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Artificial intelligence (AI) proves to have enormous potential in many areas of healthcare including research and chemical discoveries.
Using large amounts of aggregated data, the AI can discover and learn further transforming these data into “usable” knowledge. Being
well aware of this, the world’s leading pharmaceutical companies have already begun to use artificial intelligence to improve their
research regarding new drugs. ,e goal is to exploit modern computational biology and machine learning systems to predict the
molecular behaviour and the likelihood of getting a useful drug, thus saving time and money on unnecessary tests. Clinical studies,
electronic medical records, high-resolution medical images, and genomic profiles can be used as resources to aid drug development.
Pharmaceutical andmedical researchers have extensive data sets that can be analyzed by strongAI systems.,is review focused on how
computational biology and artificial intelligence technologies can be implemented by integrating the knowledge of cancer drugs, drug
resistance, next-generation sequencing, genetic variants, and structural biology in the cancer precision drug discovery.

1. Introduction

Personalized or precision cancer therapy involves the
identification of anticancer medicine for individual tumor
molecular profiles, clinical features, and associated micro-
environment of cancer patients [1, 2]. Precision medicine
also aims to treat cancer more effectively with less adverse
effects. According to a report by the International Agency for
Research on Cancer (IARC), approximately 18.1 million of
new registry on cancer cases and 9.6 million cancer-related
deaths have been reported worldwide in 2018 [3]. Combined
with classical cancer treatment methods, recent innovations
in cancer treatment such as targeted chemotherapy, anti-
angiogenic agents, and immunotherapy were adapted by

physicians on a case-to-case basis for better results [4]. In a
number of instances, cancers such as hepatocellular carci-
noma, malignant melanoma, and renal cancer often show
intrinsic resistance to drugs without prior dosage of anti-
cancer drugs [5]. In other cases, the initial response to the
chemotherapy is remarkable. However, such a period is
followed by a poor outcome, as cancer responds well to
chemotherapy initially but later shows resistance due to
development of resistance. Millions of cases regarding ad-
verse drug resistance in cancer treatments are reported every
year, which translates to a possibility of thousands of
avoidable deaths. Such a dire situation thus calls for the
designing of potential drugs. However, it is a time-con-
suming and complex process since each cancer patient
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responds differently to chemotherapy agent and its harmful
effects are often unpredictable [6].

Ultimately, there is a crucial need to identify the primary
mechanism with an ability to predict resistance to cancer
therapies. ,e incorporation of tumor genetic profiling into
clinical practice has improved the existing knowledge re-
garding the complex biology of tumor initiation and pro-
gression. Next-generation sequencing (NGS) is a platform
commonly utilized by researchers to decode the genetic
pattern of cancer patients, which allows for precision an-
titumor treatment based on their respective genomic pro-
files. It is clear that NGS plays a major role in treating
diseases; however, it faces many technical challenges in its
implementation. ,e highly accurate data obtained from
NGS lead to the identification of a large set of genomic
variations, in order to further identify the harmful variations
of diseases. As such, specific modern computational algo-
rithms are required to analyze and interpret the data. A
number of computational tools have been developed to
analyze the dataset that are integrated with genomic se-
quence and biochemical data on genetic polymorphism.
Such tools will allow the prediction of functional conse-
quences of deleterious polymorphism.Most of the tools were
design followed by the combination of physicochemical
properties of amino acids, protein structure information,
and evolutionary sequence conservation analysis. Analyzing
the functional consequence of genetic variation is not the
limit; hence, directing such a analysis towards precision drug
discovery and the structural attributes of drug interaction
will bring about a new dimension in the cancer treatment.
NGS technology usually produces huge set of data, and it is
very difficult to analyze the data with the current existing
tools. However, AI approaches have the capability to analyze
NGS data in favor to identify suitable drug for individual
patients.

Artificial intelligence (AI) proves to have an enormous
potential in many areas of healthcare, including biomedical
data analysis and drug discovery. ,e modern supercom-
puters and machine learning systems are able to explore the
genetic data in order to identify the precision drugs. ,e key
reason for applying AI in genetic data analysis is the
completion of the human genome projects, which have
reported huge amounts of genetic information. Over the last
few years, the idea of using AI to accelerate precision drug
identification to process and boost the success rates of
pharmaceutical research programs has inspired a surge of
activity in this area. Nowadays, biomedical studies can access
extensive data sets due to the advancement of sequencing
techniques and the accumulation of information on genetic
variations. As such, there are currently greater prospects for
precision medicine to come into the foreground of cancer
treatment. As artificial intelligence makes use of the genetic
profile for each patient, the right drug can be identified to
cater to the patient’s needs. Moreover, the artificial in-
telligence system is able to refine the key information in a
short span of time. In this review, we aim to discuss about
the integration of recent computational and biological
techniques in order to develop a more effective cancer
treatment. ,is will allow the fabrication of a precision drug

identification platform through the application of artificial
intelligence.

2. Literature Survey on Next-Generation
Sequencing Technologies and Variant
Calling Algorithms

In the early 1970s, a new technology was established to
sequence the DNA molecule. However, its technical com-
plexity, working cost, and limited availability of radioactive
reagent made it difficult for the researchers to use this
technology in the laboratory. Following this, the first-gen-
eration automated DNA sequence technology designed by
Sanger and colleagues adopted a chain termination method
[7]. Maiden et al. in 1990 used the DNA sequencing tech-
nology in the multilocus sequence-typing scheme for
Neisseria meningitidis [8].Haemophilus influenzae is the first
environmental living microorganism that was sequenced in
1995 with the use of the Sanger sequencing methodology [9].
However, it is very expensive and time-consuming to se-
quence the whole human cell genome with this technology.
In 1990, the human genome project was initiated with a goal
to decode 3.2 billion base pairs of human genomes for
biomedical research in disease diagnostic and treatment.
Initially, the Sanger sequencing technology was used in this
project worth 3.8 billion with international collaboration
[10, 11]. Later in the early 2000s, another new technology
emerged, namely, next generation sequencing (NGS) tech-
nology, which truly revolutionized the DNA sequencing
process by reducing the time, cost, and labor. After 2010,
genome sequencing was done on bacterial pathogens, which
transfers the usage of technology from within the laboratory
to public health practice. ,e sequencing technologies were
used in several events of the critical infectious disease
outbreak. Some examples include the cholera outbreak after
a massive earthquake in Haiti during 2010 and the E. coli
O104 :H4 disease outbreak, which was associated with
consumption of fenugreek sprout in 2011 [12, 13]. In both
cases, it was important to understand the virulent charac-
teristic immediately, in order to reduce the progress of the
disease, which will create massive morbidity and mortality.
In these events, both academic and government research
laboratories reacted quickly with NGS technology using
crowd sourcing and open sharing of data. After these
outbreaks, more public health laboratories have started to
utilize NGS technology. Standardized NGS tests have been
adopted in many countries’ public laboratories for sur-
veillance and in addition, NGS rated highly in specialized
hospital laboratories [14, 15].

Between 1975 and 2005, the Sanger method was the
predominant sequencing methodology. It has been con-
sidered as the gold standard for sequencing DNA that can
produce 500–1000 bp long high-quality DNA reads. In 2005,
454 Life Science corporations introduced a revolutionized
pyrosequencing technology referred to as “next generation
sequencing (NGS) technology” [16]. ,is massive DNA
sequencing technology is capable of reading and detecting
thousand to millions of short DNA fragments in a single
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machine run without the need of cloning. Later versions of
DNA sequencing technology were able to generate short
reads (50–400 bp) and long reads (1–100 kb). ,e working
mechanism and performance have been extensively dis-
cussed in many review articles [17, 18]. ,e MiSeq and
MiniSeq technologies offer low to mid sample processing,
moderate instrumentation cost and user-friendly working
methods with automated and affordable cost per sample
around $120 per 5MB genome sequencing. ,erefore, they
have been the primary choice of technology for public health
and disease diagnostic laboratories. ,e technologies HiSeq,
NextSeq, and NovaSeq are considered as more suitable for
core sequencing facility, irrespective of their high in-
strumentation cost since its cost per sample is low
throughout the sequencing. However, they require auto-
mation for library preparation. By utilizing the full capacity
of a sequencing machine, the cost can be effectively further
reduced. In addition, the real-time testing is critical since the
laboratory specific samples are sequenced in the laboratory-
owned sequencing machines, which are highly tuned for the
routine samples. For example, around 4000 isolates can be
processed annually with a single MiSeq instrument and the
use of v3 reagent, which would cover real-time testing in a
laboratory. Amongst the NGS sequencing platforms, HiSeq
as a product of Illumina generates the best quality of base call
data. Ion Torrent, as a product of thermos fisheries, also
performs sequencing by synthesis and its detection based on
the hydrogen ions released during DNA polymerization that
can be measured by the solid-state pH meter [19]. ,e PGM
and S5 instruments are the IonTorrent equivalents for the
Illumina MiniSeq and MiSeq; the ion proton is equivalent of
Illumina NextSeq. ,e performance, the strength, and the
weakness of prominent genomic sequencing platform have
been compared and tabulated in Table 1.

Mutation/variation in the genetic code is considered as
an important cause of cancer and thus it is the major focus
in cancer research and treatment. ,e recent advancement
in the sequencing technology can generate a huge set of
data that can be explored by computational methods to
identify the de novo mutation. ,eoretically, all mutations
including in the genomic region or variant allele frequency
(VAF) can be identified with sufficient read depth. How-
ever, the noise in the files makes it difficult to identify them
with confidence. A number of computational methods
have been designed to identify the genetic variation or
mutation from the complex DNA sequence reads (Table 2).
,e process involves a procedure with three features: read
processing, mapping and alignment, and variant calling. As
a first step, the read processing algorithms such as NGS QC
Toolkit [20], Cutadapt [21], and FASTX Toolkit have been
used to trim out the low quality and exogenous sequences
such as sequencing adapter. During the library preparation
of targeted sequencing, some of the protocol uses unique
molecular identifiers (UMI) and PCR primers. In order to
trim and remove the oligonucleotide, a customized read
processing script must be developed. Second, the processed
reads are mapped with the reference genome to identify the
sequence, which is followed by base-by-base alignment.
Most common applying, mapping, and alignment tools for

DNA sequence include NovoAlign, BWA [22], and TMAP
(for Ion Torrent reads) and as for RNA sequencing, splice-
aware aligner tools such as STAR [23] and TopHat [24] are
used. Genome Analysis Toolkits (GATKs) are the widely
used tool for variant calling; following the procedures
generally is important in this step such as PCR de-du-
plication, indel-realignment, and base quality recalibration
[25, 26]. ,e final process is the variant calling, which is an
important step for identifying correct variants/mutations
from artifacts stemming from the prepared library, se-
quencing, mapping or alignment, and sample enrichment.
A number of germ line and somatic variant calling tools
have been developed which are freely available for analysis.
,e underlying knowledge is quite vary for somatic and
germline variant calling tools. ,e rate of allele frequency
in germline variants calling algorithms is expected to be 50
or 100%, and hence germline variant calling algorithms
have accurately identified AA or AB or BB among these
three genotypes, which fit the best [26–29]. Most artifacts
occur in less frequency rate and are less likely to create a
problem since in this case homozygous reference would be
the most likely genotype. However, neglecting this type of
artifact is not recommended in somatic variant calling
because some original variants may also occur in very low
frequencies in situations such as impure sample, rare tu-
mor subclone, and in circulating DNA. Hence, the greatest
challenge of the somatic variant calling algorithm is to
accurately identify the low-frequency variants from arti-
facts, which can be done using advanced error correction
technology and a more sensitive statistical model. Genetic
variants can be classified into three major groups: insertion
and deletion (indel), structural variant (such as duplica-
tion, translocation, copy number variation, etc.), and single
nucleotide variant (SNV). Currently, only minimum
number of variant caller algorithms is available to predict
all these type variants, as they need specific trained algo-
rithms. For single nucleotide variation and short indels
(typically size ≤10 bp), the primary procedure is to check
for nonreference nucleotide bases from the stack of se-
quence that cover each position. To evaluate the genotypic
variants, mostly probabilistic modeling tools are used or to
classify the artifact from the odds of variant. For structural
variants and long indels, since the reads are too short to
span over any variant, the focus is to identify the break
points based on the patterns of misalignment with paired
end reads or sudden change of read depth. Split reads
assembly and de novo methods are frequently used for
somatic variant analysis and long indel detection. GATK
Unified Genotyper/Haplotype Caller, GAP, and MAQ are
some of the tools used for germline variant calling
[25, 26, 30, 31]. For somatic variant calling unified hap-
lotype and genotype calling algorithms have been used, but
the core algorithms are not formulated for this analysis
following that it performs poorly for low-frequency so-
matic variants, and this information is highlighted in some
independent studies as well as in the GATK documentation
[32, 33]. Some other variant callers such as thunder and
CRISP that are mainly used for pooled samples are also
used for variant analysis [34].
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3. Global Cancer Report

A reason for the majority of global deaths is the occurrence
of noncommunicable diseases (NCDs) [35]. During the 21st
century in almost every country of the world, cancer is the
primary cause of deaths and this prevalent issue hinders the
extension of life expectancy. In 2015, the World Health
Organization (WHO) estimated that cancer is a dominant
cause of mortality andmorbidity before the age of 70 years in
91 of 172 countries, and in the rest of the 22 countries, it
ranks as the third or fourth reason for death. Cancer
morbidity and mortality are rapidly increasing worldwide.
Ultimately, there are complex reasons such as the lack in the
disease prevalence and distribution as well as an aging
population. In addition, the population increase and its
socioeconomic conditions serve as major causes of cancer
death [36, 37]. Cancer incidence is mostly reported in de-
veloping countries, where the rising number of the disease is
parallel by a modification in the genetic profile of common
tumor genetic types. A serious observation made regarding
the ongoing changes in the poverty-related and infection-
related cancers is that they are increasingly common in some
developed continents with the highest incomes, such as
Oceania, Asia, North America, and Europe. ,e root cause
of these cancers is often the modernized lifestyles [37–39].
However, the differing cancer tumor genetic profiles of

various countries and even between specific ethnic zones
signify that geographic variation still exists, with a persis-
tence of local factors in populations at vastly different phases
of economic and social transition. ,is is elucidated by the
major differences in frequency of infection related to can-
cers, including stomach, liver, and cervix in the regions at
opposite ends of the human development spectrum [38].
With regard to this information, a statistical analysis re-
garding the cancer burden worldwide in 2018 was made
based on the GLOBOCAN 2018 observation of cancer
morbidity and mortality analyzed by the International
Agency for Research on Cancer (IARC) [40]. ,e same
parameters as used in 2002 [41], 2008 [41], and 2012 [42]
were taken into consideration to observe the cancer mor-
bidity and mortality at the global level. As a result, an as-
sessment has been made regarding the geographic
differences observed across twenty predefined global re-
gions. In the total number of cases, 11.6% lung cancer has
been observed and as for the total number of cancer-related
deaths, 18.4% were cause of lung cancer. For females, breast
cancer is the next most common cancer at 11.6% followed by
colorectal cancer at 10.2% and prostate cancer at 7.1% for
incidence. As for mortality, the prominent causes are co-
lorectal cancer at 9.2% followed by both liver and stomach
cancer at 8.2%. In males, lung cancer is the most commonly
occurring cancer and the primary reason for cancer

Table 1: Comparison of performance, strengths and weaknesses of promising sequencing platforms.

Platform\instrument
,roughput
range (Gb)

Read length (bp) Strength Weakness

Sanger sequencing
ABI 3500/3730 0.0003 Up to 1 kb Read accuracy and length Cost and throughput

Illumina
MiniSeq 1.7–7.5 1× 75 to 2×150 Low initial investment Run and read length
MiSeq 0.3–15 1× 36 to 2× 300 Read length, scalability Run length
NextSeq 10–120 1× 75 to 2×150 ,roughput Run and read length

HiSeq (2500) 10–1000 1× 50 to 2× 250
Read accuracy, throughput, low

per sample cost
High initial investment, run

length

HiSeq 3000/HiSeq 4000 105–1500 2× 50 to 2×150
Read accuracy, throughput, low

per sample cost
High initial investment, run

and read length

NovaSeq 5000/6000 2000–6000 2× 50 to 2×150
Read accuracy, throughput, low

per sample cost
High initial investment, run

and read length

IonTorrent
PGM 0.08–2 Up to 400 Read length, speed ,roughput, homopolymers
S5 0.6–15 Up to 400 Read length, speed, scalability Homopolymers
Proton 10–15 Up to 200 Speed, throughput Homopolymers
Ion GeneStudio S5 prime
System (ion 550″ chip) 10–50

Up to 200 (2 runs in one
day)

Read length, speed, scalability Homopolymers

Oxford nanopore

MInION 0.1–1 Up to 100 kb Read length, portability
High error rate, run length,

low throughput

GridION X5 50–100 Up to 1000 kb
,e GridION X5 offers real
time, long-read, high-fidelity
DNA and RNA sequencing.

High error rate

Pacific BioSciences

PacBio RSII 0.5–1
Up to 60 kb(Average
10 kb, N50 20 kb)

Read length, speed
High error rate and initial
investment, low throughput

Sequel 5–10
Up to 60 kb(Average
10 kb, N50 20 kb)

Read length, speed High error rate

Sequel II 9–13 Up to 160Gb Read length, speed Initial investment
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mortality. In addition, prostate and colorectal cancers are the
leading causes for incidence of cancer and liver and stomach
cancer for cancer-related deaths. In the female population,
breast cancer is the most commonly occurring cancer and
the primary reason for cancer death followed by colorectal
and lung cancer for incidence. Next to these former reasons,
cervical cancer ranks fourth for both morbidity and mor-
tality. Over 65% of newly identified cancer morbidity and
mortality is caused by top ten cancer types worldwide
observed.

4. Complication in Cancer Drug Discovery

From the beginning of human civilization, there has been a
long history of drug discovery and development. ,e dis-
covery and development of drugs is still a time-consuming
process, whereby around 10–15 years needed to bring a
single effective drug from the laboratory to market.

Moreover, it requires huge investments, averaging from
US$500 million to $2 billion [43, 44]. ,e high cost of drug
development will probably affect the ability of patients with
financial limitations to acquire the treatment. ,e expen-
diture to treat cancer in the USA will expect to rise from
$124.57 billion in 2010 to $157.77 billion by 2020 [45]. In
addition to discovery and development, drug production
needs to fulfill satisfactory levels of toxicity, efficacy, and
pharmacodynamics and pharmacokinetic profiles of the
potential drugs candidate in in vitro and in vivo studies. In
addition, preclinical studies were conducted to examine the
efficacy and safety of the drug in humans in four different
phases. Basically, drug development is hindered by a high
rate of failure regarding their toxicity and efficacy profiles.
According to the recent reports, even though new drug
candidates exhibit high safety profile in Phase I trials, most
of the drugs results fail due to poor efficacy in Phase II
clinical trials [46]. Compared with other processes of drug

Table 2: List of tumor-normal somatic SNV callers and single-sample somatic and germline SNV callers sorted in alphabetical order.

Variant caller Type of core algorithm Type of variant Type of variant caller

BAYSIC Machine learning (ensemble caller) SNV Tumor-normal somatic SNV callers
CaVEMan Joint genotype analysis SNV Tumor-normal somatic SNV callers
deepSNV Allele frequency analysis SNV Tumor-normal somatic SNV callers
EBCall Allele frequency analysis SNV, indel Tumor-normal somatic SNV callers
FaSD-somatic Joint genotype analysis SNV Tumor-normal somatic SNV callers
FreeBayes Haplotype analysis SNV, indel Tumor-normal somatic SNV callers
HapMuC Haplotype analysis SNV, indel Tumor-normal somatic SNV callers
ISOWN Supervised learning SNV Single-sample somatic and germline SNV caller
JointSNVMix2 Joint genotype analysis SNV Tumor-normal somatic SNV callers
LocHap Haplotype analysis SNV, indel Tumor-normal somatic SNV callers
LoFreq Allele frequency analysis SNV, indel Tumor-normal somatic SNV callers
LoLoPicker Allele frequency analysis SNV Tumor-normal somatic SNV callers
MutationSeq Machine learning SNV Tumor-normal somatic SNV callers
MuSE Markov chain model SNV Tumor-normal somatic SNV callers
MuTect Allele frequency analysis SNV Tumor-normal somatic SNV callers
OutLyzer Noise level estimation SNV Single-sample somatic and germline SNV caller
Platypus Haplotype analysis SNV, indel, sv Tumor-normal somatic SNV callers
Pisces Poisson model on read count SNV, indel Single-sample somatic and germline SNV caller
PoreSeq Nanopore specific SNV, indel Single-sample somatic and germline SNV caller
qSNP Heuristic threshold SNV Tumor-normal somatic SNV callers
RADIA Heuristic threshold SNV Tumor-normal somatic SNV callers
Seurat Joint genotype analysis SNV, indel,sv Tumor-normal somatic SNV callers
SAMtools Joint genotype analysis SNV, indel Tumor-normal somatic SNV callers
Shimmer Heuristic threshold SNV, indel Tumor-normal somatic SNV callers
SNooPer Machine learning SNV, indel Tumor-normal somatic SNV callers
SNVSniffer Joint genotype analysis SNV, indel Tumor-normal somatic SNV callers
SOAPsnv Heuristic threshold SNV Tumor-normal somatic SNV callers
SomaticSeq Machine learning (ensemble caller) SNV Tumor-normal somatic SNV callers
SomaticSniper Joint genotype analysis SNV Tumor-normal somatic SNV callers
Strelka Allele frequency analysis SNV, indel Tumor-normal somatic SNV callers
Shearwater Noise level estimation SNV Single-sample somatic and germline SNV caller
SiNVICT Poisson model on read count SNV, indel Single-sample somatic and germline SNV caller
SNVer Allele frequency analysis SNV, indel Single-sample somatic and germline SNV caller
SNVMix2 Genotype analysis SNV Single-sample somatic and germline SNV caller
SomVarIUS Noise level estimation SNV, indel Single-sample somatic and germline SNV caller
SPLINTER Noise level estimation SNV, indel Single-sample somatic and germline SNV caller
TVC Ion Torrent specific SNV, indel, SV Tumor-normal somatic SNV callers
VarDict Heuristic threshold SNV, indel, SV Tumor-normal somatic SNV callers
VarScan2 Heuristic threshold SNV, indel Tumor-normal somatic SNV callers
Virmid Joint genotype analysis SNV Tumor-normal somatic SNV callers
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discovery, oncology-related therapeutic discovery has the
highest failure rate in clinical trials. Recent development in
cancer treatment allows for the discovery of target specific
drugs. However, only 1 of every 50K to 100K target specific
anti-cancer drugs is approved by the US FDA. Furthermore,
only 5% of anticancer drugs getting into Phase I clinical trials
are often approved [47]. ,e target-specific anticancer drugs
approach failed and it is still being investigated by oncol-
ogists to understand the underlying molecular mechanism.
From the investigation reports, it is understood that in the
development of cancer, more than 500 signaling molecules
have been contributed [48]. However, the target-based drug
discovery mostly focuses on inhibiting the identified sig-
naling molecules. An investigation has to be made further in
examining the drug-gable targets other than the reputed
signaling molecules. Most of the drug targets are classified
based on the preclinical studies; however, most prefindings
are not exactly replicable in the clinical treatment. ,e
number of potential drugs such as olaparib and iniparib
showed promising results in preclinical stages. However,
these preclinical in vitro and in vivo studies do not exactly
consider the human cancer microenvironment [49–51]. In
addition, the lack of quality in the pharmacodynamics and
pharmacokinetics examination of drugs results in failure.
Further poor testing strategies alsomajorly impact the drug’s
potential to translate from the preclinical findings to the
medical treatment [52].

5. Cancer Drug Resistance

Drug resistance can be attributed to the decrease in the drug
potency and efficacy to produce its desired effects. It stands
as a big obstruction to treatment of the disease and affects the
overall survival of the patient. Notably, local or locoregional,
as well as distant tumor metastases leading in the paradox of
therapy-inducedmetastasis (TIM), can result in resistance to
anticancer treatments [5, 53, 54]. In a number of cases,
tumors such as hepatocellular carcinoma, malignant mela-
noma, and renal cancer frequently show intrinsic resistance
to anticancer drugs even without prior exposure to che-
motherapy, resulting in a poor response during the initial
stages of the treatment [5]. In some other cases, a chemo-
therapy agent may initially show its desired outcome.
However, it is often followed by a poor response with
harmful side effects due to the emergence of acquired drug
resistance. So far, radiotherapy and surgery are the possible
treatment methods for the removal of cancer cells. More
systemic treatments are required to treat metastatic tumors
or hematologic malignancies. Current forms of imple-
menting systemic treatment are target-specific chemother-
apy, immunotherapy, and antiangiogenic agents [53]. In
most cases, drug resistance develops due to acquired and/or
intrinsic genetic modulations. Intrinsic resistance may be
induced by (a) modification of function and/or expression of
the drug target, (b) drug breakdown, (c) changes in the drug
carrying mechanism between the cellular membrane, (d)
changes in the drug binding efficiency/efficacy with its
binding target [54, 55]. Nuclear receptors and ATP-de-
pendent membrane transporters are the primary factors that

mediate the intrinsic cellular resistance [56]. Furthermore,
cellular metabolic pathway systems, such as ceramide gly-
cosylation, decrease the efficacy of anticancer drugs [57]. In
addition, improved DNA damage repair mechanism in-
creases drug resistance by reducing influx, increasing efflux,
inhibiting drug accumulation through cell membrane
transporters, and inactivating drugs [58, 59]. In reports of
recent studies, the primary anticancer drugs had started to
show signs of resistance against the known targets such as
TP53 [60]. Moreover, acquired drug resistance induced by
environmental and genetic factors that enhance the devel-
opment of drug resistant tumor cell or induce mutations of
genes involved in relevant metabolic pathways [61, 62].

6. Computational Methods for
Variant Classification

In recent days, the genetic mechanism behind human dis-
ease can be understood by next-generation sequencing
technology approaches such as whole exome sequencing
(WES) [63, 64]. ,rough WES sequencing technology, the
genetic variants in the human genome can be detected. So
far, several reports have documented that missense variants
are themajor cause of genetic diseases [65, 66]. However, not
all the missense variants are involved in human genetic
diseases as only deleterious variants are associated with
Mendelian diseases, cancers, and undiagnosed diseases [67].
Identifying all deleterious variants through experimental
validation is quite complicated work since it would require
large amounts of labor and resources. Hence, computational
methods have been developed to address this problem ef-
fectively by adopting different approaches like sequence
evolutionary, sequence homology, and protein structural
similarity [68–87]. Commonly there are three methods of
prediction: (i) Sequence conservation methods, which
generally note the degree of nucleotide base conservation at
a particular position in comparison with the multiple se-
quence alignments information. (ii) Protein function-pre-
diction methods that calculate the chance of a missense
variant creating structural modification that affect protein
function. (iii) Ensemble methods that integrate both se-
quence and structural information to calculate the effect of
deleterious variants. In most cases for the missense variant
identification tool development, all these methods have been
adopted [88–90] and those tools are utilized in our studies
[91–94]. VarCards is a database developed with the in-
formation on classified human genetic variants [95, 96]. It
has integrated the functional consequences of allele fre-
quencies, different computational methods, and other
clinical and genetic information associated with all possible
coding variants [97]. However, it is still difficult to un-
derstand the variance in performance of the computational
methods, which differ under different conditions. Different
studies have compared the performance of the missense
variant prediction computational methods; however, they
have not made use of the experimentally evaluated and
considered benchmark datasets [98–103]. Particularly, these
studies focus on assessing the receiver operating charac-
teristic (ROC) curves. However, other parameters such as
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accuracy, specificity, sensitivity, and area under the curve
(AUC) were not completely evaluated. ,ere might be cases
whereby geneticists and clinicians use computational tools
to predict the harmful variants among the missense variants
during the genetic counseling for known disease causing
genes [104]. Hence, it is expected that these tools have to
distinguish the pathogenic variants with a high-sensitivity
rate [87]. In addition, VEST3 [78], REVEL [85], and M-CAP
[87] are some recently developed algorithms that were not
completely assessed in the previous studies. However, a
recent study compared 23 computational pathogenicity
prediction tools such as (i) ten function-prediction methods:
fitCons [81], FATHMM [88], LRT [70], Mutation Taster
[75], Mutation Assessor [76], PolyPhen2-HVAR [73], Pol-
yPhen2-HDIV [73], SIFT [72], PROVEAN [77], and VEST3
[78]; (ii) four conservation methods: PhastCons [68], phyloP
[69], GERP++ [74], and SiPhy [71]; and (iii) nine ensemble
methods: DANN [83], CADD [79], Eigen [86], GenoCanyon
[82], FATHMMMKL [84], MetaLR [80], M-CAP [87],
REVEL [85], and MetaSVM [80]. ,e pathogenicity pre-
diction scores of the 23 methods can be downloaded from
the dbNSFP database v3.3 [105].,ese predicted scores have
been commonly used in medical genetics to identify the
deleterious variant from the benign. Furthermore, pre-
diction scores and other clinical information and genetic
information were used alongside the VarCards [97] data-
base. ,e cutoff values used to identify the deleterious
missense variants were observed from ANNOVAR [106],
dbNSFP database [105], and the original studies.

7. Artificial Intelligence in Precision
Drug Discovery

,e National Institute of Health (NIH) highlighted that
precision medicine is an emerging strategy for disease
prevention and treatment, which considers the individual
variation in the gene, lifestyle, and environment [107]. ,is
strategy helps researchers and doctors to prevent and treat
the disease more accurately based on the genetic profile of
the individuals. Tomake the strategymore comprehensive, it
requires powerful supercomputer facilities and creative al-
gorithms that can independently learn in an unprecedented
way from the trained set of data. Artificial intelligence uses
the cognitive ability of physicians and biomedical data for
further learning to produce results. Artificial intelligence is
broadly classified into three categories: artificial general
intelligence, artificial narrow intelligence (ANI) and artificial
super intelligence [108]. ANI is still in a stage of develop-
ment and is expected to hit the market in by the next decade.
ANI also has the caliber to deeply analyze the data set, find
new correlation, draw conclusion, and support physicians.
Well-established pharmaceutical companies have started to
use the deep learning, super computers, and ANI in pre-
cision drug discovery process. Physicians may use the deep
learning algorithms in many areas of disease diagnosis and
treatment like oncology [109], dermatology [110], cardiology
[111], and even in neurodegenerative disorders. However,
developing such algorithms is crucial and critical in terms of
exploring the knowledge of a physician in synchronizing

with the algorithm development. Deep learning aims to
identify unique genetic patterns in large genomic data sets
and medical records and consequently identify genetic
variations/mutations and their association with various
diseases. A system of biological approach combined with
artificial intelligence can form new algorithms that are able
to monitor the changes inside the cell upon genetic mod-
ulation in the DNA [112]. Drug development is a highly
complicated process that requires a huge amount of time and
finances. However, in clinical trials, most of the drugs are
rejected due to toxicity and lack of efficacy. Making the
process faster and more cost-effective will have a tremen-
dous impact on modern-day health care and how in-
novations made in drug discovery. Atomwise is the
biopharma that uses an artificial intelligence-integrated
supercomputing facility to analyze the database’s in-
formation on small molecular structures. With the AI fa-
cility, Atomwise has launched a program to identify
medicine to treat the Ebola virus. ,rough the AI tech-
nology, the company has found two better drugs, which are
more promising in killing Ebola virus. Without such AI
technology, such a drug discovery would take several years,
however, with the AI system will doing it in less than one day
[113]. Although the use of AI might seem promising in the
discovery of drugs, these pharmaceutical companies will
need to prove the safety and potential of their method with
peer-reviewed research. In continuation of this short
summary, the role of artificial intelligence methodologies in
genetic variant/mutation identification from genetic data,
virtual screening of small molecules, and molecular dy-
namics simulation programs has been elaborated under the
appropriate subheading.

7.1. Artificial Intelligence Methods Applied to Identify Vari-
ants/Mutations from Genetic Data. ,e aim of predictive
models built based on machine learning approaches to draw
conclusions from a sample of past observations and to
transfer these conclusions to the entire population. Pre-
dicted patterns can be in different formats, such as non-
linear, linear, graph, cluster, and tree functions [114–116].
,e machine-learning working mechanism is generally
classified under four steps: filtering, data preprocessing,
feature extraction, and model fitting and model evaluation.
Supervised or unsupervised learning approaches are the two
methods used in machine learning models. In supervised
method to train the model, a known set of genetic in-
formation is required (for example, the start and end of the
gene, promotors, enhancers, active sites, functional regions,
splicing sites, and regulatory regions) in order to set the
predictive models. ,is model is then used to find new genes
that are similar to the genes of the training dataset. Su-
pervised methods can only be used if a known training
dataset of genetic codes available. Unsupervised methods are
used if we are interested in finding the best set of unlabelled
sequences that explain the data [117]. Machine learning
methodologies have a wide range of application areas, and
one of the most important applications is the identification
of genetic variants and mutations [114, 118]. ,e machine
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learning approach called convolutional neural networks
(CNNs) applied to the identification of genetic variants and
mutations. ,e recently developed software’s Torracina and
Campagne analyzed genomic data to identify genetic vari-
ants/mutations and indel’s using CNN method. Compared
to previous methods [119], CNNs can substantially improve
the performance in variant identifications [120]. Recurring
variants in the genome content can be efficiently identified
by means of this method [120, 121]. In the CNNmethod, the
genetic sequence is analyzed as a 1D window using four
channels (A,C,G,T) [122]. Genomic data used in machine
learning models are classified under three categories 60% as
training data, 30% as model testing data, and 10% as model
validation data. Deep Variant is the recent method de-
veloped by Popolin et al. [123] for SNPs and indel detection
with prediction precision >99% (at 90% recall). Deep se-
quence is the software used to identify the mutations [124],
which also uses latent variables (a model using a decoder and
an encoder network to predict the input sequence).

7.2. Applications of Artificial Intelligence in the Identification
of Drugs. ,e virtual screening pipeline has been developed
to reduce the cost of high throughput screening and further
to increase efficiency and predictability in optimizing the
potential small molecule [125, 126]. ,e strong general-
ization and learning process and machine-learning methods
implementing aspects of AI models have been successfully
implemented in different stages of the virtual screening
pipeline. Virtual screening can be classified into two types:
ligand- and structure-based virtual screening and with the
former corresponding to situations wherein structural in-
formation from ligand-receptor binding is utilized and the
latter to situations with its absence. Knowing the depth of the
application of AI methods in virtual screening, we discussed
the new findings in structure-based virtual screening driven
by such approaches.

Advanced structure-based virtual screening methods
have been developed with the help of potential AI algorithms
based on nonparametric scoring functions. ,e correlation
between the contributions to protein-ligand binding free
energy and the feature vectors is implicitly observed through
a data-driven manner from existing experimental data,
which should enable the extraction of meaningful nonlinear
relationships to obtain generalizing scoring functions
[127–129]. ,e RF-based RF-score [128], SVM-based ID-
score [130], and ANN-based NNScore are the AI-based non-
predetermined scoring functions that have been developed
to identify potential ligands with high accuracy rate. ,e
recent advanced AI-based non-predetermined scoring
methods outperform well in comparison with classical ap-
proaches in binding affinity predictions that have been
discussed in several reviews [131–133].

In order to improve the scoring function performance,
most of the AI techniques adopted the five major algorithms,
namely, SVM, Bayesian, RF, deep neural network, and feed-
forward ANN approaches. Ballester et al. reviewed the
importance of machine learning regression algorithms in the
enhancement of AI-based non-predetermined scoring

functions to provide better binding affinity prediction be-
tween protein-ligand complexes. Based on the study, Bal-
lester et al. developed a RF-based software to predict the
protein-ligand docking score [134, 135]. Some other RF-
based scoring functions such as B2B score [136], SFC score
RF [137], and RF-IChem [138] have been developed to
calculate the docking scores. On comparing with the above-
listed tools, RF-score predictions are outstanding and thus it
has been included with the istar platform, which involved
large-scale protein-ligand docking [139]. SVM-based auto-
mated pipeline has been developed, capitalizing on the
known weakness and strength of both ligand- and structure-
based virtual screening.

For instance, from a pool of 18 million compounds to
predict the novel c-Met tyrosine kinase inhibitors, Xie et al.
[140] designed and used combined docking and SVM-based
method. PROFILER is the automated workflow designed by
Meslamani et al. [141] to identify the perfect targets having
the highest probability of binding with bioactive com-
pounds. PROFILER integrates with two structure-based
approaches (protein-ligand-based pharmacophore search-
ing and docking) and four ligand-based approaches (support
vector regression affinity prediction, SVM binary classifi-
cation, three-dimensional similarity search, and nearest
neighbor affinity interpolation). In structure-based virtual
screening, RF-score have been applied and performedwell in
identifying the targets. RF-Score-VS is the enhanced (DUD-
E) scoring function that was trained on the full directory of
useful decoy data sets (a set of 102 targets was docked with
15,426 active and 893,897 inactive ligands) [142].

,e integration of AI techniques with structure-based
virtual screening methods is the promising idea in the
prediction of likely potential ligands. ,e AI technology has
been adopted to improve the postprocessing process after
the structure-based virtual screening process by reconsi-
dering the scoring process calculated with docking algo-
rithms using machine-learning models, with or without a
consensus scoring. For example, AutoDock Vina can be
incorporated with RF-Score-VS-enhanced method to get
better performance in the virtual screening. ,e integration
of advanced machine learning algorithms and automated
ligand screening can help bring down the number of false
positive and false negative predictions. Future work in this
area is expected to consider physicochemical properties and
structural information of the target protein.

7.3.EnhancedMolecularDynamics SimulationswithArtificial
Intelligence. Computational chemistry is a potential tech-
nology to explore biochemical and structural behaviours of
interest in a wide range of environments. Molecular dynamics
simulations combined with multiscale molecular or quantum
mechanicsmethods tomeasure the atomic levelmovement of a
biomolecular system have been predominantly used to un-
derstand the behavior of molecules in recent studies [143–145].
However, it is too difficult to analyse the movement of large
groups of atom in a stretch, and it requires powerful com-
putational facilities. Integration of AI technology and com-
putational chemistry can complete the high volume of
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simulation in an efficient way [146–148]. An established ex-
ample is the construction of neural network potentials for high-
dimensional systems with the Behler–Parinello symmetry
function to asses thousands of atoms [149–151]. Many sci-
entifically intensified problems have been explored recently
such as solvation for Schrodinger equation [152], machine-
learned density functional development [153–156], classifica-
tion of chemical trajectory data, predictions of the molecular
properties prediction of the excited state electrons [157, 158],
many-body expansions [159], classification of chemical tra-
jectory data [160], high-throughput virtual screening to identify
novel materials [161–166], heterogeneous catalysts [167], and
band gap prediction [168, 169].

Many advancements have been made in this field, such as
introduction of reweighting correction to calculate the output
at an estimated level of theory with high precision (for example:
quantum chemistry methods) based on the output predicted at
an inexpensive baseline theory level (for example: semi-
empirical quantum chemistry), which has been examined for
the estimation of thermochemical properties of active mole-
cules [170] and more recently in the calculation of free energy
changes during chemical reactions [171]. Even though it is a
challenging task to combine AI algorithms and computational
chemistry to explore the chemical datasets in order to identify
the potential drug candidates in high magnitude of time, the
molecular mechanics/quantum mechanics inspired artificial
intelligence developers will likely bewidely used to speed up the
process while keeping quantum mechanical precision. ,is
technical combination truly supporting AI approaches become
a live technique in drug discovery.

8. Summary and Outlook

New targeted drugs for cancer treatment have to be de-
veloped to overcome cellular chemotherapy resistance and
in addition must have the potential to inhibit “hub” genes.
,e primary role of those identified drugs is to achieve the
highest therapeutic effect by eliminating tumor cells, with
less adverse effects. Understanding the underlying mecha-
nisms of the patient’s responses to cancer drugs and the
unravelling of their genetic code would lead to the identi-
fication of new precision therapies that may improve the
patient’s overall health and quality of life. Classical methods
employed in the discovery of drugs are time- and cost-
consuming. In response, computational biology has the
efficiency to identify the precision drugs quickly. Current
computational tools and software have an impact on the
different phases of the drug discovery process. A number of
studies have been performed by utilizing different compu-
tational approaches to identify the precision drugs that are
suitable to particular genetic variant/s [91–94]. ,e meth-
odology combined with the collection of genetic variants,
prediction of pathogenicity using various computational
tools, modeling the protein three-dimensional structure
with particular variant/s, molecular docking of standard
drug with variant/mutant structures, virtual screening to
identify the specific drug, and performing molecular dy-
namics simulation allow for a better understanding of the
efficacy of the drug (Figure 1). However, one limitation of

the adopted methodology was that all the steps have been
performed manually. It is necessary to bring radical change
in the current computational methodology in order to
identify precision drugs. We have shown in this review how
artificial intelligence and computational biology approaches
can be integrated to identify and discover cancer precision
medicines.

Artificial intelligence integrated with computational bi-
ology has the potential to change the way drugs are designed
and discovered.,is approach was initially implemented at the
Chapel Hill Eshelman School of Pharmacy at the University of
North Carolina. ,e system is known as Reinforcement
Learning for Structural Evolution, and it is well known by its
acronymReLeaSE. It is the computer software involving a set of
algorithms incorporated with two neural networks programs,
which can be considered to fulfill both roles of a student and a
teacher. ,e teacher knows the linguistic rules and the syntax,
which underlies the vocabulary of about 1.7 million known
biologically active small molecules. Having been trained by the
teacher, the student will understand the process over time and
eventually become adept at finding the potential molecules that
could be considered for developing new drugs. AI also posi-
tively influences precision medicine. ,e traditional drug
discovery process of analyzing small data sets focused on a
particular disease is offset by AI technology, which can ra-
tionally discover and optimize effective combinations of che-
motherapies based on big datasets. ,e AI systems are built
based on the experimental results and does not involve
mechanistic hypotheses or any predictive models. Further,
artificial intelligence technology can be applied in various ways
such as to identify biomarkers, develop better diagnoses, and
identify novel drugs. However, one important application of

Collection of genetic variants
information

Analyzing the pathogenicity of
variants using different
computational methods

Modeling the 3D structure of
deleterious variants

Molecular docking to understand
the drug resistance

Virtual screening to identify new
drugs

Molecular dynamics simulation to
understand the drug efficacy

Figure 1: Computational pipeline to analyze the variants and to
identify the precision drugs.
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artificial intelligence lies in finding target-based precision
drugs. As we can see, artificial intelligence has acquired a key
role in shaping the future of the health sector. An automated
integrated system, involving the analysis of genetic variants by
deep/machine learning methods, molecular modeling, high
throughput structure-based virtual screening, molecular
docking, and molecular dynamics simulation methods, will
enable rapid and accurate identification of precision drugs
(Figure 2). Developing an AI-based system will indeed be
beneficial in the drug discovery process and in the discovery of
cancer precision medicine.
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[166] R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel
et al., “Design of efficient molecular organic light-emitting
diodes by a high-throughput virtual screening and experi-
mental approach,” Nature Materials, vol. 15, no. 10,
pp. 1120–1127, 2016.

[167] X. Ma, Z. Li, L. E. K. Achenie, and H. Xin, “Machine-
learning-augmented chemisorption model for CO2 elec-
troreduction catalyst screening,” ?e Journal of Physical
Chemistry Letters, vol. 6, no. 18, pp. 3528–3533, 2015.

[168] G. Pilania, J. E. Gubernatis, and T. Lookman, “Multi-fidelity
machine learning models for accurate bandgap predictions
of solids,” Computational Materials Science, vol. 129,
pp. 156–163, 2017.

[169] G. Pilania, A. Mannodi-Kanakkithodi, B. Uberuaga,
R. Ramprasad, J. Gubernatis, and T. Lookman, “Machine
learning bandgaps of double perovskites,” Science Reports,
vol. 6, no. 1, Article ID 19375, 2016.

[170] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von
Lilienfeld, “Big data meets quantum chemistry approxima-
tions: the Δ-machine learning approach,” Journal of
Chemical ?eory and Computation, vol. 11, no. 5,
pp. 2087–2096, 2015.

[171] L. Shen, J. Wu, and W. Yang, “Multiscale quantum me-
chanics/molecular mechanics simulations with neural net-
works,” Journal of Chemical ?eory and Computation,
vol. 12, no. 10, pp. 4934–4946, 2016.

BioMed Research International 15



Hindawi

www.hindawi.com

 International Journal of

Volume 2018

Zoology

Hindawi
www.hindawi.com Volume 2018

 Anatomy 
Research International

Peptides
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Journal of 
Parasitology Research

Genomics
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Neuroscience 
Journal

Hindawi
www.hindawi.com Volume 2018

BioMed 
Research International

Cell Biology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Biochemistry 
Research International

Archaea
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Genetics 
Research International

Hindawi
www.hindawi.com Volume 2018

Advances in

Virolog y Stem Cells 
International

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Enzyme 
Research

Hindawi
www.hindawi.com Volume 2018

International Journal of

Microbiology

Nucleic Acids
Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijz/
https://www.hindawi.com/journals/ari/
https://www.hindawi.com/journals/ijpep/
https://www.hindawi.com/journals/jpr/
https://www.hindawi.com/journals/ijg/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/abi/
https://www.hindawi.com/journals/jmb/
https://www.hindawi.com/journals/neuroscience/
https://www.hindawi.com/journals/bmri/
https://www.hindawi.com/journals/ijcb/
https://www.hindawi.com/journals/bri/
https://www.hindawi.com/journals/archaea/
https://www.hindawi.com/journals/gri/
https://www.hindawi.com/journals/av/
https://www.hindawi.com/journals/sci/
https://www.hindawi.com/journals/er/
https://www.hindawi.com/journals/ijmicro/
https://www.hindawi.com/journals/jna/
https://www.hindawi.com/
https://www.hindawi.com/

