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Abstract—Compressive sensing is a topic that has recently
gained much attention in the applied mathematics and signal
processing communities. It has been applied in various areas,
such as imaging, radar, speech recognition, and data acquisition.
In communications, compressive sensing is largely accepted for
sparse channel estimation and its variants. In this paper we high-
light the fundamental concepts of compressive sensing and givean
overview of its application to pilot aided channel estimation. We
point out that a popular assumption – that multipath channels are
sparse in their equivalent baseband representation – has pitfalls.
There are overcomplete dictionaries that lead to much sparser
channel representations and better estimation performance. As
a concrete example, we detail the application of compressive
sensing to multicarrier underwater acoustic communications,
where the channel features sparse arrivals, each characterized
by its distinct delay and Doppler scale factor. To work with
practical systems, several modifications need to be made to the
compressive sensing framework as the channel estimation error
varies with how detailed the channel is modeled, and how data
and pilot symbols are mixed in the signal design.

I. I NTRODUCTION

A. What is Compressive Sensing

Since the term compressive sensing was coined a few years
ago [1], [2], this subject has been under intensive investiga-
tion [3]–[5]. It has found broad application in imaging, data
compression, radar, and data acquisition to name a few (see
overview in [4], [5]).

In a nutshell, compressive sensing is a novel paradigm
where a signal that is sparse in a known transform domain can
be acquired with much fewer samples than usually required
by the dimensions of this domain. The only condition is that
the sampling process is “incoherent” with the transform that
achieves the sparse representation and “sparse” means that
most weighting coefficients of the signal representation in
the transform domain are zero. While it is obvious that a
signal that is sparse in a certain basis can be fully repre-
sented by an index specifying the basis vectors corresponding
to non-zero weighting coefficients plus the coefficients –
determining which coefficients are non-zero would usually
involve calculating all coefficients, which requires at least
as many samples as there are basis functions. The definition
of “incoherence” usually states that distances between sparse
signals are approximately conserved as distances between their
respective measurements generated by the sampling process.
In this sense the reconstruction problem has per definition a
unique solution.

Making the compressive sensing formulation practical
hinges on two conditions:

1) is the “incoherence” property achievable with a feasible
sampling scheme, and

2) are there computationally tractable algorithms that can
reconstruct the original signal from these samples?

The answers to these questions created the field of compressive
sensing and we will try to review the basics of these answers
in this article.

B. Applications of Compressed Sensing in Communications

So far compressive sensing has been successfully applied
in several signal processing fields, specifically in imaging
the technology has achieved a certain level of maturity. In
communications the range of applications so far has been
rather limited, with the exception of channel estimation –
although in many variations. To cite a few examples:

• Sparse channel estimation in ultra-wideband, was mo-
tivated by the ability to resolve individual arrivals or
clusters of arrivals in multipath channels [6].

• Considering mobile radio channels, each path is charac-
terized by a delay and a relative Doppler speed [7], [8].

• Underwater acoustic channels are known to exhibit only
few arrivals in a long delay spread with each path having
different Doppler speed [9].

A variation on channel estimation is the combination with
active user detection in code division multiple access [10]or
spectrum sensing for cognitive radios.

Another proposed application of compressive sensing in
communications is coding over the real numbers (versus finite
fields as commonly used in coding theory) under a channel
model that produces few very large errors (similar to erasures).
Although this leads to direct application of compressive sens-
ing algorithms and performance guarantees [11], it is so far
unclear if this will lead to practical applications that would
replace current error correction schemes.

C. This Paper

Clearly the motivation to use compressive sensing in chan-
nel estimation is the observation that some channels are
characterized by sparse multipath – by that we mean that
there are much fewer distinct arrivals as there are baseband
channel taps. With this in mind compressive sensing promises
to estimate the channel with much less pilot overhead or
at higher accuracy with a constant number of pilots. The
common assumption is that a sparse multipath channel leads
to a baseband channel model where most taps are negligible.
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We take a closer look at this and find that in a channel
modeled by specular (point) scatterers the number of non-
zero baseband taps depends very much on what one defines
as negligible. Using instead an oversampled baseband model,
the representation of the channel becomes ambiguous, but also
more sparse.

In underwater acoustic (UWA) communications, channels
are characterized by long delay spread and significant Doppler
effects. The long channel delay spread leads to severe inter-
symbol interference (ISI) in singlecarrier transmissions, while
in multicarrier approaches like orthogonal frequency division
multiplexing (OFDM) the aforementioned Doppler effects
destroy the orthogonality of the sub-carriers and lead to
inter-carrier interference (ICI). On top of high equalization
complexity, the ISI or ICI corresponds to a convolution with
a time-varying impulse response, leading to a large amount
of unknown channel coefficients. While it is well recognized
in the community that UWA channels are usually sparse
[12], there are major challenges to overcome when applying
compressive sensing to exploit channel sparsity.

As an example, we show a block-by-block OFDM receiver
that re-estimates the channel for every OFDM symbol. To
apply compressive sensing one needs to consider the following
points: i) A channel model needs to be established that leads
to a sparse representation of the channel coefficients, and
is accurate (enough) within the considered time interval. ii)
When placing the pilots, one needs to ensure that ICI from
other pilots can be observed. iii) When estimating the channel
based on pilots, ICI from the unknown data symbols has
to be treated as noise. After going through the details of
applying compressive sensing to channel estimation in UWA
multicarrier communications, we illustrate the performance
using numerical simulation and experimental data.

The paper is organized as follows, in Section II we give
a more detailed overview of compressive sensing and in
Section III we describe some of the popular compressive
sensing recovery algorithms. In Section IV we look at sparse
representations of multipath channels, in Section V we explain
in detail the application of compressive sensing to UWA
communications, and we conclude in Section VI.

Notation: We represent matrices and vectors with bold upper
and lower case letters respectively,A, c; Superscripts T and
H denote the transpose and hermitian respectively,AT , AH .
With |c| we denote the Euclidean norm.

II. COMPRESSIVESENSING

A. Sparse Representation

Consider a signaly ∈ C
n that can be represented in an

arbitrary basis,{ψk}n
k=1

, with the weighting coefficientsxk.
Stacking the coefficients into a vector,x, the relationship with
y is obviously through the transformy = Ψx, whereΨ =
[ψ1 , ψ2 , . . . ,ψn] is a full rank n × n matrix. A common
example would be a finite length, discrete time signal that one
could represent as discrete sinusoids in a limited bandwidth.
The matrixΨ would then be the discrete Fourier transform
(DFT) matrix.

In compressive sensing one is particularly interested in any
basis that allows a “sparse” representation ofy, i.e., a basis

{ψk}n
k=1

such that mostxk are zero. Obviously if one knows
y, one could always choose some basis for whichy = ψk0

for some k0; then all xk, k 6= k0, would be zero. This
trivial case is not of interest, instead one is interested ina
predetermined basis that will render a sparse or approximately
sparse representation of anyy that belongs to some class of
signals.

B. Exactly and Approximately Sparse Signals

A signal is calleds-sparse, if it can be exactly represented
by a basis,{ψk}n

k=1
, and a set of coefficientsxk, where only

s coefficients are non-zero. A signal is called approximately
s-sparse, if it can be represented up to a certain accuracy
using s non-zero coefficients. Since the desired accuracy de-
pends on the application, signals considered as approximately
sparse usually have the property that the reconstruction error
decreases super-linearly ins, therefore any required accuracy
can be achieved by only sightly increasings.

As an example of ans-sparse signal, consider the class of
signals that are the sum ofs sinusoids chosen from then
harmonics of the observed time interval. Now obviously the
DFT basis will render ans-sparse representation of any such
y, i.e., taking the DFT of any such signal would render only
s non-zero valuesxk.

An example of approximately sparse signals is when the
coefficientsxk, sorted by magnitude, decrease following a
power law. This includes smooth signals or signals with
bounded variations [4]. In this case the sparse approximation
constructed by choosing thes largest coefficients is guaranteed
to have an approximation error that decreases with the same
power law as the coefficients.

C. Sensing

So far it was assumed thaty is available, and that one can
simply apply the transform into the domain of{ψk}n

k=1
to

determine whichxk are relevant (non-zero). Although this
case does exist and is important for some forms of data-
compression, the real application of compressive sensing is the
acquisition of the signal fromm, possibly noisy, measurements
zℓ = φH

ℓ y+vℓ for ℓ = 1, . . . ,m, where here it is assumed that
vℓ is zero-mean complex Gaussian distributed with variance
N0 and the noiseless case is included forN0 → 0. The signal
acquisition process can now be written using them×n matrix
A,

z = ΦHy + v = ΦHΨ
︸ ︷︷ ︸

A

x + v,

whereΦ = [φ1 , φ2 , . . . , φm] is an n × m matrix andz =
[z1 , z2 , . . . , zm]T is the stacked measurement vector. Since
this is a simple linear Gaussian model, it is “well posed” as
long asA is at least of rankn. By “well posed” we simply
mean that there exists some estimatorx̂ (or ŷ for that matter),
whose estimation error is proportional to the noise variance;
therefore as the noise variance approaches zero, the estimation
error does as well. This generally requires at leastm ≥ n
measurements ify is unconstrained inCn.
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D. Signal Recovery and RIP

The novelty in compressive sensing is that for signals
y that are s-sparse in some{ψk}n

k=1
, less measurements

are sufficient to make this a “well posed” problem. The
requirement onA to have at least rankn is replaced by the
restricted isometry property (RIP) (first defined in [11]) that
we will explain in the following.

For any matrixA with unit-norm columns one can define
the restricted isometry constantsδs as the smallest number
such that,|Ax|2 ≥ (1 − δs)|x|2 and |Ax|2 ≤ (1 + δs)|x|2
for anyx that iss-sparse. This can be seen as conserving the
(approximate) length ofs-sparse vectors in the measurement
domain and effectively puts bounds on the eigenvalues of any
s × s submatrix ofAHA.

Now assuming that under alls-sparse vectors, one chooses
the estimatêx that has the smallest distance to the observa-
tions, |z − Ax̂|2, it is easily shown that the estimation error
is bounded byE{|x− x̂|2} ≤ 2mN0/(1− δ2s). This uses the
fact that the estimation error̃x := x − x̂ is 2s-sparse. So we
see that the signal recovery problem is “well-posed” as longas
δ2s < 1, but since theδs are monotonic ins, δs ≤ δs+1, and
usually increase gradually, it is commonly said thatA obeys
the RIP if δs is not too close to one.

In case of approximately sparse signals, the error caused
by noisy observations is additive with the error caused by the
approximation ass-sparse. Therefore a good choice ofs needs
to consider the noise levelN0, since a tradeoff exists between
choosing a smallers that increases the approximation error, but
decreases the error caused by the noise due to the monotonic
nature of theδs and vice-versa.

E. Sensing Matrices

While evaluating the RIP for a particular matrix at hand
is (at worst) an NP-hard problem, there are large classes of
matrices that obey the RIP with high probability, that isδs ≪ 1
for any s ≪ m. Specifically for random matrices like i.i.d.
Gaussian or Bernoulli entries, or randomly selected rows of
an orthogonal(n×n) matrix (e.g., the DFT), it can be shown
that for m ≥ Cs log(n/s) measurements the probability
that δs ≥ δ decreases exponentially withm and δ. With
other words, as long as one takes “enough” measurements,
i.e. increasem, the probability of any such matrix obeying
the RIP for a given thresholdδ can be made arbitrarily
small. Although the constantC is only loosely specified for
the various types of matrices, the fact that the probability
decreases exponentially is encouraging as to the number of
required measurements. Furthermore it is important to consider
that these bounds are on worst cases, so that on the average
much fewer measurements,m, will be sufficient.

III. A LGORITHMS

Previously we considered the estimator that chooses the so-
lution with minimum distance from the observations between
all s-sparse vectors inCn to show that the average estimation
error is bounded. This is in essence a combinatorial problem,
which has exponential complexity. In cases is not known,
or for an approximately sparse signal, a joint cost function

has to be used that penalizes less sparse solutions versus a
better fit of the observations. This can be achieved using a
Lagrangian formulation adding a penalty proportional tos,
which is usually formulated using the “zero-norm”,‖x‖0 that
counts the non-zero elements inx. This further increases the
size of the combinatorial problem as alls-sparse vectors for
various values ofs have to be considered now.

Other algorithms that reconstruct a signal taking advantage
of its sparse structure have been used well before the term
compressive sensing was coined. The surprising discovery is
that it can be shown that several of these algorithms will –
under certain conditions – render the same solution as the
combinatorial approach. These conditions largely amount to
tighter constraints on the sparsity ofx beyond identifiability.
We briefly introduce the two main types of algorithms.

A. Convex /ℓ1-Based

Since the exact formulation using the zero-norm‖x‖0 is
not amenable to efficient optimization, an immediate choice
is its convex relaxation, leading to the following Lagrangian
formulation,

x̂ = arg min
x

|Ax − z|2 + ζ‖x‖ℓ1 ,

where theℓ1-norm is defined as‖x‖ℓ1 =
∑n

k=1
|xk|. While

the ℓ1-norm has been used in various applications to promote
sparse solutions in the past (see references in [4]), it is
now largely popular under the name Basis Pursuit (BP), as
introduced in [13]. While originally the term BP was used
to designate the case of noiseless measurements and the
qualifier Basis Pursuit De-Noising to refer to the case of
noisy measurements [13], we will generally refer to both
cases simply by BP. In statistics the Lasso algorithm is well-
known [14], which can be shown to be equivalent to BP under
appropriate parameterization.

All these algorithms share that they lead to convex optimiza-
tion problems, which can be solved efficiently with advanced
techniques, such as interior-point methods, projected gradient
methods, or iterative thresholding. Due to the relaxation and
numerical accuracy the solutions will not be exactly sparse,
but will exhibit numerous small values that do not contribute
significantly to the estimation error. If an exactly sparse
solution is sought, an additional thresholding or de-biasing
stage can remove the small components.

The discovery that there are conditions under which convex
relaxation will render the same result as the combinatorial
formulation was the birth of compressive sensing [1], [2].
These conditions usually consider the minimum number of
measurementsm required to identify ans-sparse signal with
high probability, given a certain measurement matrix. For
example, in [1] it is shown form noiseless measurements
taken using random rows of the DFT matrix, that ifm >
CMs log(n), anys-sparse signal can be recovered with at least
probability 1 − O(n−M ), where the constantCM is roughly
linear in the parameterM . One immediately notices that this
formulation closely resembles the criterion for identifiability,
but the constants will take different values.
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B. Greedy Pursuits

Another approach to the combinatorial problem is based on
dynamic programming. In this type of approach the combina-
torial problem is circumvented by heuristically choosing which
values ofx are non-zero and solving the resulting constrained
least-squares problem. The most popular algorithms of this
type are greedy algorithms, like Matching Pursuit (MP) or
Orthogonal Matching Pursuit (OMP), that identify the non-
zero elements ofx in an iterative fashion. A short algorithmic
description of OMP would be:

1) Initialize the set of non-zero elements as empty, the
observations are set as the residual,r = z.

2) Correlate all columns ofA with the residual,AHr,
choose the largest element by magnitude and add its index
to the set of non-zero elements.

3) With the constraint that only elements ofx are non-
zero that have been added to the set previously, find an
estimatex̂ that minimizes|z − Ax̂|2.

4) Update the residual asr = z − Ax̂.
5) Repeat steps 2-4 until either a knowns is reached or

the norm of the residual|r|2 falls below a predetermined
threshold.

This type of algorithm has been popular mainly because it can
be easily implemented and has low computational complexity,
but recently it has been shown that this algorithm will also
render the optimal solution [15], whereby the constraints
are somewhat stronger. This has lead to renewed interest in
dynamic programming based solutions, leading to new greedy
pursuit algorithms (see [16] and references therein).

After reviewing the theory of compressive sensing, we will
next illustrate how this matches to the task of channel estima-
tion. To this end we will first look at sparse representations
of the channel frequency response and then study the specific
case of underwater acoustic multicarrier communication.

IV. H OW SPARSE AREMULTIPATH CHANNELS?

A. Multipath model

Channel estimation is in essence a problem of system iden-
tification; a known signals(t) is transmitted and we receive
the signalr(t) that has gone through the unknown systemH.
After H has been estimated with sufficient accuracy, its effect
can be accounted for in the following data transmission.

For simplicity, let us consider a linear time-invariant system,
which can be completely characterized by its impulse response
h(τ) or its frequency responseH(f), and neglect any random
noise. The frequency spectrumR(f) of the received signal
will then simply be the product of the transmitted spectrum
S(f) and the channel frequency responseH(f). Without loss
of generality, assume that the signals(t) is a multicarrier
signal defined in the frequency domain by the complex
symbols S(fk) = s[k], transmitted on theK subcarriers
fk = fc + k∆f , with k taking values between±K/2. The
receiver samples the waveform and applies a DFT; the outputs
will correspond to sampling the waveform at frequenciesfk,

R (fk) = H (fk) s[k]

−100 −50 0 50 100
0

2

4

6

8

H(f) = ∑ ξ -j2̟fτpe
p

p

Channel frequency response vs. subcarrier index k

0 10 20 30 40 50 60
0

0.5

1

1.5

2

h(τ) = ∑ ξ pδ(τ-τ )
p

p

Channel impulse response vs. delay τ [ms·B] 

0 10 20 30 40 50 60
0

0.5

1

1.5

2

h(ℓ) = ∑ H(f ) j2̟kℓ/Ke
k

k

Channel baseband impulse response vs. sample ℓ

Fig. 1. The channel frequency responseH(f) maps to the impulse response
h(τ), but from a limited number of samplesH(fk) only the baseband model
h(ℓ) can be determined unambiguously; in this example there areP = 10
discrete paths, andK = 256 frequency samples; all plots are magnitude only.

We see that to recover the transmitted signal one will need
the channel frequency response at corresponding frequencies
H(fk), see Fig. 1 (top). The underlying assumption of ap-
plying compressed sensing to channel estimation is that the
channel frequency responseH(fk) is sparse in some basis, or
at least approximately so. This is usually based on the model
that the impulse responseh(τ) consists ofP specular (point)
scatterers, see Fig. 1 (middle). The complex amplitudesξp

include attenuation and initial phase, and the delaysτp are
assumed to be less than some maximum delay spread.

To link to Section II, the vector of interest,y, consists of
the stacked frequency response at theK subcarriersH(fk).
Now each entry ofy is a linear combination ofP complex
phases,exp(−j2πfkτp), with complex weighting coefficients
ξp. Arranging the complex phases in lengthK vectorsψp

renders aP -sparse representation ofy, with xp = ξp. Since
the τp are random values from a continuous distribution, one
cannot choose a (finite) basis that will include all possiblebasis
vectorsψp that correspond to the randomτp. In the following
several fixed choices ofΨ will be considered that lead to
more or less sparse representations of the channel frequency
response.
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B. Sparse Approximation

Commonly the equivalent baseband model is used; this basis
simply limits theτp to be multiples of the sampling timeℓTs,
which is the inverse of the bandwidth1/Ts = B = K∆f .
With potential delaysℓ = 0, . . . ,K − 1 the matrixΨ turns
out to be theK×K DFT matrix andx turns out to be samples
at baseband rate of the bandpass filtered version ofh(τ) (the
bandpass is fromfc−B/2 to fc +B/2 due to the transmitted
signal). Since the DFT matrix is a unitary transform, one can
calculatex by taking the inverse DFT ofy, which is generally
not sparse. We purposefully consider this simple case, because
the optimums-sparse approximation ofy (in the mean squared
error sense) using this basis can be trivially determined by
keeping thes largest values of the inverse DFT ofy. The
first 64 values ofh(ℓ) corresponding toh(τ) are plotted in
Fig. 1 (bottom). Although there are only few large values,
there seem to be a substantial number of smaller, but maybe
not negligible values.

Next, a redundant basis is considered (which we often refer
to as “dictionary”), generated by delays at a finer grained res-
olution of ℓTs/λ, whereλ is the oversampling factor relative
to baseband sampling. This is a quite natural approximation
of the continuous timeτp, but leads to an uncommon case
for the compressive sensing theory. One might think that this
is the baseband model of a system with aλ-times larger
bandwidth and thatK samples were chosen deterministically.
The corresponding matrixA is aK×λK partial DFT matrix,
that turns out to have quite bad sensing propertiesδs ≈ 1,
since neighboring columns will be highly correlated. This is
obvious, since when taking samples within the actual system
bandwidth, it is hard to interpolate to the frequency response
outside.

On the other hand, the goal is to approximate the frequency
response only within the system bandwidth, this time using
a redundant dictionary. Therefore one seeks the basis that
leads to the smallest approximation error within the signal
bandwidth using a limited number of non-zero weighting
coefficients. If within this basis there are several possible
sparse representations leading to similar approximation errors,
the sparse approximation in this basis might be ambiguous, but
the same guarantees on the approximation error will hold.

C. Numerical Example

Let us consider the same simple scenario for a numerical
study, see Fig. 2. The signaly is approximated usings basis
vectors aŝys; the corresponding mean squared error (MSE) is
E[|y−ŷs|2]. Naturally when using a less sparse approximation
(increasings) the MSE will decrease. For example, for known
delays the error will reach zero fors = P . In general,
how fast the MSE reduces withs will indicate how sparse
the corresponding basis can approximatey. While for the
baseband model (λ = 1) there is a trivial way to determine
the optimums-sparse approximation, this is not the case for
the redundant dictionaries. Therefore the OMP algorithm is
used to finds-sparse approximations, which are not necessarily
optimal.
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Fig. 2. Comparison of MSE of sparse approximations ofH(fk) using s
terms with various basis models; all cases lead to better approximation with
larger s, but using a redundant basis leads to significantly fewer terms; the
parameters areP = 10, K = 256.

In Fig. 2 the MSE decreases similarly for all cases up
to about 10−1, this means that for this multipath channel
about 90 % of the channel energy is concentrated in the ten
strongest channel taps. On the other hand, the baseband model
will need more than 30 non-zero channel taps to approximate
the frequency response with a MSE of10−2, while using a
redundant basis one needs about half that. This points towards
an interesting fact, that the baseband channel taps are not
approximately sparse in terms of a power-law; if they would
follow a power law, the slope in the plot would be constant,
while in fact it levels off.

V. SPARSECHANNEL ESTIMATION IN UNDERWATER

ACOUSTICMULTICARRIER COMMUNICATIONS

In this section, we present sparse channel estimation for
multicarrier underwater acoustic (UWA) communications asa
concrete example of the application of compressive sensing
techniques.

A. Underwater Acoustic Channel

UWA channels are different from radio channels, due to
the fundamental differences between acoustic waves and radio
waves. For once, the practical bandwidths in UWA channels
are limited, due to the absorption of acoustic energy at high
frequencies. Also, the speed of sound is only about 1500 m/s
in water, while electromagnetic waves propagate at the speed
of light in air (3 × 108 m/s). As a result, UWA channels
usually have a long delay spread, even in relation to their (low)
sampling rate, for example about 20 ms in typical shallow
water environments along with a 10 kHz bandwidth, leading
to 200 taps in the baseband channel. While channel variations
happen at a similar rate to urban radio environments (tens
or hundreds of milliseconds), the symbol duration in UWA
systems is orders of magnitudes larger than that in radio
systems. Also Doppler effects caused by the slow movement
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of seaborne vessels (or even the sea surface) are magnified by
the much lower sound speed.

The key obstacle hindering satisfactory performance in
UWA channels is the combination of the long delay spread
and (effectively) quick channel variations. This impacts the
achievable data rate two-fold:

• Channel estimation has to capture many parameters due
to the long delay spreadand the estimates have to be
frequently updated, consuming a large amount of already
scarce frequency/power resources.

• The assumption of a linear time-invariant channel model
holds only over a very short time span (on the order of
the delay spread), impacting the use of efficient frequency
domain equalization or multicarrier systems.

UWA channels therefore can be characterized as doubly (time-
and frequency-) selective channels.

As a concrete example, we will consider a multicarrier
system, specifically orthogonal frequency division multiplex-
ing (OFDM). The OFDM symbol length needs to be larger
than the delay spread to avoid inter-symbol interference (ISI),
which in turn make the symbols too long to approximate the
channel as fully time-invariant. Although the rate of change
is small, the low speed of sound magnifies these changes to
result in significant Doppler effects in the received signal. This
impairs the orthogonality of the OFDM subcarriers, leading
to inter-carrier interference (ICI). When taking samples inthe
frequency domain as in Section IV, every DFT output is now
potentially affected by allK transmitted symbolss[k],

R(fm) =
∑

k

H (fm, fk) s[k] + V (fm) .

The ICI coefficientsH (fm, fk) specify how thes[k] affect
R(fm), and V (fm) denotes the additive noise. Stacking the
R(fm), V (fm), ands[k] from all subcarriers into vectorsz,
v, ands, leads to a matrix-vector formulation as

z = Hs + v,

whereH is the channel mixing matrix.
For a multicarrier system,H is the channel that needs

to be estimated for the purpose of channel equalization and
decoding. However,H containsK2 entries, much more than
the number of measurements inz.

B. Sparse Representation and Dictionary Construction

To apply compressive sensing techniques to channel esti-
mation in a practical system, one has to find a suitable sparse
representation of the channel. This is helped by the unique
properties of the UWA channel: Consider two propagation
paths that differ by 1.5 meters; the corresponding delay
difference is 1 ms, which is already 10 times that of the
baseband sampling interval with a 10 kHz bandwidth. Hence,
one expects that in the sampled channel impulse response,
many entries will be close to zero. This makes UWA channels
intuitively sparse [12].

Let us therefore consider a channel model that consists ofP
discrete paths, similar to the one in Fig. 1, but now withtime-
varying amplitude and delay. The block-by-block receiver in

[9] aims to estimate the channel based on each received OFDM
symbol individually, such that the receiver is robust to rapid
channel changes across OFDM symbols. This motivates the
following assumptions on the time variability of the channel:

• The amplitudeξp of each path remains approximately
constant during each block.

• The path delays vary approximately linear with time,
τp(t) ≈ τp − apt where τp is the delay at the start of
the block andap is the Doppler scale factor. This means
that the signal components propagating along thep-th
path will experience a Doppler shift where frequencyfk

will be translated to(1 + ap)fk.

Now, the channel matrixH is characterized byP triplets
{ξp, ap, τp}; see [9] for the exact formulation. However, the
exact number of pathsP is unknown and the relationship of
H with ap and τp is nonlinear, complicating the estimation
task. Sampling the delay-Doppler plane on a grid, a linear and
sparse representation of the channel matrix can be formulated.
Specifically,

• The delay dimension is discretized at a multiple of the
baseband sampling rate,ℓTs/λ, where ℓ can takeNτ

values to cover the maximum possible delay.
• The Doppler scale dimension is similarly sampled using

Na values within some interval|ap| ≤ amax, with step-
size∆a = 2amax/Na.

With this the channel model can be expressed as,

h(τ ; t) =

Na∑

p=1

Nτ∑

q=1

ξp,qδ (τ − (τq − apt)) .

The received signal will then be a linear combination of up to
NτNa delayed and Doppler scaled copies of the transmitted
signal with complex weightsξp,q.

Now let the vectorx contain the complex amplitudes of
all the NτNa possible paths on the discretized delay-Doppler
plane, of which many entries shall be close to zero. With this
H is a linear function ofx, and the channel to be estimated
has found a sparse representation in the delay-Doppler domain
after a series of approximations. One can write

z =
(
sT ⊗ IK

)

︸ ︷︷ ︸

ΦH

vec(H)
︸ ︷︷ ︸

Ψx

+v =
(

ΦHΨ
)

︸ ︷︷ ︸

A

x + v,

which reveals the connection with the compressive sensing
formulation in Section II.

C. Practical Issues

For the block-by-block multicarrier receiver, the following
two facts are not considered in the compressive sensing theory.

1) Most elements of the matrixH are (generally) negligible
in magnitude, specifically most energy is concentrated on
the main diagonal and a few off-diagonals (the magnitude
decreases with distance from the main diagonal).

2) Only part of the vectors is known (the pilots).

Both facts will also affect pilot design.
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1) Structure of Channel Matrix:Since the channel esti-
mation error is determined by the relationship between the
sparse estimate and the channel coefficients,ŷ = Ψx̂, the
estimation error on each element ofŷ is generally of similar
variance. This means that on far off-diagonal values ofH,
the estimation error will surely be much larger than the actual
value. Therefore, one can reduce the channel estimation error
by approximatingH as a banded matrix withD off-diagonals
on each side. This is equivalent to a shortery or removing
rows of Ψ. How many off-diagonals to keep will depend on
the estimation accuracy of̂x and on the rate with which the
magnitude of the off-diagonal values ofH decrease.

2) Influence of Unknown Data:Since the symbols that
convey data are unknown to the receiver, one has to treat
them as additional noise with a known mean and variance.
Therefore the dictionary is constructed by setting all values
s[k] = 0 if fk corresponds to a data subcarrier. Due to the
known structure ofH, it is clear that the impact of the noise
caused by the unknown data symbols[k] will be the strongest
on the k-th entry of z. Assuming a reasonable signal-to-
noise ratio (SNR), all observations related to data subcarriers
are discarded; alternatively a colored noise model could be
considered. Furthermore the effect of the unknown data on
channel estimation should also be taken under consideration
in pilot design.

3) Pilot Design: As paths with non-zero Doppler scale
ap need to be identified based on their ICI pattern, one
needs pilots on adjacent subcarriers. Conversely if one selects
pilots adjacent to data symbols, the ICI from these unknown
symbols will be stronger. Therefore a random pilot assignment,
as would be expected from compressed sensing theory, will
very likely be suboptimal due to the specific structure of
the dictionary A = ΦHΨ. On the other hand, iterative
receivers are of great interest, as the data symbols estimated
in the previous round can serve as pilot symbols for channel
estimation.

Next, we will look at two specific examples of receivers,
where the first will be based on negligible time-variation, while
the second will assume significant time-variation.

D. Receiver for Time-Invariant Channels

The general parameters of the considered OFDM system
will be the same for both receivers; the bandwidth of 9.8 kHz
is centered aroundfc = 13 kHz, and is divided intoK = 1024
subcarriers, leading to a subcarrier spacing of∆f = 9.5 Hz.
This leads to an OFDM symbol length of1/∆f = 105 ms,
during which the channel is approximated as constant, and
followed by a guard interval of25 ms to avoid ISI. The symbol
length is chosen as a tradeoff between increasing the symbol
length to minimize the overhead caused by the guard interval,
and a short symbol length ensuring that the assumptions on
the channel will hold. Out of the 1024 subcarriers 96 will be
null subcarriers, half at the edges of the signal band and half
evenly spaced among the data subcarriers. The data subcarriers
are modulated using 16-QAM, and each OFDM symbol is
separately encoded using a rate-1/2 nonbinary LDPC code.
We will use the block error rate (BLER) after LDPC decoding

7 8 9 10 11 12 13
10

10
−2

10
−1

10
0

full CSI

LS, λ = 1OMP, 

λ = 1

OMP, 

λ = 2

OMP, 

λ = 4

BP, 

λ = 1

BP, 

λ = 2

−3
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Simula�on Results on Time-Invariant Channels

Fig. 3. When considering a coded OFDM system, sparse approximation of
the channel frequency response leads to reduced channel estimation error and
in turn to improved BLER performance.

plotted versus received signal-to-noise ratio (SNR) as the
bottom line performance metric throughout.

When assuming that the rate-of-change of the multipath
delays is negligible within an OFDM symbol duration,ap , 0,
the channel is simply linear time-invariant, and matches the
model in Section IV. The corresponding receiver uses a
dictionary consisting only of delays for channel estimation
(Na = 1), and since the channel matrixH will be diagonal
by definition we setD = 0, which makes equalization
simply a scalar multiplication. To sense the channel 256 pilot
subcarriers are evenly distributed between the data (no ICIis
expected). Including all overhead, for guard interval, pilots,
and coding, the achieved data rate is 10.4 kbit/s.

In Section IV, we saw that overcomplete dictionaries lead
to a sparser representation of the multipath channel. We would
expect that this will lead to a reduced channel estimation
error and in turn a better bit error rate performance. We
will use a similar simulation as previously, but now with
P = 15 paths, where the inter-arrival times are distributed
exponentially with mean 1 ms, leading to an average channel
delay spread of 15 ms or about 150 baseband channel taps. The
amplitudes are Rayleigh distributed with the average power
decaying exponentially with the delay. The channel parameters
are constant within the duration of one OFDM symbol and
independent between symbols.

The simulation results are shown in Fig. 3, where we
consider both OMP and BP, as well as a conventional least-
squares (LS) channel estimator, which does not take advantage
of channel sparsity. We also consider the BLER performance
of a receiver with full channel state information (CSI), which
can be seen as a bound. First, note that both compressive
sensing recovery algorithms gain more than 1 dB over the
LS estimator. Second, matching our previous observations
that an overcomplete dictionary,λ > 1, leads to a sparser
representation, we see that both OMP and BP benefit and
translate this gain into improved BLER performance. We
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Fig. 4. On time-varying channels, the better estimation accuracy of BP leads
to significant gains over OMP for largerD; D = 0 corresponds to a receiver
assuming a time-invariant channel.

should note that this gain comes at increased computational
complexity and further studies revealed a strongly diminishing
return for even larger values ofλ. We fix λ = 2 for BP and
λ = 4 for OMP in the following.

E. Receiver for Time-Varying Channels

The significant changes for operation on time-varying chan-
nels are three-fold: i) 352 pilots are used that form clusters
of four consecutive pilots; ii) channel estimation uses larger
dictionaries with Na = 15; and iii) channel equalization
involves matrix inversion of a banded matrix withD > 0.
Due to the increased number of pilots, the data rate is now
7.4 kbit/s.

In the simulation, the Doppler rate of each path is drawn
from a zero mean uniform distribution, with maximum value√

3σv/c, in whichσv corresponds to the standard deviation of
the platform velocity, andc is the sound speed being set to
1500 m/s. We setσv = 0.25 m/s to model significant Doppler
spread and keep the other settings of the simulation as before.

We plot simulation results in Fig. 4, where we investigate
the tradeoff using banded matrices (D = 1, 3) and the case
where we assume that the channel is time-invariant (D = 0). In
the latter case we set againNa = 1 and also the conventional
LS estimator can be used. When increasingD, there is a point
when the performance stops improving because we introduce
more channel estimation error than gained by the more precise
model. For example in Fig. 4, the performance of BP and OMP
are similar forD = 0, but when increasingD to account for
the ICI, BP considerably outperforms OMP for largerD. We
conclude that the “break even” point for OMP is aroundD = 3
as the gain diminishes quickly, while for BP the estimation
error is lower leading to significant gains forD = 3 (the
break even point is reached atD = 5, see [9]).

In summary, on significantly time-varying channels re-
ceivers that do not account for time-variation (D = 0) perform
poorly. When estimating also the rate-of-change of the channel
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Experimentally Recorded Impulse Response

Fig. 5. Example channel from the SPACE08 experiment, where correlation
valuesAH

z are plotted in a grid according to their delayτq and Doppler
scaleap; we make out about fifteen paths with a delay spread of maybe 10 ms
and a Doppler spread ofσv = 0.1 m/s.

delays, we can reconstruct the ICI pattern and use MMSE
equalization to suppress it. In this case we need to find a
suitable level of modeled ICI by using a banded matrixH

that has the minimum channel estimation error.

F. Experimental Validation

We now will use experimental data to validate the simu-
lation results, which was recorded at the Surface Processes
and Acoustic Communications Experiment (SPACE08). The
experiment was carried out off the coast of Martha’s Vineyard,
Massachusetts, from Oct. 14 to Nov. 1, 2008. The water depth
was about 15 meters. Among the total six receivers, we only
consider the data collected by three receivers, labeled as S1,
S3, S5, which were 60 m, 200 m, and 1000 m away from the
transmitter respectively, with each receiver array consisting
of twelve hydrophones. To show performance differences, we
plot the performance based on combining a variable number
of phones, as this multiphone combining will increase the
effective SNR.

We plot a measured channel response in Fig. 5; this plot is
based on a matched filter, basically calculatingAHz (which is
the metric OMP uses to identify non-zero entries). The crosses
are simply the strongest peaks and are marked for convenience.
We see that there are 10-15 significant peaks, the delay spread
is about 10 ms, and the Doppler spread is maybeσv = 0.1 m/s.
Also we should note that the correlation between paths of the
same delay with different Doppler scales is quite high. In this
sense usingNa = 15, columns ofA corresponding to the
same Doppler scale are even more correlated than columns
corresponding to the same delay.

We only report performance results for the setup as in
Section V-E, more detailed experimental results can be found
in [9]. As in the numerical simulation, we also include the
conventional LS estimator and versions of OMP and BP with
Na = 1 and D = 0. The plots include data recorded across
six consecutive days (Oct. 22-27), each day a transmission was
recorded every two hours, leading to 72 transmissions in total.
As each transmission included twenty OFDM symbols, a total
of 1440 OFDM symbols are used to calculate the BLER.
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Fig. 6. BLER performance for SPACE08 data; the results are averaged over six consecutive days that include calm weather aswell as two storm cycles.

Studying the results Fig. 6, we see generally the same trends
as in our numerical simulation. Note that the differences for
non-zero values ofD are not as pronounced. This is because
the considered interval also included several days of relatively
calm weather, see [9] for plots on specific days. Furthermore
it is interesting to see that the medium distance of 200 m
is “the easiest”. This is because at the shortest distance the
Doppler and delay spread are higher due to the geometry of
the reflections at the shallow water bottom, while at the longest
distance the received SNR is the weakest.

In summary, the benefits of sparse channel estimation for
UWA multicarrier communications are two-fold:

• On (approximately) time-invariant channels, both OMP
and BP can reduce the estimation error relative to a
conventional LS estimator. Intuitively, the advantage of
sparse channel estimation relative to its LS counterpart
comes from the fact that by exploiting sparsity in the
estimate, sparse channel estimation can effectively reduce
the number of unknowns. Therefore a basis that leads to
a sparser representation of the channel can further reduce
the number of unknowns.

• On a time-varying channel, there are too many unknown
channel parameters for a LS estimator to handle with a
reasonable amount of pilots. In contrast, using compres-
sive sensing we can identify the relevant parameters and
reconstruct a channel matrix with many more unknowns
than there are pilots, that is used in equalization. Still,
even using compressive sensing it is challenging to esti-
mate the channel with sufficient accuracy, so it can make
sense to limit the number of unknowns in the channel
matrix using a banded structure. In this case BP seemed
to continually outperform OMP.

VI. CONCLUSION

Compressive sensing has made a lasting impression in the
signal processing community, where besides an intriguing
theory it offers versatile applicability to many challenging
problems. In the communications community the application
of compressive sensing has been mainly on sparse channel

estimation for various types of channels, with extensions to
multiuser and cognitive radio systems. In this paper, we illus-
trated the application of the compressive sensing techniques
using a concrete example of multicarrier underwater acoustic
communications. We showed that an overcomplete dictionary
leads to much sparser representation of a multipath channel
relative to the baseband tap-based channel model. Numeri-
cal simulations and field results demonstrated the substantial
benefits of compressive sensing for underwater acoustic com-
munications over long dispersive channels with large Doppler
spread.
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