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Abstract—Compressive sensing is a topic that has recently 1) is the “incoherence” property achievable with a feasible
gained much attention in the applied mathematics and signal sampling scheme, and

processing communities. It has been applied in various areas, 2y are there computationally tractable algorithms that can

such as imaging, radar, speech recognition, and data acquisition. reconstruct the oriainal sianal from these samples?
In communications, compressive sensing is largely accepted for u g1 9 ples:

sparse channel estimation and its variants. In this paper we high- The answers to these questions created the field of comyessi
light the fundamental concepts of compressive sensing and gie@  sensing and we will try to review the basics of these answers
overview of its application to pilot aided channel estimation. We in this article

point out that a popular assumption — that multipath channels are ’

sparse in their equivalent baseband representation — has pitfalls.

There are overcomplete dictionaries that lead to much sparser g Applications of Compressed Sensing in Communications
channel representations and better estimation performance. &

a concrete example, we detail the application of compressive SO far compressive sensing has been successfully applied

sensing to multicarrier underwater acoustic communications, in several signal processing fields, specifically in imaging
where the channel features sparse arrivals, each charactegd the technology has achieved a certain level of maturity. In

by its distinct delay and Doppler scale factor. To work With = o nications the range of applications so far has been
practical systems, several modifications need to be made to the

compressive sensing framework as the channel estimation error rather ”mited' with t.he. exception of channel estimation —
varies with how detailed the channel is modeled, and how data although in many variations. To cite a few examples:

and pilot symbols are mixed in the signal design. « Sparse channel estimation in ultra-wideband, was mo-
tivated by the ability to resolve individual arrivals or
| INTRODUCTION clusters of arrivals in multipath channels [6].

. . ) « Considering mobile radio channels, each path is charac-
A. What is Compressive Sensing terized by a delay and a relative Doppler speed [7], [8].

Since the term compressive sensing was coined a few years Underwater acoustic channels are known to exhibit only
ago [1], [2], this subject has been under intensive invastig  few arrivals in a long delay spread with each path having
tion [3]-[5]. It has found broad application in imaging, dat different Doppler speed [9].

compression, radar, and data acquisition to name a few ($€§ariation on channel estimation is the combination with

overview in [4], [5]). _ o _active user detection in code division multiple access [0]
In-a nutshell, compressive sensing is a novel paradigfiectrum sensing for cognitive radios.

where a_signal_that is sparse in a known transform domain_car)g\nother proposed application of compressive sensing in
be acquired with much fewer samples than usually requirggmmuynications is coding over the real numbers (versugfinit
by the dimensions of this domain. The only condition is thajggs as commonly used in coding theory) under a channel
the sampling process is “incoherent” with the transfornt thg,qe| that produces few very large errors (similar to ersr
achieves the sparse representation and “sparse” means Hi@#ough this leads to direct application of compressivesse
most weighting coefficients of the signal representation IRg algorithms and performance guarantees [11], it is so far

the transform domain are zero. While it is obvious that gnclear if this will lead to practical applications that viu
signal that is sparse in a certain basis can be fully répiRplace current error correction schemes.
sented by an index specifying the basis vectors correspgndi

to non-zero weighting coefficients plus the coefficients — .
determining which coefficients are non-zero would usuallyc: This Paper
involve calculating all coefficients, which requires atdea Clearly the motivation to use compressive sensing in chan-
as many samples as there are basis functions. The definitimh estimation is the observation that some channels are
of “incoherence” usually states that distances betweersspacharacterized by sparse multipath — by that we mean that
signals are approximately conserved as distances betWvein tthere are much fewer distinct arrivals as there are baseband
respective measurements generated by the sampling procelsannel taps. With this in mind compressive sensing pranise
In this sense the reconstruction problem has per definitiorta estimate the channel with much less pilot overhead or
unique solution. at higher accuracy with a constant number of pilots. The
Making the compressive sensing formulation practicalbommon assumption is that a sparse multipath channel leads
hinges on two conditions: to a baseband channel model where most taps are negligible.



We take a closer look at this and find that in a channétp,}}_, such that most, are zero. Obviously if one knows
modeled by specular (point) scatterers the number of non-one could always choose some basis for whick- 1,
zero baseband taps depends very much on what one defioessome ky; then all xy, k£ # ko, would be zero. This
as negligible. Using instead an oversampled baseband mothalial case is not of interest, instead one is interested in
the representation of the channel becomes ambiguous,dmt @redetermined basis that will render a sparse or approglgnat
more sparse. sparse representation of agythat belongs to some class of
In underwater acoustic (UWA) communications, channeignals.
are characterized by long delay spread and significant Roppl
effects. The long channel delay spread leads to severe inter ) )
symbol interference (ISI) in singlecarrier transmissjombile B: Exactly and Approximately Sparse Signals
in multicarrier approaches like orthogonal frequency siom A signal is calleds-sparse, if it can be exactly represented
multiplexing (OFDM) the aforementioned Doppler effectsy a basis{t, }7_,, and a set of coefficients;, where only
destroy the orthogonality of the sub-carriers and lead tocoefficients are non-zero. A signal is called approximately
inter-carrier interference (ICI). On top of high equalipat s-sparse, if it can be represented up to a certain accuracy
complexity, the ISI or ICI corresponds to a convolution witlusing s non-zero coefficients. Since the desired accuracy de-
a time-varying impulse response, leading to a large amoy¥nds on the application, signals considered as approsiynat
of unknown channel coefficients. While it is well recognizedparse usually have the property that the reconstructian er
in the community that UWA channels are usually sparstecreases super-linearly in therefore any required accuracy
[12], there are major challenges to overcome when applyiggn be achieved by only sightly increasing
compressive sensing to exploit channel sparsity. As an example of as-sparse signal, consider the class of
As an example, we show a block-by-block OFDM receivefignals that are the sum of sinusoids chosen from the
that re-estimates the channel for every OFDM symbol. Tarmonics of the observed time interval. Now obviously the
apply compressive sensing one needs to consider the falpWDFT basis will render an-sparse representation of any such
points: i) A channel model needs to be established that leagdsj e, taking the DFT of any such signal would render only
to a sparse representation of the channel coefficients, apflon-zero valuesy,.
is accurate (enough) within the considered time interval. i anp example of approximately sparse signals is when the
When placing the pilots, one needs to ensure that ICI froggefficientsz;,, sorted by magnitude, decrease following a
other plIOtS can be observed. |||) When estimating the Chlan%wer law. This includes smooth Signa|s or Signa|s with
based on pilots, ICI from the unknown data symbols hasgpunded variations [4]. In this case the sparse approximati
to be treated as noise. After going through the details phnstructed by choosing thdargest coefficients is guaranteed

applying compressive sensing to channel estimation in UW§ have an approximation error that decreases with the same
multicarrier communications, we illustrate the perforw@n power law as the coefficients.

using numerical simulation and experimental data.

The paper is organized as follows, in Section Il we give
a more detailed overview of compressive sensing and ¢ Sensing
Section Il we describe some of the popular compressiveg 4r it was assumed thatis available, and that one can
sensing recovery algorithms. In Section IV we look at SParggnply apply the transform into the domain 6th, 17, to
representations of multipath channels, in Section V weaRpl qetermine whichz, are relevant (non-zero). AIthngh this
in detail the application of compressive sensing 0 UWRase does exist and is important for some forms of data-

commurjic:?ltions, and we conclude in Section V1. compression, the real application of compressive sensitttgi
Notation: We represent matrices and vectors with bold uppgsqisition of the signal fromm, possibly noisy, measurements
and lower case letters respectively, c; Superscripts T and 20 = ¢>fy+vz forl — 1 m. where here it is assumed that
H denote the transpose and hermitian respectivily, A", v, is zero-mean complex Gaussian distributed with variance
With |c| we denote the Euclidean norm. Ny and the noiseless case is included fay — 0. The signal
Il. COMPRESSIVESENSING icquisition process can now be written usingthe n matrix

A. Sparse Representation

. . . z=®"y 4+ v=0"Ux+v,
Consider a signay € C" that can be represented in an ~——

arbitrary basis{t, }7_,, with the weighting coefficients. A

Stacking the coefficients into a vectar, the relationship with where® = [¢,, ¢, ..., ¢,,] IS ann x m matrix andz =

y is obviously through the transforp = ¥x, where® = [21, 22,..., z,,]7 is the stacked measurement vector. Since
[¥, ¥y,...,%,] is a full rankn x n matrix. A common this is a simple linear Gaussian model, it is “well posed” as

example would be a finite length, discrete time signal that otong asA is at least of rank:. By “well posed” we simply
could represent as discrete sinusoids in a limited bantiwidmean that there exists some estimatdqpor y for that matter),
The matrix ¥ would then be the discrete Fourier transformvhose estimation error is proportional to the noise vaeanc
(DFT) matrix. therefore as the noise variance approaches zero, the #stima

In compressive sensing one is particularly interested in aarror does as well. This generally requires at least> n
basis that allows a “sparse” representationyofi.e., a basis measurements i is unconstrained iC".



D. Signal Recovery and RIP has to be used that penalizes less sparse solutions versus a

The novelty in compressive sensing is that for signaletter fit of the observations. This can be achieved using a
y that ares-sparse in some{e,}7_,, less measurementsLaQran_gia” formulation adding a penalty proportionalsto
are sufficient to make this a “well posed” problem. Th¥hich is usually formulated using the “zero-norni ||, that
requirement onA to have at least rank is replaced by the counts the non-zero elementssin This further increases the

restricted isometry property (RIP) (first defined in [11]pth Sizé of the combinatorial problem as alisparse vectors for
we will explain in the following. various values ot have to be considered now.

For any matrixA with unit-norm columns one can define Other algorithms that reconstruct a signal taking advantag
the restricted isometry constanfs as the smallest number©f its sparse structure have been used well before the term
such that,|Ax|? > (1 — 6,)[x|? and |Ax|> < (1 + 8,)[x|> compressive sensing was coined. The surprising discogery i
for any x that is s-sparse. This can be seen as conserving tHeat it can be shown that several of these algorithms will —
(approximate) |ength Oﬁ_sparse vectors in the measurememnder certain conditions — render the same solution as the
domain and effectively puts bounds on the eigenvalues of ag§mbinatorial approach. These conditions largely amoant t
s X s submatrix of AH A. tighter constraints on the sparsity ®fbeyond identifiability.

Now assuming that under aftsparse vectors, one choose¥Ve briefly introduce the two main types of algorithms.
the estimatex that has the smallest distance to the observa-
tions, |z — Ax/|?, it is easily shown that the estimation eITon  ~onvex /i1 -Based
is bounded byE{|x — %|2} < 2mNy/(1 — ds,). This uses the !
fact that the estimation errot := x — x is 2s-sparse. So we  Since the exact formulation using the zero-nojsi|o is
see that the signal recovery problem is “well-posed” as lamg not amenable to efficient optimization, an immediate choice
d2s < 1, but since theS, are monotonic ins, §, < 6,1, and is its convex relaxation, leading to the following Lagraagi
usually increase gradually, it is commonly said tatobeys formulation,
the RIP if §, is not too close to one.

In case of approximately sparse signals, the error caused
by noisy observations is additive with the error caused ley th ) . n ,
approximation as-sparse. Therefore a good choicesafeeds Where thel;-norm is defined agix|ls, = > ;_, |x[. While
to consider the noise leveV,, since a tradeoff exists betweerfn€ {1-norm has been used in various applications to promote
choosing a smaller that increases the approximation error, bitParseé solutions in the past (see references in [4]), it is

decreases the error caused by the noise due to the monot&iQ 'argely popular under the name Basis Pursuit (BP), as
nature of thes, and vice-versa. introduced in [13]. While originally the term BP was used

to designate the case of noiseless measurements and the
qualifier Basis Pursuit De-Noising to refer to the case of
noisy measurements [13], we will generally refer to both
While evaluating the RIP for a particular matrix at handases simply by BP. In statistics the Lasso algorithm is-well
is (at worst) an NP-hard problem, there are large classesy@bwn [14], which can be shown to be equivalent to BP under
matrices that obey the RIP with high probability, thatjs< 1 appropriate parameterization.
for any s < m. Specifically for random matrices like i.i.d. Al these algorithms share that they lead to convex optimiza
Gaussian or Bernoulli entries, or randomly selected rows ghp, problems, which can be solved efficiently with advanced
an orthogonaln x n) matrix (e.g., the DFT), it can be showntechniques, such as interior-point methods, projectedigna
that for m > Cslog(n/s) measurements the probabilitymethods, or iterative thresholding. Due to the relaxatiod a
that 4, > ¢ decreases exponentially with and 6. With  nymerical accuracy the solutions will not be exactly sparse
other words, as long as one takes “enough” measuremeRmg will exhibit numerous small values that do not contréut
i.e. increasem, the probability of any such matrix obeyingsjgnificantly to the estimation error. If an exactly sparse
the RIP for a given threshold can be made arbitrarily sojution is sought, an additional thresholding or de-bigsi
small. Although the constar® is only loosely specified for stage can remove the small components.
the various types of matrices, the fact that the probability The giscovery that there are conditions under which convex
decreases exponentially is encouraging as to the numbenQhyation will render the same result as the combinatorial
required measurements. Furthermore it is important toidens ormulation was the birth of compressive sensing [1], [2].
that these bounds are on worst cases, so that on the avergese conditions usually consider the minimum number of

)A( = argmin |AX - Z|2 + CHXHZU
x

E. Sensing Matrices

much fewer measurements,, will be sufficient. measurements: required to identify ars-sparse signal with
high probability, given a certain measurement matrix. For
lIl. ALGORITHMS example, in [1] it is shown form noiseless measurements

Previously we considered the estimator that chooses the taken using random rows of the DFT matrix, thatnif >
lution with minimum distance from the observations betweefi,;slog(n), anys-sparse signal can be recovered with at least
all s-sparse vectors ift” to show that the average estimatiorprobability 1 — O(n~™), where the constant; is roughly
error is bounded. This is in essence a combinatorial problelimear in the parametel/. One immediately notices that this
which has exponential complexity. In caseis not known, formulation closely resembles the criterion for identifii
or for an approximately sparse signal, a joint cost functidout the constants will take different values.



Channel frequency response vs. subcarrier index k

B. Greedy Pursuits

8r -j2nft,

Another approach to the combinatorial problem is based on H(f) :Z & &
dynamic programming. In this type of approach the combina- 6F : !
torial problem is circumvented by heuristically choosinigieh
values ofx are non-zero and solving the resulting constrained ar
least-squares problem. The most popular algorithms of this ‘ ; ) ‘
type are greedy algorithms, like Matching Pursuit (MP) or 2 ‘ ‘ ' g
Orthogonal Matching Pursuit (OMP), that identify the non- ‘
zero elements ok in an iterative fashion. A short algorithmic T e o o s 100

description of OMP would be:

Channel impulse response vs. delay 7 [ms:B]

1) Initialize the set of non-zero elements as empty, the 2
observations are set as the residuwak z. . h(z) = Z £,0(t-1,)
2) Correlate all columns ofA with the residual, A"r, L5 >

choose the largest element by magnitude and add its index
to the set of non-zero elements.
3) With the constraint that only elements &f are non-

[iN

zero that have been added to the set previously, find an 0%

estimatex that minimizes|z — Ax|%. I I 1
4) Update the residual as=z — Ax. % 0 20 30 40 0 e
5) Repeat steps 2-4 until either a knownis reached or Channel baseband impulse response vs. sample £

the norm of the residuat|? falls below a predetermined 2

threshold.

15

' . ' ' h(6) = Z H(f) etk
This type of algorithm has been popular mainly because it can ,(
be easily implemented and has low computational complexity
but recently it has been shown that this algorithm will also
render the optimal solution [15], whereby the constraints
are somewhat stronger. This has lead to renewed interest in
dynamic programming based solutions, leading to new greedy .
pursuit algorithms (see [16] and references therein). 0 10 20 30 40 50 60
Aﬂ.er reviewing the. theory of compressive sensing, we \.Nlllig. 1. The channel frequency resporf$éf) maps to the impulse response
next illustrate how this matches to the task of channel @stiny, 7). put from a limited number of samplé#( ;,) only the baseband model
tion. To this end we will first look at sparse representatiorig¢) can be determined unambiguously; in this example therePare 10
of the channel frequency response and then study the Spe(ﬂﬁﬁrete paths, anfl’ = 256 frequency samples; all plots are magnitude only.

case of underwater acoustic multicarrier communication.

[N

0.5

We see that to recover the transmitted signal one will need
the channel frequency response at corresponding frecggenci
A. Multipath model H(fy), see Fig. 1 (top). The underlying assumption of ap-

Channel estimation is in essence a problem of system idé),l‘ying compressed sensing to c.hannel es_timation is t.hat the
tification; a known signak(t) is transmitted and we receivechnannel frequency respons(f;) is sparse in some basis, or

the signalr(¢) that has gone through the unknown syst&im at least approximately so. This is usually based on the model

After H has been estimated with sufficient accuracy, its effemat the impulse r_esponstq_(rj)dr:onsits otP srl)ecular (Ipomt)
can be accounted for in the following data transmission. scatterers, see Fig. 1 (middle). The complex amplitugles

For simplicity, let us consider a linear time-invarianttgys, include attenuation and initial phase, and the delaysre

which can be completely characterized by its impulse respor?ssum_ed to be Ie;s than some maanum delay spr.ead.
h(7) or its frequency responsé ( f), and neglect any random To link to Section I, the vector of interesy;, pon3|sts of
noise. The frequency spectruf(f) of the received signal the stacked frequency response at fesubcarriers (fy).
will then simply be the product of the transmitted spectruffOW €ach entry ofy is a linear combination o> complex
S(f) and the channel frequency resporgéf). Without loss Phasesexp(—j2x fi7,), with complex weighting coefficients
of generality, assume that the signgl) is a multicarrier &p- Arranging the complex phases in lengiti vectors,

signal defined in the frequency domain by the compldgnders aP-sparse representation ¢f with z, = ¢,. Since
symbols S(f,) = s[k], transmitted on theK subcarriers the 7, are random values from a continuous distribution, one

fi = f. + kAf, with k taking values betweer:K /2. The cannot choose a (finite) basis that will include all possitalsis

receiver samples the waveform and applies a DFT; the outp¥g§torsy,, that correspond to the randorp. In the following

will correspond to sampling the waveform at frequencfes several fixed choices o will be considered that lead to
more or less sparse representations of the channel freguenc

R (fx) = H (fx) s[k] response.

IV. How SPARSE AREMULTIPATH CHANNELS?



B. Sparse Approximation Sparse Approximation of Frequency Response
Mean squared error (MSE) vs. degree of sparse approximation s

Commonly the equivalent baseband model is used; this basis 1°
simply limits ther, to be multiples of the sampling tim&’,
which is the inverse of the bandwidttyT, = B = KAf.
With potential delays = 0,..., K — 1 the matrix ¥ turns
out to be the x K DFT matrix andx turns out to be samples 10
at baseband rate of the bandpass filtered versidi(of (the
bandpass is fronf. — B/2 to f.+ B/2 due to the transmitted
signal). Since the DFT matrix is a unitary transform, one can
calculatex by taking the inverse DFT of, which is generally 107
not sparse. We purposefully consider this simple case useca
the optimums-sparse approximation gf (in the mean squared

baseband (4 =1)

double time
resolution (A =2)

error sense) using this basis can be trivially determined by known quadruple time

i ; delays resolution (1 =4)
keeping thes largest values of the inverse DFT ¢f The 0o . ‘ ‘ ‘ |
first 64 values ofh(¢) corresponding toh(7) are plotted in 0 10 20 30 a0 50

Fig. 1 (bottom). Although th_ere are only few large ValuesF'i . 2. Comparison of MSE of sparse approximationsfbff) using s
there seem to be a substantial number of smaller, but mayRs with various basis models; all cases lead to better appation with
not negligible values. larger s, but using a redundant basis leads to significantly fewengethe
Next, a redundant basis is considered (which we often reféameters aré” =10, K = 256.
to as “dictionary”), generated by delays at a finer grainesd re
olution of ¢T, /A, where) is the oversampling factor relative In Fig. 2 the MSE d imilarly f I
to baseband sampling. This is a quite natural approximation n g. 1 el ecreases simiiarly for ali cases up
of the continuous time-.. but leads to an uncommon casd® about 10~*, this means that for this multipath channel
p . .

for the compressive sensing theory. One might think that trﬁbOUt 90 % of the channel energy is concentrated in the ten
is the baseband model of a system with\dimes larger strongest channel taps. On the other hand, the baseband mode

bandwidth and thaf{ samples were chosen deterministicallQ.NIII need more than 30 non-zero channel taps to approximate

: o . )
The corresponding matriA is a K x AK partial DFT matrix, the frequency_response with a MSE 1072, Wh'le using a
that turns out to have quite bad sensing properfies 1 redundant basis one needs about half that. This points dswar

since neighboring columns will be highly correlated. Thgs ik mte_restlnlg fact, th_at the basfeband chlann.e_lf tﬁps are Igot
obvious, since when taking samples within the actual syst proximately sparse in terms of a power-law; if they wou

bandwidth, it is hard to interpolate to the frequency resgon 0 l.OW.a power law, the slope in the plot would be constant,
. while in fact it levels off.
outside.
On the other hand, the goal is to approximate the frequency
response only within the system bandwidth, this time using V. SPARSECHANNEL ESTIMATION IN UNDERWATER
a redundant dictionary. Therefore one seeks the basis that ACOUSTICMULTICARRIER COMMUNICATIONS
leads to the smallest approximation error within the signal

bandwidth using a limited number of non-zero weightin ulticarrier underwater acoustic (UWA) communicationsaas

coefficients. f W'th'n this paS|s therg are sevgral _possm oncrete example of the application of compressive sensing
sparse representations leading to similar approximatimrs techniques

the sparse approximation in this basis might be ambiguauis, b
the same guarantees on the approximation error will hold.

In this section, we present sparse channel estimation for

A. Underwater Acoustic Channel

UWA channels are different from radio channels, due to
the fundamental differences between acoustic waves amal rad

Let us consider the same simple scenario for a numericghves. For once, the practical bandwidths in UWA channels
study, see Fig. 2. The signglis approximated using basis are limited, due to the absorption of acoustic energy at high
vectors agy ,; the corresponding mean squared error (MSE) feequencies. Also, the speed of sound is only about 1500 m/s
E[ly—¥s|?]- Naturally when using a less sparse approximatidn water, while electromagnetic waves propagate at thedspee
(increasings) the MSE will decrease. For example, for knowrof light in air (3 x 108 m/s). As a result, UWA channels
delays the error will reach zero far = P. In general, usually have along delay spread, even in relation to theiv)(l
how fast the MSE reduces with will indicate how sparse sampling rate, for example about 20 ms in typical shallow
the corresponding basis can approximgteWhile for the water environments along with a 10 kHz bandwidth, leading
baseband model\(= 1) there is a trivial way to determine to 200 taps in the baseband channel. While channel variations
the optimums-sparse approximation, this is not the case fdrappen at a similar rate to urban radio environments (tens
the redundant dictionaries. Therefore the OMP algorithm @& hundreds of milliseconds), the symbol duration in UWA
used to finds-sparse approximations, which are not necessariystems is orders of magnitudes larger than that in radio
optimal. systems. Also Doppler effects caused by the slow movement

C. Numerical Example



of seaborne vessels (or even the sea surface) are magnified&hpims to estimate the channel based on each received OFDM
the much lower sound speed. symbol individually, such that the receiver is robust toidap

The key obstacle hindering satisfactory performance ahannel changes across OFDM symbols. This motivates the

UWA channels is the combination of the long delay spreddllowing assumptions on the time variability of the chahne
and (effectively) quick channel variations. This impadte t | The amplitude¢, of each path remains approximately
achievable data rate two-fold: constant during each block.

« Channel estimation has to capture many parameters dug The path delays vary approximately linear with time,
to the long delay spreaend the estimates have to be  7,(t) ~ 7, — a,t wherer, is the delay at the start of
frequently updated, consuming a large amount of already the block and, is the Doppler scale factor. This means
scarce frequency/power resources. that the signal components propagating along jkié

« The assumption of a linear time-invariant channel model  path will experience a Doppler shift where frequenfy
holds only over a very short time span (on the order of  will be translated to(1 + ap) fr-
the delay spread), impacting the use of efficient frequency oy, the channel matrisH is characterized byP triplets

domain equalization or multicarrier systems. {&. ap, 7 )i s [9] for the exact formulation. However, the
UWA channels therefore can be characterized as doubly'(t”‘f@(a(;t number of pathg is unknown and the re|ationship of
and frequency-) selective channels. H with a, and 7, is nonlinear, complicating the estimation

As a concrete examp|e, we will Consider a multicarriqrask_ Samp“ng the de'ay_Dopp|er p|ane on a grid, a linedr an

system, specifically orthogonal frequency division muéts  sparse representation of the channel matrix can be foredlat
ing (OFDM). The OFDM symbol length needs to be Iargegpeciﬁca"y,

than the delay spread to avoid inter-symbol interferengé) (1
which in turn make the symbols too long to approximate the ° baseband sampling raté7,/\, where ¢ can take N
channel as fully time-invariant. Although the rate of chang values to cover the maximsum’ possible delay T

is small, the low speed of sound magnifies these changes to The Doppler scale dimension is similarly sarﬁpled using
result in significant Doppler effects in the received sigiilis N, values within some interval,| < a with step-
impairs the orthogonality of the OFDM subcarriers, leading sigeAa 2 /N pl = max

to inter-carrier interference (ICI). When taking sampleshia max/srar

frequency domain as in Section 1V, every DFT output is noWith this the channel model can be expressed as,
potentially affected by all transmitted symbols|k],

N, N,
R(fm) = H (fm: fx) sk + V (fm) - h(rit) =Y &b (T — (g — at)).
k

The delay dimension is discretized at a multiple of the

p=1g=1

The ICI coefficientsH (f,., fx) specify how thes[k] affect The received signal will then be a linear combination of up to

R(fm), and V(f,,) denotes the additive noise. Stacking théV- N, delayed and Doppler scaled copies of the transmitted

R(fm), V (fm), and s[k] from all subcarriers into vectors, ~Signal with complex weights, .

v, ands, leads to a matrix-vector formulation as Now let the vectorx contain the complex amplitudes of

all the N, N, possible paths on the discretized delay-Doppler

plane, of which many entries shall be close to zero. With this

whereH is the channel mixing matrix. H is a linear function ofk, and the channel to be estimated
For a multicarrier systemH is the channel that needshas found a sparse representation in the delay-Doppleridoma

to be estimated for the purpose of channel equalization adider a series of approximations. One can write

decoding. HoweverH containsK? entries, much more than

z=Hs+ v,

_ (T _ (@H
the number of measurementszn z=(s" @Tx) vec(H) +v = (‘I’ ‘I’) x+v,
N —— N —
" W A

B. Sparse Representation and Dictionary Construction . . . . .
i _ ) which reveals the connection with the compressive sensing
To apply compressive sensing techniques to channel egmulation in Section II.

mation in a practical system, one has to find a suitable sparse
representation of the channel. This is helped by the unique
properties of the UWA channel: Consider two propagatioB. Practical Issues
paths that differ by 1.5 meters; the corresponding delayF the block-bv-block multicarri : the followa
difference is 1 ms, which is already 10 times that of the (%)r © block-by” Qdc rrcliu' |cFa]1rr|er recever, the 1o mgh
baseband sampling interval with a 10 kHz bandwidth. Hence,0 acts are not considered in the compressive sensw_lg.yt €0
one expects that in the sampled channel impulse responsg) Most elements of the matrild are (generally) negligible
many entries will be close to zero. This makes UWA channels N magnitude, specifically most energy is concentrated on
intuitively sparse [12]. the main dlagona! and a few off—dlagonals. (the magnitude
Let us therefore consider a channel model that consisis of _ decreases with distance from the main diagonal).
discrete paths, similar to the one in Fig. 1, but now withe-  2) Only part of the vectos is known (the pilots).

varying amplitude and delay. The block-by-block receiver iBoth facts will also affect pilot design.



1) Structure of Channel Matrix:Since the channel esti- Slimulation Results on Time-Invariant Channels
Bloc

mation error is determined by the relationship between the
sparse estimate and the channel coefficiefitss ¥x, the
estimation error on each elementpfis generally of similar
variance. This means that on far off-diagonal valuesHhf
the estimation error will surely be much larger than the alctu
value. Therefore, one can reduce the channel estimation err
by approximatingH as a banded matrix wity off-diagonals
on each side. This is equivalent to a shoepr removing
rows of ¥. How many off-diagonals to keep will depend on
the estimation accuracy of and on the rate with which the
magnitude of the off-diagonal values B decrease.

2) Influence of Unknown DataSince the symbols that
convey data are unknown to the receiver, one has to treat
them as additional noise with a known mean and variance.
Therefore the dictionary is constructed by setting all galu
slk] = 0 if fi corresponds to a data subcarrier. Due to the
known structure ofH, it is clear that the impact of the noiseFig. 3. When considering a coded OFDM system, sparse appragimat
caused by the unknown data symb@t] will be the strongest the channel frequency response leads to reduced chaninehgsh error and

. . in turn to improved BLER performance.
on the k-th entry of z. Assuming a reasonable signal-to-
noise ratio (SNR), all observations related to data sutssarr
are discarded; alternatively a colored noise model could b
considered. Furthermore the effect of the unknown data

channel estimation should also be taken under considerat ) )
in pilot design. When assuming that the rate-of-change of the multipath

3) Pilot Design: As paths with non-zero Doppler scalef€lays is negligible within an OFDM symbol duratian, < 0,
a, need to be identified based on their ICI pattern, orf@® channel is simply linear time-invariant, and matches th
needs pilots on adjacent subcarriers. Conversely if oreete] M0del in Section IV. The corresponding receiver uses a
pilots adjacent to data symbols, the ICI from these unknovifictionary consisting only of delays for channel estimatio
symbols will be stronger. Therefore a random pilot assignme (Vo = 1), and since the channel matril will be diagonal
as would be expected from compressed sensing theory, Wi definition we setD = 0, which makes equalization
very likely be suboptimal due to the specific structure gimply a scalar multiplication. To sense the channel 256t pil
the dictionary A — ®7®. On the other hand iterative Subcarriers are evenly distributed between the data (nasICl
receivers are of great interest, as the data symbols esdmdtXPected). Including all overhead, for guard intervalosi

in the previous round can serve as pilot symbols for chanrféld coding, the achieved data rate is 10.4 kbit/s.
estimation. In Section IV, we saw that overcomplete dictionaries lead

Next, we will look at two specific examples of receiverstO @ sparser representation of the multipath channel. Wedwvou
where the first will be based on negligible time-variatiomjle  €xpect that this will lead to a reduced channel estimation
the second will assume significant time-variation. error and in turn a better bit error rate performance. We

will use a similar simulation as previously, but now with
P = 15 paths, where the inter-arrival times are distributed
D. Receiver for Time-Invariant Channels exponentially with mean 1 ms, leading to an average channel

The general parameters of the considered OFDM systéi@lay spread of 15 ms or about 150 baseband channel taps. The
will be the same for both receivers; the bandwidth of 9.8 kHamplitudes are Rayleigh distributed with the average power
is centered aroungl. = 13 kHz, and is divided intd¥ = 1024 decaying exponentially with the delay. The channel pararset
subcarriers, leading to a subcarrier spacing\gf = 9.5 Hz. are constant within the duration of one OFDM symbol and
This leads to an OFDM symbol length afAf = 105 ms, independent between symbols.
during which the channel is approximated as constant, andThe simulation results are shown in Fig. 3, where we
followed by a guard interval df5 ms to avoid ISI. The symbol consider both OMP and BP, as well as a conventional least-
length is chosen as a tradeoff between increasing the symbglares (LS) channel estimator, which does not take adyanta
length to minimize the overhead caused by the guard intervaf channel sparsity. We also consider the BLER performance
and a short symbol length ensuring that the assumptions afna receiver with full channel state information (CSI), wini
the channel will hold. Out of the 1024 subcarriers 96 will bean be seen as a bound. First, note that both compressive
null subcarriers, half at the edges of the signal band anfd he¢nsing recovery algorithms gain more than 1 dB over the
evenly spaced among the data subcarriers. The data sasartiS estimator. Second, matching our previous observations
are modulated using 16-QAM, and each OFDM symbol ihat an overcomplete dictionary, > 1, leads to a sparser
separately encoded using a rat nonbinary LDPC code. representation, we see that both OMP and BP benefit and
We will use the block error rate (BLER) after LDPC decodingranslate this gain into improved BLER performance. We

ﬁ)tted versus received signal-to-noise ratio (SNR) as the
ttom line performance metric throughout.



Simulation Results on Time-Varying Channels Experimentally Recorded Impulse Response
Block error rate (BLER) vs. signal-to-noise ratio [dB] Correlation magnitude vs. Doppler scale [m/s] vs. delay 7 [ms]
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Fig. 5. Example channel from the SPACEO8 experiment, wheneledion
values Az are plotted in a grid according to their delay and Doppler
scalea,; we make out about fifteen paths with a delay spread of maybe 10 ms
and a Doppler spread af, = 0.1 m/s.
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Fig. 4. On time-varying channels, the better estimation aaxuof BP leads
to significant gains over OMP for largdd; D — 0 corresponds to a receiver delays, we can reconstruct the ICI pattern and use MMSE

assuming a time-invariant channel. equalization to suppress it. In this case we need to find a
suitable level of modeled ICI by using a banded maifix

) _ ) _ that has the minimum channel estimation error.
should note that this gain comes at increased computational

complexity and further studies revealed a strongly dinhimig
return for even larger values of. We fix A\ = 2 for BP and F. Experimental Validation

A =4 for OMP in the following. We now will use experimental data to validate the simu-

lation results, which was recorded at the Surface Processes
E. Receiver for Time-Varying Channels and Acoustic Communications Experiment (SPACE08). The
The significant changes for operation on time-varying chagxperiment was carried out off the coast of Martha’s Vindyar
nels are three-fold: i) 352 pilots are used that form clssteMassachusetts, from Oct. 14 to Nov. 1, 2008. The water depth
of four consecutive pilots; ii) channel estimation usegédar was about 15 meters. Among the total six receivers, we only
dictionaries with N, = 15; and iii) channel equalization consider the data collected by three receivers, labeledlas S
involves matrix inversion of a banded matrix with > 0. S3, S5, which were 60 m, 200 m, and 1000 m away from the
Due to the increased number of pilots, the data rate is nd@nsmitter respectively, with each receiver array cdimgs
7.4 Kbit/s. of twelve hydrophones. To show performance differences, we
In the simulation, the Doppler rate of each path is drawpiot the performance based on combining a variable number
from a zero mean uniform distribution, with maximum valu®f phones, as this multiphone combining will increase the
V30, /¢, in which o,, corresponds to the standard deviation céffective SNR.
the platform velocity, and: is the sound speed being set to We plot a measured channel response in Fig. 5; this plot is
1500 m/s. We set, = 0.25 m/s to model significant Doppler based on a matched filter, basically calculatiof z (which is
spread and keep the other settings of the simulation asebefdhe metric OMP uses to identify non-zero entries). The @®ss
We plot simulation results in Fig. 4, where we investigatare simply the strongest peaks and are marked for convenienc
the tradeoff using banded matrice® & 1,3) and the case We see that there are 10-15 significant peaks, the delaydsprea
where we assume that the channel is time-invarignt=(0). In  is about 10 ms, and the Doppler spread is maybe- 0.1 m/s.
the latter case we set agaW, = 1 and also the conventional Also we should note that the correlation between paths of the
LS estimator can be used. When increasihghere is a point same delay with different Doppler scales is quite high. is th
when the performance stops improving because we introdwggnse usingV, = 15, columns of A corresponding to the
more channel estimation error than gained by the more gecimme Doppler scale are even more correlated than columns
model. For example in Fig. 4, the performance of BP and OM®rresponding to the same delay.
are similar forD = 0, but when increasind to account for ~ We only report performance results for the setup as in
the ICI, BP considerably outperforms OMP for larger We Section V-E, more detailed experimental results can bedoun
conclude that the “break even” point for OMP is around= 3 in [9]. As in the numerical simulation, we also include the
as the gain diminishes quickly, while for BP the estimationonventional LS estimator and versions of OMP and BP with
error is lower leading to significant gains fd» = 3 (the N, =1 and D = 0. The plots include data recorded across
break even point is reached Bt= 5, see [9]). six consecutive days (Oct. 22-27), each day a transmissien w
In summary, on significantly time-varying channels rerecorded every two hours, leading to 72 transmissions ai.tot
ceivers that do not account for time-variatidn & 0) perform As each transmission included twenty OFDM symbols, a total
poorly. When estimating also the rate-of-change of the chlanof 1440 OFDM symbols are used to calculate the BLER.
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Fig. 6. BLER performance for SPACEO8 data; the results areageel over six consecutive days that include calm weatherelisas two storm cycles.

Studying the results Fig. 6, we see generally the same tremdsimation for various types of channels, with extensians t
as in our numerical simulation. Note that the differencas fonultiuser and cognitive radio systems. In this paper, wesill
non-zero values ob are not as pronounced. This is becauseated the application of the compressive sensing teclksiqu
the considered interval also included several days ofivelsgt using a concrete example of multicarrier underwater a@ust
calm weather, see [9] for plots on specific days. Furthermortemmunications. We showed that an overcomplete dictionary
it is interesting to see that the medium distance of 200 leads to much sparser representation of a multipath channel
is “the easiest”. This is because at the shortest distaree thlative to the baseband tap-based channel model. Numeri-
Doppler and delay spread are higher due to the geometrycal simulations and field results demonstrated the sulistant
the reflections at the shallow water bottom, while at the é&mtg benefits of compressive sensing for underwater acoustic com
distance the received SNR is the weakest. munications over long dispersive channels with large Deppl

In summary, the benefits of sparse channel estimation fpread.

UWA multicarrier communications are two-fold:

o On (approximately) time-invariant channels, both OMP

and BP. can reducg the estlm.aftlon error relative to aThis work was supported by the Office of Naval Research
conventional LS estimator. Intuitively, the advantage of

N . . and the National Science Foundation.
sparse channel estimation relative to its LS counterpart

comes from the fact that by exploiting sparsity in the
estimate, sparse channel estimation can effectively eeduc
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