers in

the vicinity of the sensors, this solution is neither cost-

effective nor easily scalable.

• The WSNs deployed for the purpose of gathering the RF

information should operate in a dynamic RF environment

with diverse propagation constrained network infrastruc-

ture with the minimal impact on the main objective of the

sensors. Further, as the number of devices and the rate of

data collection increase, scalable solutions are needed to

store, process, retrieve, and disseminate the information.

• The sensor network may consist of heterogeneous RF

devices over a large geographical area. The coordination

between these heterogeneous devices is highly desirable

from the practical perspective.

In the context of heterogeneous environment, authors in

[98] have studied a method, called PRISM (Precise Radio-

Propagation Interpolation from Sparse Measurements). This

method takes the sparse spatial measurements and uses sparse

signal reconstruction techniques in order to determine the

simplest arrangement of virtual sources consistent with the

observations. Furthermore, Kanerva’s sparse distributed mem-

ory model has been used to address system scaling challenges

which represents the N -dimensional binary vectors without

regard to the semantic interpretation of the data.

Moreover, target counting and localization are the key as-

pects in order to construct the REM using the sensor networks.

Although there exists much literature in the field of non-CS

based target counting, only a few recent contributions have

focussed on CS-based target counting and localization [97],

[156], [157], [159]–[164]. Among these contributions, [156],

[157] have focussed on CS-based target counting, [97], [159]

have focussed on both target counting and localization, and the

rest have focussed CS-based localization. The contribution in

[157] proposed a CS-based approach for sparse target counting

and positioning in wireless sensor networks by employing a

novel Greedy Matching pursuit (GMP) algorithm. Recently,

authors in [158] studied the problem of target counting and

localization by exploiting the joint sparsity feature of an MMV

model and demonstrated that the performance of the proposed

MMV approach is superior than that of the conventional single



measurement vector method in terms of target counting and

localization accuracies.

C. Framework for Compressive REM Construction and Re-

lated Issues

As stated earlier, the main objectives of compressive REM

construction over a wideband coverage area are

• To recover the active carriers within the area of interest

• To create an REM for each active carrier based on

compressive measurements

Thus constructed REM can be used to implement carrier

assignment and power control for secondary devices of the

CR networks.

Let us consider a grid of L sensors spanning a coverage

area of interest. Within the same area, there is usually an

unknown small number of active Txs, i.e., K << L. In

general, the following parameters have to be recovered to

reconstruct the REM: (i) number of active Txs K, (ii) position

of Txs, and (iii) radiated power for each Tx. The Txs are

assumed to be collocated with one of the sensors. If this

is not the case, appropriate interpolation techniques can be

employed. In a centralized setting, the sensors measure the

received energy over a number of samples and relay these

measurements to the FC. The reporting links from the sensors

to the FC are usually bandwidth limited and need to be

utilized effectively. In this context, it can be assumed that

the received measurements are relayed to the FC through C
number of wireless collectors. Further, due to the limitation

in the backhaul link bandwidth, only D out of C wireless

collectors can be accessed simultaneously at each time slot. It

can be assumed that this access pattern is randomly generated.

Let xi, i = 1 . . . L denote the locations of sensors, while

yi, i = 1 . . . K the locations of active transmitters and pi, i =
1 . . . K the transmit power of the PU Txs. In vectorial form,

we can define the L× 1 vector x and the sparse K× 1 vector

s = y ⊙ p. To construct the compressive REM in the above

setting, the objective is to estimate the following parameters:

(i) the number of non-zero points (sparsity order) K, (b) the

positions of non-zero points yi, and (ii) the values of non-zero

points pi.
Assuming that the sensor locations are known through GPS

feedback, the following relation can be applied

x = As, (15)

where A is a K ×K channel matrix including the transmit,

receive antenna gains and the path loss calculated based on

distances between sensors. This can also be target energy

decay matrix as considered in [157]. Similarly, assuming that

the locations of the collectors is known, the output at the active

collectors can be expressed as a D × 1 vector w, given by

w = Bx = BAs+ z, (16)

where B is a D × K power law path loss matrix calculated

based on the distances between the collector and sensors, and z

is additive white Gaussian noise vector. Since the selection of

active collectors is random, the matrix B is also random with

positive elements. Finally, at the FC, arbitrary CS matrices

such as C can be applied in such a way that the received

sample vector v becomes

v = Cw. (17)

Based on the above formulation, we highlight the main

issues to be considered for future investigation below.

• How to estimate the parameters without completely re-

constructing the signal and with lower complexity?

• How to design B in order to satisfy the incoherency with

A and the RIP property?

• How to design C which is practically implementable?

• Are multiple sample vectors v helpful to improve perfor-

mance in the above setting?

VI. CHALLENGES AND FUTURE RECOMMENDATIONS

In this section, we highlight the main challenges and

suggest future recommendations to address them.

A. Alleviating Existing Assumptions

• Requirement of Channel Occupancy Knowledge: In

most of the contributions using the CS approach, it is

assumed that the sparsity of a signal to be acquired is

known. However, in the context of CR networks, the prior

information about the PU channel occupancy may not

been known to the CR sensor. This creates a great barrier

to the practical usage of CS in CR scenarios. The possible

way forward for this would be to investigate suitable

sparsity order estimation method in order to estimate

the sparsity order of the wideband spectrum accurately

[91]. Further, the sparsity order of the wideband signal

generally varies over the time and it may be difficult to

estimate it in practice due to the dynamicity of the pri-

mary spectrum usage or the time-varying fading channels

between CRs and the PUs [104]. Moreover, the required

sampling rate changes proportionally with the sparsity

order of the wideband signal. Therefore, it’s an important

research challenge to investigate adaptive sparsity order

estimation methods to capture the dynamicity of the

spectrum usage in time-varying wireless environments,

and subsequently to choose an appropriate sampling rate

to be applied at the CS-based CR transceiver.

• Investigation of Suitable Sparsity Basis: On the one

hand, most existing CS works in the context of CR com-

munications assume the sparsity of the radio spectrum in

the frequency domain due to its lower utilization. On the

other hand, the main objective of CR communications is

to enhance the usage of the spectrum. In this regard, the

consideration of sparsity in the frequency domain may

be relevant for the current scenario but the situation may

change in the future due to the enhanced usage of the

radio spectrum [166]. Therefore, it’s crucial to investigate

suitable sparsity bases/domains in order to apply CS in

CR applications. One solution would be to exploit the

sparsity in different features of the primary signals such

as spectral correlation function which is sparse in both

cyclic and angular frequency domains.



• Basis Mismatch in Compressive Estimation/Detection:

In many CS problems, the field/signal to be acquired

is assumed to be sparse in some basis. However, in

practice, the signal may not be sparse in any a priori

known basis, resulting in the basis mismatch [44]. In

this context, it is important to analyze the sensitivity

of CS to mismatch between the assumed and the actual

sparsity bases and to investigate suitable approaches to

reduce this mismatch. Moreover, developing robust CS

approaches with unknown basis is an important research

challenge.

• Evaluation under Realistic Signal Model: In most

of the existing contributions, a random signal model is

considered in numerical experiments. However, it does

not provide an adequate description of real signals, whose

frequencies and phases significantly differ from that of

the random signal [59]. In this context, it is crucial to

investigate the performance of CS algorithms for real

signals in the considered CR scenarios. Furthermore, in

most of the CR related CS research, finite-length and

discrete-time signals have been considered [104]. In this

context, investigating low-complex solutions to implement

the CS-based signal processing techniques in the analog

domain should be one of the focus areas in the future

research.

B. Tackling Implementation Aspects

• Design of a Practical Measurement Matrix: Another

issue in designing practical CS-based receivers is to

investigate suitable practical sensing matrices. The com-

pression of a non-sparse signal depends on the proper

selection of the measurement matrix. Furthermore, the

costs for CS encoding and decoding significantly depends

on the type of measurement matrix [50]. The well-known

family of CS matrices is a random projection or a matrix

of i.i.d. random variables from a sub-Gaussian distribu-

tion such as Gaussian or Bernoulli since this family is

universally incoherent with all other sparsifying bases

[165]. However, in practical applications, the unstructured

nature of random matrices make their realizations highly

complex and the memory requirement also increases.

In this context, it is an open challenge to investigate

practical sensing matrices required for compressive de-

tection/estimation applications.

• Compressive REM Construction in Heterogeneous

Networks: REMs are useful for the implementation of

database-based cognitive communication over a wide

coverage area and wide bandwidth. They can be cre-

ated with the help of distributed sensor measurements.

However, due to the constraints on the sensor hardware

and energy, it is necessary to keep the number of sensor

measurements low. As highlighted in Section V, there

exist several practical issues while constructing REM

with the help of compressive measurements. Some of the

important issues are diverse propagation characteristics,

no or imperfect knowledge about the primary network,

practical constraints on the sensor placement, constrained

network infrastructure, scalability with the future sensor

nodes etc. Furthermore, the issues mentioned in Section

V-C should be considered in the future research towards

implementing the compressive REM construction. In this

context, the application of CS for REM construction by

exploiting the sparsity in the frequency and spatial do-

mains can be considered as an interesting future research

problem.

Furthermore, in the spectral coexistence scenario of satel-

lite and terrestrial networks [11], elevation angle provides

an additional degree of freedom in enabling this coex-

istence [167]. However, the existing REM construction

methods do not take into account of the elevation angle.

In this context, it’s an important future topic to explore

a suitable construction method for three dimensional

(3D) REM considering elevation angle as an additional

dimension.

C. Performance Limits under Practical Imperfections

Most existing CS techniques assume system models con-

taminated with either Guassian noise with the known variance

or the bounded noise. Furthermore, most CS-based works in

the context of CR communications assume ideal operating

conditions in terms of noise, channel and transceiver hardware

components and there exist only a few works investigating

CS-based techniques in the presence of practical imperfec-

tions such as interference [168], and noise uncertainty [169].

However, in practice, there may occur various imperfections

such as noise uncertainty, channel uncertainty, noise/channel

correlation, and transceiver hardware imperfections such as

ADC errors (quantization and clipping errors), synchronization

errors, amplifier non-linearity, multicarrier distortion, calibra-

tion etc [22]. For example, the centralized compressive collab-

orative approach (Fig. 4) studied in [64], [129] considers ideal

reporting channels, which is not the case in practice. These

imperfections may lead to significant performance degradation

of a CS-based techniques in practical CR communications.

Therefore, it’s an important future step to investigate the prac-

tical gains that can be achieved with CS-based approaches

in the presence of practical imperfections and to develop a

common framework to combat their aggregate effect in a CS-

based CR transceiver.

VII. CONCLUSIONS

CS has been well motivated for CR communications due to

the sparse nature of the radio spectrum occupancy in practical

wireless systems. In this context, this paper has provided

a comprehensive review on the applications of CS in CR

communications. Starting with the basic principles and the

main aspects of the CS technique, this paper has identified

various application areas such as wideband SS, environmental

parameter estimation and REM construction based on the

RF parameter to be acquired. Subsequently, dynamic range

and sampling rate issues for wideband SS have been dis-

cussed and the existing related works have been reviewed.

Furthermore, the existing works on compressive estimation

of various parameters such as SNR, sparsity order, DoA and



channel have been detailed in the context of a CR. Moreover,

the state of the art approaches on the compressive REM

construction have been discussed and a generalized framework

has been presented. Finally, some open issues which need to

be considered in the future research have been identified.
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versity, the Information Systems Laboratory, Stan-
ford University, the Katholieke Universiteit Leuven,

Leuven, and the University of Luxembourg. During 96/97, he was Director
of Research at ArrayComm Inc, a start-up in San Jose, California based
on Ottersten’ s patented technology. He has co-authored journal papers that
received the IEEE Signal Processing Society Best Paper Award in 1993, 2001,
2006, and 2013 and 3 IEEE conference papers receiving Best Paper Awards.
In 1991, he was appointed Professor of Signal Processing at the Royal Institute
of Technology (KTH), Stockholm. From 1992 to 2004, he was head of the
department for Signals, Sensors, and Systems at KTH and from 2004 to 2008,
he was dean of the School of Electrical Engineering at KTH. Currently, he is
Director for the Interdisciplinary Centre for Security, Reliability and Trust at
the University of Luxembourg. As Digital Champion of Luxembourg, he acts
as an adviser to European Commissioner Neelie Kroes.
Dr. Ottersten has served as Associate Editor for the IEEE TRANSACTIONS
ON SIGNAL PROCESSING and on the editorial board of IEEE Signal

Processing Magazine. He is currently editor in chief of EURASIP Signal

Processing Journal and a member of the editorial boards of EURASIP

Journal of Applied Signal Processing and Foundations and Trends in Signal

Processing. He is a Fellow of the IEEE and EURASIP and a member of the
IEEE Signal Processing Society Board of Governors. In 2011, he received
the IEEE Signal Processing Society Technical Achievement Award. He is a
first recipient of the European Research Council advanced research grant. His
research interests include security and trust, reliable wireless communications,
and statistical signal processing.


