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Application of Constacyclic Codes to Quantum
MDS Codes

Bocong Chen, San Ling and Guanghui Zhang

Abstract—Quantum maximum-distance-separable (MDS)
codes form an important class of quantum codes. To get q-ary
quantum MDS codes, one of the effective ways is to find linear
MDS codes C over Fq2 satisfying C⊥H ⊆ C, where C⊥H

denotes the Hermitian dual code of C. For a linear code C of
length n over Fq2 , we say that C is a dual-containing code
if C⊥H ⊆ C and C ̸= Fn

q2 . Several classes of new quantum
MDS codes with relatively large minimum distance have been
produced through dual-containing constacyclic MDS codes (see
[15], [17], [24], [25]). These works motivate us to make a careful
study on the existence conditions for dual-containing constacyclic
codes. We obtain necessary and sufficient conditions for the
existence of dual-containing constacyclic codes. Four classes of
dual-containing constacyclic MDS codes are constructed and
their parameters are computed. Consequently, quantum MDS
codes are derived from these parameters. The quantum MDS
codes exhibited here have minimum distance bigger than the
ones available in the literature.

Index Terms—quantum MDS code, cyclotomic coset, consta-
cyclic code.

I. INTRODUCTION

QUANTUM codes are useful in quantum computing and
in quantum communications. Just as in the classical case,

any q-ary quantum code has three parameters, the code length,
the size of the code and the minimum distance. One of the
principal problems in quantum error correction is to construct
quantum codes with the best possible minimum distance.
The CSS construction and its variants are frequently-used
construction methods (see, [1]- [4], [6], [14]- [19], [21], [23],
[28]- [35]). In practice, there have been a few experimental
realizations of quantum codes up to some small lengths (see
[12] and [32]).

Calderbank et al. in [7] discovered that we can construct
quantum codes from classical self-orthogonal codes over F2

or F4 with respect to certain inner product. Thereafter, a lot
of good quantum codes have been obtained by using classical
error-correcting codes (see [8], [10], [11], [21], [24]).

We use [[n, k, d]]q to denote a q-ary quantum code of length
n with size qk and minimum distance d, where q is a prime
power. It is well known that the parameters of an [[n, k, d]]q
quantum code must satisfy the quantum Singleton bound: 2d ≤
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n − k + 2 (see [26] and [27]). A quantum code achieving
this quantum Singleton bound is called a quantum maximum-
distance-separable (MDS) code. Quantum information can be
protected by encoding it into a quantum error-correcting code.
Constructing good quantum error-correcting codes is thus of
significance in theory and practice. However, it is not an easy
task to construct quantum MDS codes with length n > q+1.
Moreover, constructing quantum MDS codes with relatively
large minimum distance turns out to be difficult. As mentioned
in [22], except for some sparse lengths n such as n = q2 +

1, q2+1
2 and q2, almost all known q-ary quantum MDS codes

have minimum distance less than or equal to q
2 + 1.

In recent years, several quantum MDS codes have been
obtained based on the Hermitian construction (see Section
2). The Hermitian construction and the quantum Singleton
bound imply that we can obtain q-ary quantum MDS codes
from linear MDS codes C over Fq2 satisfying C⊥H ⊆ C,
where C⊥H denotes the Hermitian dual code of C. From this
idea, Grassl et al. [15] obtained q-ary quantum MDS codes
of length q2 − 1 from cyclic codes over Fq2 . La Guardia in
[17] constructed a class of quantum MDS codes through MDS
cyclic codes. Kai and Zhu in [24] obtained two classes of
quantum MDS codes by using negacyclic codes. Following
that line of research, Kai et al. in [25] produced several
quantum MDS codes based on constacyclic codes. As pointed
out in [25], constacyclic codes are a good source for producing
quantum MDS codes.

These works motivate us to make a careful study on the
condition C⊥H ⊆ C when C is a constacyclic code. For
a linear code C of length n over Fq2 , we say that C is a
dual-containing code if C⊥H ⊆ C and C ̸= Fn

q2 . We show
that dual-containing λ-constacyclic codes over Fq2 exist only
when the order of λ ∈ F∗

q2 is a divisor of q+1. Furthermore,
we obtain elementary number-theoretic conditions for the
existence of dual-containing constacyclic codes. This would
help us to avoid unnecessary attempts in constructing dual-
containing constacyclic codes. In particular, assuming that q
is an odd prime power and λ ∈ F∗

q2 has order r, we show
that if r is a divisor of q + 1 and 2(q + 1) divides rn,
then dual-containing λ-constacyclic codes of length n over
Fq2 always exist. In the light of this result, four classes of
dual-containing MDS constacyclic codes are constructed and
their parameters are computed. Consequently, quantum MDS
codes are derived from these parameters. More precisely, we
construct four classes of q-ary quantum MDS codes with the
following parameters:
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(i) [[q2 − 1

h
,
q2 − 1

h
− 2d+ 2, d

]]
q

where q is an odd prime power, h ∈ {3, 5, 7} is a divisor
of q + 1 and 2 ≤ d ≤ (q+1)(h+1)

2h − 1;
(ii) [[

2t(q − 1), 2t(q − 1)− 2d+ 2, d
]]

q

where q is an odd prime power with 8 | (q + 1), t is an
odd divisor of q + 1 and 2 ≤ d ≤ 6t− 1;

(iii) [[
3(q − 1), 3(q − 1)− 2d+ 2, d

]]
q

where q is an odd prime power with 32 | (q + 1) and
2 ≤ d ≤ q+5

2 ;
(iv) [[

2fs(q + 1), 2fs(q + 1)− 2d+ 2, d
]]

q

where q is an odd prime power with 2e∥(q − 1) and
s | (q − 1) (s odd), 0 ≤ f < e and 2 ≤ d ≤ q+1

2 + 2fs.

We mention that construction (iv) extends some results of [25].
Specifically, construction (iv) is a generalization of [25, Theo-
rem 3.7] and [25, Theorem 3.10], which considered the cases
f = 0 and f = 1, respectively. Moreover, taking 2fs = q−1

2 in
construction (vi), we can reobtain [25, Theorem 3.2] directly.
Comparing the parameters with all known quantum MDS
codes, we find that these quantum MDS codes are new in
the sense that their parameters are not covered by the codes
available in the literature. Fixing the length and q, many of
the new codes have minimum distance greater than the ones
available in the literature.

This paper is organized as follows. In Section 2, basic
notations and results about quantum codes and constacyclic
codes are provided. In Section 3, necessary and sufficient
conditions for the existence of dual-containing constacyclic
codes are obtained. In Section 4, four classes of quantum
MDS codes are constructed through constacyclic codes. The
quantum MDS codes obtained are collected in Section 5, and
the parameters of the new quantum MDS codes are compared
with previously known quantum MDS codes.

II. PRELIMINARIES

In this section, we review some basic notations and results
about quantum codes and constacyclic codes. Throughout this
paper, q denotes an odd prime power and Fq2 denotes the finite
field with q2 elements. We always assume that n is a positive
integer relatively prime to q, i.e., gcd(n, q) = 1. As usual, for
integers a and b, a | b means that a divides b, 2a∥b means
that 2a | b but 2a+1 ̸| b. For any positive integer t, there is a
unique nonnegative integer ν2(t) such that 2ν2(t)∥t.

Let Fn
q2 be the Fq2-vector space of n-tuples. A linear code

of length n over Fq2 is an Fq2-subspace of Fn
q2 . A linear code

of length n over Fq2 is called an [n, k, d] code if its dimension
is k and minimum Hamming distance is d.

Given two n-tuples x = (x0, x1, · · · , xn−1) ∈ Fn
q2 and

y = (y0, y1, · · · , yn−1) ∈ Fn
q2 , the Hermitian inner product

is defined as

(x,y)H = x0y0 + x1y1 + · · ·+ xn−1yn−1

where y = yq for any y ∈ Fq2 . For a linear code C of length
n over Fq2 , the Hermitian dual code of C is defined as

C⊥H =
{
x ∈ Fn

q2

∣∣∣ n−1∑
i=0

xiyi = 0, for all y ∈ C
}
.

If C⊥H ⊆ C and C ̸= Fn
q2 , we say that C is a (Hermitian)

dual-containing code.
The automorphism of Fq2 given by “−”, −(x) = x = xq for

any x ∈ Fq2 , can be extended to an automorphism of Fq2 [X]
in an obvious way:

Fq2 [X] −→ Fq2 [X],
n∑

i=0

aiX
i 7→

n∑
i=0

aiX
i,

for any a0, a1, · · · , an in Fq2 , which is also denoted by “−”
for simplicity.

For a monic polynomial f(X) ∈ Fq2 [X] of degree k with
f(0) ̸= 0, its reciprocal polynomial f(0)−1Xkf(X−1) will
be denoted by f(X)∗. Note that f(X)∗ is also a monic
polynomial.

A. Quantum codes

A q-ary quantum code Q of length n and size K is a
K-dimensional subspace of the qn-dimensional Hilbert space
(Cq)⊗n. Let k = logq(K). We use [[n, k, d]]q to denote a
q-ary quantum code of length n with size qk and minimum
distance d. An important parameter of a quantum code is its
minimum distance. If a quantum code has minimum distance
d, then it can detect any d− 1 and correct any

⌊
d−1
2

⌋
errors.

One of the principal problems in quantum coding theory is
to construct quantum codes with the best possible minimum
distance.

As mentioned previously, the parameters of an [[n, k, d]]q
quantum code must satisfy the quantum Singleton bound (see
[26] and [27]).

Proposition II.1. (Quantum Singleton bound) Let Q be a
q-ary [[n, k, d]]q quantum code. Then 2d ≤ n− k + 2.

A quantum code achieving this quantum Singleton bound is
called a quantum maximum-distance-separable (MDS) code.
Ketkar et al. in [26] pointed out that, for any odd prime
power q, if the classical MDS conjecture holds, then the
length of nontrivial quantum MDS codes cannot exceed q2+1.
Constructing quantum MDS codes has become a hot research
topic for quantum codes in recent years. The following is one
of the most frequently-used construction methods (see [2]).

Proposition II.2. If C is a q2-ary [n, k, d] linear code such
that C⊥H ⊆ C, then there exists a q-ary quantum code with
parameters [[n, 2k − n,≥ d]]q.

As Proposition II.2 involves the Hermitian inner product,
we refer to it as the Hermitian construction. The Hermitian
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construction suggests that we can obtain q-ary quantum codes
from classical dual-containing linear codes over Fq2 . Consta-
cyclic codes form an important class of linear codes due to
their good algebraic structures (e.g., see [9]). In this paper, we
use the Hermitian construction to obtain quantum MDS codes
through constacyclic codes.

B. Constacyclic codes
Let F∗

q2 denote the multiplicative group of nonzero elements
of Fq2 . For β ∈ F∗

q2 , we denote by ord(β) the order of β in
the group F∗

q2 ; then ord(β) is a divisor of q2 − 1, and β is
called a primitive ord(β)th root of unity.

For λ ∈ F∗
q2 , a linear code C of length n over Fq2 is said

to be λ-constacyclic if (λcn−1, c0, · · · , cn−2) ∈ C for every
(c0, c1, · · · , cn−1) ∈ C. When λ =1, λ-constacyclic codes are
cyclic codes, and when λ = −1, λ-constacyclic codes are just
negacyclic codes. Each codeword c = (c0, c1, · · · , cn−1) ∈
C is customarily identified with its polynomial representation
c(X) = c0 + c1X + · · · + cn−1X

n−1. In this way, every λ-
constacyclic code C is identified with exactly one ideal of the
quotient algebra Fq2 [X]/⟨Xn − λ⟩. We then know that C is
generated uniquely by a monic divisor g(X) of Xn−λ; in this
case, g(X) is called the generator polynomial of C and we
write C = ⟨g(X)⟩. In particular, the irreducible factorization
of Xn − λ in Fq2 [X] determines all the λ-constacyclic codes
of length n over Fq2 .

Let λ ∈ F∗
q2 be a primitive rth root of unity. Then there

exists a primitive rnth root of unity (in some extension field
of Fq2), say η, such that ηn = λ. The roots of Xn − λ
are precisely the elements η1+ri for 0 ≤ i ≤ n − 1. Set
θr,n = {1 + ri | 0 ≤ i ≤ n − 1}. The defining set of
a constacyclic code C = ⟨g(X)⟩ of length n is the set
Z = {j ∈ θr,n | ηj is a root of g(X)}. It is easy to see that
the defining set Z is a union of some q2-cyclotomic cosets
modulo rn and dimFq2

(C) = n− |Z| (see [37]).
The following result gives the generator polynomial of

C⊥H , where C is a constacyclic code (e.g., see [37, Lemma
2.1(ii)]).

Lemma II.3. Let C = ⟨g(X)⟩ be a λ-constacyclic code of
length n over Fq2 , where g(X) is the generator polynomial of
C. Let h(X) = Xn−λ

g(X) . Then the Hermitian dual code C⊥H is

a λ
−1

-constacyclic code with generator polynomial h(X)∗.

Remark II.4. Let f(X) be a monic polynomial in Fq2 [X]

with f(0) ̸= 0. It is readily seen that f(X)∗ =
(
f(X)

)∗
.

For simplicity we write f(X)σ = f(X)∗ = f(X)
∗
, namely σ

can be regarded as the composition “− ◦∗ ”. It is clear that
f(X)σ

2

= f(X).

The proof of the following result is straight-forward, so we
omit it here.

Lemma II.5. Let α, β be nonzero elements of Fq2 . Let C1 ̸=
{0}, C2 ̸= {0} be α- and β-constacyclic codes of length n
over Fq2 , respectively. If C1 ⊆ C2, C1 ̸= Fq2 [X]/⟨Xn − α⟩
and C2 ̸= Fq2 [X]/⟨Xn − β⟩, then α = β.

As an immediate application of Lemmas II.3 and II.5, we
have the following result.

Corollary II.6. Let λ ∈ F∗
q2 be a primitive rth root of unity

and let C be a dual-containing λ-constacyclic code of length
n over Fq2 . We then have λ = λ

−1
, i.e., r | (q + 1).

The next result presents a criterion to determine whether
or not a given λ-constacyclic code of length n over Fq2 is
dual-containing (e.g., see [25, Lemma 2.2]).

Lemma II.7. Let r be a positive divisor of q + 1 and let
λ ∈ F∗

q2 be of order r. Assume that C is a λ-constacyclic
code of length n over Fq2 with defining set Z. Then C is
a dual-containing code if and only if Z

∩
Z−q = ∅, where

Z−q = {−qz (mod rn) | z ∈ Z}.

The following results are well known (see [5, Theorem 2.2]
or [37, Theorem 4.1]).

Theorem II.8. (BCH bound for constacyclic codes) Let C
be a λ-constacyclic code of length n over Fq2 , where λ is a
primitive rth root of unity. Let η be a primitive rnth root of
unity in an extension field of Fq2 such that ηn = λ. Assume
the generator polynomial of C has roots that include the set
{η1+ri | i1 ≤ i ≤ i1 + d− 2}. Then the minimum distance of
C is at least d.

Proposition II.9. (Singleton bound) Let C be a code of
length n and minimum distance d over an alphabet of size a.
Then |C| ≤ an−d+1. In particular, if C is an [n, k, d] linear
code over Fq2 , then k ≤ n− d+ 1.

Some remarks are in order at this point. Theorem II.8
provides a useful method to construct constacyclic MDS
codes: If the generator polynomial g(X) has roots precisely
equal to the set {η1+ri | i1 ≤ i ≤ i1 + d − 1}, then the
minimum distance of C is exactly equal to d. In particular, C is
a constacyclic MDS code with parameters [n, n−d+1, d]. We
will construct dual-containing constacyclic MDS codes based
on these facts and Lemma II.7.

III. EXISTENCE CONDITIONS FOR DUAL-CONTAINING
CONSTACYCLIC CODES

Assume that λ ∈ Fq2 is a primitive rth root of unity. Clearly,
r is a divisor of q2 − 1. In particular, gcd(r, q) = 1. To study
dual-containing λ-constacyclic codes, we may assume first that
λ = λ

−1
by Corollary II.6, i.e., r | (q + 1).

For any monic irreducible factor f(X) ∈ Fq2 [X] of Xn−λ,
f(X)σ is also a monic irreducible factor of Xn−λ satisfying
f(X)σ

2

= f(X) (see Remark II.4). This implies that Xn −λ
can be factorized into distinct monic irreducible polynomials
as follows

Xn − λ =f1(X)f2(X) · · · fu(X)

· h1(X)hσ
1 (X)h2(X)hσ

2 (X) · · ·hv(X)hσ
v (X),

where fi(X) (1 ≤ i ≤ u) are distinct monic irreducible factors
over Fq2 such that fi(X)σ = fi(X), while hj(X) and hj(X)σ

(1 ≤ j ≤ v) are distinct monic irreducible factors over Fq2 .
As such, we have the following definition:

Definition III.1. Let f(X) be a monic polynomial in Fq2 [X]
with f(0) ̸= 0. We say that f(X) is conjugate-self-reciprocal
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if f(X)σ = f(X). Otherwise, we say that f(X) and f(X)σ

form a conjugate-reciprocal polynomial pair.

It should be pointed out that u may be equal to 0, namely
no irreducible factor of Xn − λ over Fq2 is conjugate-self-
reciprocal. Likewise, it is possible that v = 0, namely every
irreducible factor of Xn − λ over Fq2 is conjugate-self-
reciprocal.

Let C = ⟨g(X)⟩ be a λ-constacyclic code of length n over
Fq2 , where g(X) is a monic divisor of Xn − λ. We may
assume, therefore, that

g(X) =f1(X)a1 · · · fu(X)au

· h1(X)b1(hσ
1 (X))c1 · · ·hv(X)bv (hσ

v (X))cv

where 0 ≤ ai ≤ 1 for each i, and 0 ≤ bj , cj ≤ 1 for each j.
Then the generator polynomial of C⊥H is

h(X)σ =h(X)∗

=f1(X)1−a1 · · · fu(X)1−au · h1(X)1−c1(hσ
1 (X))1−b1

· · · · · hv(X)1−cv (hσ
v (X))1−bv .

By Lemma II.3, C satisfies C⊥H ⊆ C if and only if g(X) |
h(X)σ , i.e., {

2ai ≤ 1, for each i,
bj + cj ≤ 1, for each j.

(III.1)

It follows that C = ⟨g(X)⟩ satisfies C⊥H ⊆ C if and only if

C =
⟨
h1(X)b1(hσ

1 (X))c1 · · ·hv(X)bv (hσ
v (X))cv

⟩
where 0 ≤ bj , cj ≤ 1 and bj + cj ≤ 1 for each j. This
discussion leads to the following result.

Theorem III.2. Let λ ∈ F∗
q2 satisfy λ = λ

−1
. Dual-containing

λ-constacyclic codes of length n over Fq2 exist if and only
if v > 0, i.e., there exists at least one conjugate-reciprocal
polynomial pair among the monic irreducible factors of Xn−λ
over Fq2 .

In the rest of this section, we aim to obtain more simplified
criteria for the existence of dual-containing λ-constacyclic
codes of length n over Fq2 .

It is well known that the irreducible factors of Xrn−1 over
Fq2 can be described via the q2-cyclotomic cosets modulo rn
(see [20, Theorem 4.1.1]): Assume that Ω = {i0 = 0, i1 =
1, i2, · · · , iρ} is a set of representatives of the q2-cyclotomic
cosets modulo rn. Let Cij be the q2-cyclotomic coset modulo
rn containing ij for 0 ≤ j ≤ ρ. We then know that

Xrn − 1 = Mi0(X)Mi1(X) · · ·Miρ(X) (III.2)

with

Mij (X) =
∏

s∈Cij

(X − ηs), j = 0, · · · , ρ,

all being monic irreducible in Fq2 [X], where η is a primitive
rnth root of unity over some extension field of Fq2 such that
ηn = λ. Since Xn − λ is a divisor of Xrn − 1 in Fq2 [X], we
can find a subset ∆ of Ω such that

Xn − λ =
∏
e∈∆

Me(X). (III.3)

Set Or,n = {Cj | j ∈ ∆}. We also see that Ci1 = C1 ∈ Or,n.
We can now translate Theorem III.2 into the language of q2-
cyclotomic cosets modulo rn.

Lemma III.3. Let λ ∈ F∗
q2 be of order r satisfying λ = λ

−1
.

There exists a dual-containing λ-constacyclic code of length
n over Fq2 if and only if there exists Ce0 ∈ Or,n such that
Ce0 ̸= C−qe0 , where Ce0 and C−qe0 denote the q2-cyclotomic
cosets modulo rn containing e0 and −qe0, respectively.

Proof: Let Mj(X) =
∏

i∈Cj
(X − ηi) be the minimal

polynomial of ηj over Fq2 . Note that Mj(X)∗ = M−j(X).
Combining Theorem III.2 with (III.3), it suffices to prove that
Mj(X) = Mqj(X). For this purpose, we only need to show
that ηqj is a root of Mj(X). Assume that Mj(X) = a0 +
a1X + · · ·+ atX

t with a0, a1, · · · , at ∈ Fq2 . Thus Mj(X) =

a0 + a1X + · · ·+ atX
t. Obviously Mj(ηqj) = 0, since

Mj(ηqj) = a0 + a1η
qj + · · ·+ at(η

qj)t

=
(
a0 + a1η

j + · · ·+ atη
tj
)q

= Mj(η
j)q = 0.

Let λ ∈ F∗
q2 be of order r satisfying λ = λ

−1
. Write

rn = 2ν2(rn)pk1
1 pk2

2 · · · pks
s , where pj are distinct odd primes

and kj are positive integers for 1 ≤ j ≤ s. Let Z∗
m denote

the multiplicative group of all residue classes modulo m
which are coprime with m, and let ord

p
kj
j

(q) denote the

multiplicative order of q ∈ Z∗
p
kj
j

, 1 ≤ j ≤ s. We assert that

ν2
(
ord

pkj
j
(q)

)
= ν2

(
ordpj (q)

)
for 1 ≤ j ≤ s. Indeed, con-

sider the natural surjective homomorphism π : Z∗
p
kj
j

→ Z∗
pj

,

x (mod p
kj

j ) 7→ x (mod pj). We then know that ordpj (q)
is exactly equal to the order of qKerπ in the factor group
Z∗
p
kj
j

/Kerπ, which is also equal to the smallest positive

integer k such that qk ∈ Kerπ. Now the desired result follows
from the fact that Kerπ is a group of odd order.

The next two results give existence conditions for dual-
containing λ-constacyclic codes.

Theorem III.4. Let r, n be positive integers with gcd(n, q) =
1 and r | (q + 1). Suppose

rn = 2ν2(rn)pk1
1 pk2

2 · · · pks
s

where pj are distinct odd primes and kj are positive integers
for 1 ≤ j ≤ s. We assume further that ν2(rn) ≤ 1. Then dual-
containing λ-constacyclic codes of length n over Fq2 exist if
and only if one of the following statements holds:
(i) There exists an integer t, 1 ≤ t ≤ s, such that ordpt(q)

is odd.
(ii) ν2

(
ordp1(q)

)
= ν2

(
ordp2(q)

)
= · · · = ν2

(
ordps(q)

)
≥

2.
(iii) The integer s ≥ 2, ordpj (q) is even for all 1 ≤ j ≤ s,

and there exist distinct integers j1, j2 with 1 ≤ j1, j2 ≤ s
such that ν2

(
ordpj1

(q)
)
̸= ν2

(
ordpj2

(q)
)
.

Proof: Supposing that one of the above three conditions
holds true, we work by contradiction to show that dual-
containing λ-constacyclic codes of length n over Fq2 exist.
By Lemma III.3, we can suppose that Ce = C−qe for any
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Ce ∈ Or,n, where Ce denotes the q2-cyclotomic coset modulo
rn containing e. This leads to C1 = C−q since C1 ∈ Or,n,
which implies that an integer i′0 can be found such that
q1+2i′0 ≡ −1 (mod rn). Let i0 = 2i′0 +1, and thus qi0 ≡ −1
(mod rn). Clearly, i0 is odd.

Assume that (i) holds. There is no loss of generality to
assume that ordp1(q) is odd. It follows from qi0 ≡ −1
(mod p1) that q2i0 ≡ 1 (mod p1). Hence ordp1(q) | i0
as ordp1(q) is odd. This leads to qi0 ≡ 1 (mod p1), a
contradiction.

Assume that (ii) holds. In particular, ν2
(
ordp1(q)

)
≥ 2.

Recall that ν2
(
ord

p
k1
1
(q)

)
= ν2

(
ordp1(q)

)
. From qi0 ≡ −1

(mod pk1
1 ), we deduce that q2i0 ≡ 1 (mod pk1

1 ). Hence,
ord

p
k1
1
(q) divides 2i0, which implies that i0 is even. This is a

contradiction.
Now we assume that (iii) holds. Without loss of generality,

we may assume that ν2
(
ordp1(q)

)
> ν2

(
ordp2(q)

)
≥ 1. From

qi0 ≡ −1 (mod p
kj

j ) for all 1 ≤ j ≤ s, we have q2i0 ≡ 1

(mod p
kj

j ). Thus, ord
p
kj
j

(q) is a divisor of 2i0, so ord
p
kj
j

(q)/2

divides i0 for all 1 ≤ j ≤ s. In particular, ord
p
k1
1
(q)/2

is a divisor of i0. Combining this fact with the hypothesis
ν2
(
ordp1(q)

)
> ν2

(
ordp2(q)

)
≥ 1, it follows that i0 is even,

a contradiction again.
Conversely, assume that dual-containing λ-constacyclic

codes of length n over Fq2 exist. We assume further that
neither (i) nor (iii) holds. Then ν2

(
ordpj (q)

)
≥ 1 for all

1 ≤ j ≤ s. If s = 1, we need to show that ν2
(
ordp1(q)

)
> 1.

If s ≥ 2, we know that ν2
(
ordp1(q)

)
= ν2

(
ordp2(q)

)
=

· · · = ν2
(
ordps(q)

)
> 0. We are thus left to prove that

ν2
(
ordp1(q)

)
= ν2

(
ordp2(q)

)
= · · · = ν2

(
ordps(q)

)
= x >

1. Suppose otherwise that x = 1. For any 1 ≤ j ≤ s, let yj be
a positive integer such that ord

pkj
j
(q) = 2yj . Thus, q2yj ≡ 1

(mod p
kj

j ) for any j. From the fact that Z∗
p
kj
j

is a cyclic

group whose unique element of order 2 is [−1]
p
kj
j

, where

[−1]
p
kj
j

denotes the residue class modulo p
kj

j containing −1, it

follows that qyj ≡ −1 (mod p
kj

j ). Let y =
∏s

j=1 yj . We get
qy ≡ −1 (mod p

kj

j ) for all 1 ≤ j ≤ s. Therefore, qy ≡ −1

(mod pk1
1 pk2

2 · · · pks
s ). This leads to qy ≡ −1 (mod rn), as

ν2(r)+ν2(n) ≤ 1. We get the desired contradiction, since we
would obtain C1 = C−q.

Finally we consider the remaining case: ν2(rn) ≥ 2.

Theorem III.5. Let r, n be positive integers with gcd(n, q) =
1 and r | (q + 1). Suppose

rn = 2ν2(rn)pk1
1 pk2

2 · · · pks
s

where pj are distinct odd primes and kj are positive integers
for 1 ≤ j ≤ s. We assume further that ν2(rn) ≥ 2. Then dual-
containing λ-constacyclic codes of length n over Fq2 exist if
and only if one of the following statements holds:
(i) q ≡ 1 (mod 4).

(ii) q ≡ −1 (mod 4) and ν2(rn) > e, where e is the positive
integer such that 2e∥(q + 1).

(iii) There exists an integer j0, 1 ≤ j0 ≤ s, such that
ordpj0

(q) is odd.

(iv) ordpj (q) is even for all 1 ≤ j ≤ s and there exists some
integer j1, 1 ≤ j1 ≤ s, such that 4 divides ordpj1

(q).

Proof: By Lemma III.3, we know that dual-containing λ-
constacyclic codes of length n over Fq2 do not exist if and only
if C1 = C−q, where C1 and C−q denote the q2-cyclotomic
cosets modulo rn containing 1 and −q, respectively.

Suppose that one of the above four conditions holds true,
and we proceed by way of contradiction. It follows from C1 =
C−q that an odd integer i0 can be found such that qi0 ≡ −1
(mod rn).

Assume that (i) holds. We have qi0 ≡ −1
(mod 2ν2(r)+ν2(n)), since 2ν2(r)+ν2(n) divides rn. By
assumption ν2(r) + ν2(n) ≥ 2, so qi0 ≡ −1 (mod 4). This
contradicts q ≡ 1 (mod 4).

Assume that (ii) holds. Write q + 1 = 2ef , where f is
an odd positive integer. By assumption ν2(r) + ν2(n) > e,
then qi0 ≡ −1 (mod 2e+1). Let i0 = 2i′0 + 1. Since q ≡ −1
(mod 2e), it follows that q2 ≡ 1 (mod 2e+1), which gives
q2i

′
0 ≡ 1 (mod 2e+1). Thus q2i

′
0+1 ≡ q (mod 2e+1), namely

qi0 ≡ q (mod 2e+1). Combining with qi0 ≡ −1 (mod 2e+1),
we get q ≡ −1 (mod 2e+1). However, this contradicts the fact
that q + 1 = 2ef with f odd.

Assume that (iii) holds. There is no loss of generality to
assume that ordp1(q) is odd. From qi0 ≡ −1 (mod rn), we
see that qi0 ≡ −1 (mod p1) and so q2i0 ≡ 1 (mod p1). Since
ordp1(q) | 2i0, we have ordp1(q) | i0. Thus qi0 ≡ 1 (mod p1),
a contradiction.

Assume that (iv) holds. Recall that ν2
(
ord

p
k1
1
(q)

)
=

ν2
(
ordp1(q)

)
. Suppose 4 is a divisor of ordp1(q). Obviously

q2i0 ≡ 1 (mod pk1
1 ). It follows that ord

p
k1
1
(q) is a divisor of

2i0 and then i0 is even. This is a contradiction.
Now, suppose that dual-containing λ-constacyclic codes of

length n over Fq2 exist. Assume further that (i), (ii) and (iii)
do not hold. We need to show that (iv) holds. Since (iii)
does not hold, ordpj (q) is even for all j. Assume, by way
of contradiction, that ordpj

(q) is even but not divisible by 4
for all 1 ≤ j ≤ s, i.e., xj = 1 for all 1 ≤ j ≤ s. It follows
from q2yj ≡ 1 (mod p

kj

j ) that qyj ≡ −1 (mod p
kj

j ). Let
y =

∏s
j=1 yj . We get qy ≡ −1 (mod p

kj

j ) for all 1 ≤ j ≤ s.
Therefore, qy ≡ −1 (mod pk1

1 pk2
2 · · · pks

s ). The assumption
that neither (i) nor (ii) holds true implies that 2ν2(r)+ν2(n) |
(q + 1). It follows that qy ≡ −1 (mod 2ν2(r)+ν2(n)), since y
is an odd positive integer. Hence qy ≡ −1 (mod rn). This
gives the desired contradiction.

Example III.6. Let q = 11, then q2 = 112. Suppose
F∗
112 = ⟨θ⟩. Let λ = θ10, then r = 12. By Theorem III.5,

dual-containing λ-constacyclic codes of length 27 over F121

do not exist. This is because rn = 324 = 22 · 34, ν2(rn) ≥ 2
and q = 11 ≡ −1 (mod 4), but ν2(rn) = e = 2, and
ord3(11) = 2.

Example III.7. Let q = 32, then q2 = 34. Suppose F∗
34 = ⟨θ⟩.

Let λ = θ8, then r = 10.
(1) By Theorem III.4, dual-containing λ-constacyclic codes

of length 5 over F34 do not exist. This is because rn = 50 =
2 · 52, ν2(rn) ≤ 1 and ord5(9) = 2.
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(2) By Theorem III.5, dual-containing λ-constacyclic codes
of length 10 over F34 exist. In fact, since rn = 100 = 22 · 52,
then ν2(rn) ≥ 2 and q = 9 ≡ 1 (mod 4).

Applying Theorem III.5, we have the following result.

Corollary III.8. Let q be an odd prime power. Let r be a
positive integer dividing q + 1, and let n > 1 be a positive
integer satisfying 2(q+1) | rn and rn | (q2−1). Assume that
λ ∈ F∗

q2 is of order r. Then dual-containing λ-constacyclic
codes of length n over Fq2 exist.

Proof: It is clear that 4 divides rn. If q ≡ 1 (mod 4),
then we know from Theorem III.5(i) that the desired result
follows. Otherwise, q ≡ −1 (mod 4). In this case, Theo-
rem III.5(ii) is satisfied.

IV. NEW QUANTUM MDS CODES

In this section, four classes of dual-containing MDS con-
stacyclic codes are constructed and their parameters are com-
puted. Consequently, new quantum MDS codes are derived
from these parameters. In the light of Corollary III.8, we
construct dual-containing MDS λ-constacyclic codes of length
n over Fq2 satisfying 2(q + 1) | rn and rn | (q2 − 1), where
r is the order of λ. In order to obtain suitable defining sets
algebraically, we first try to compute many small examples.
We thus have a list of Hermitian dual-containing MDS con-
stacyclic codes. Comparing these parameters carefully, our
theorems are then generalized from these examples.

A. New quantum MDS codes of length q+1
h (q − 1) with h ∈

{3, 5, 7}
Let h ∈ {3, 5, 7} and let q be an odd prime power with

h | (q + 1). Suppose n = q2−1
h and r = h. Let λ ∈ Fq2 be

a primitive rth root of unity. Corollary III.8 guarantees that
dual-containing λ-constacyclic codes of length n = q2−1

h over
Fq2 exist. It is clear that rn = q2 − 1, and hence every q2-
cyclotomic coset modulo rn contains exactly one element. Let
C be a λ-constacyclic code of length n over Fq2 with defining
set

Z =
{
1 + hi

∣∣∣ (h− 1)(q + 1)

2h
≤ i ≤ q − 2

}
. (IV.1)

It is easy to see that |Z| = h+1
2 · q+1

h − 2. Thus, C is an
MDS λ-constacyclic code with parameters [n, n− (q+1)(h+1)

2h +

2, (q+1)(h+1)
2h − 1]. We show now that C is a dual-containing

code.

Lemma IV.1. Let h ∈ {3, 5, 7} and let q be an odd prime
power with h | (q+1). If C is a λ-constacyclic code of length
n = q2−1

h over Fq2 with defining set Z as in (IV.1), then C is
a dual-containing code.

Proof: Suppose otherwise that C is not a dual-containing
code. It follows from Lemma II.7 that Z

∩
Z−q ̸= ∅. Hence,

two integers i, j with (h−1)(q+1)
2h ≤ i, j ≤ q − 2 can be found

such that

−q(1 + hi) ≡ 1 + hj (mod q2 − 1). (IV.2)

If i = j, then −q(1 + hi) ≡ 1 + hi (mod q2 − 1). Thus
(q − 1) | (1 + hi). Since

h− 1

2
(q − 1) < 1 + h · (h− 1)(q + 1)

2h
≤ 1 + hi ≤ 1 + h(q − 2) < h(q − 1),

we can assume, therefore, that 1+hi = k(q−1), where k is an
integer with h+1

2 ≤ k ≤ h−1. Then hi = k(q+1)−(1+2k).
Hence, h | (1 + 2k). If h = 3, then k = 2. This implies
3 | 5, which is impossible. Similar arguments show that neither
h = 5 nor h = 7 is possible. We get a desired contradiction.

Without loss of generality, we may assume that i > j. By
Equation (IV.2), we have −q(1 + hi) ≡ 1 + hj (mod q − 1)
and that −q(1 + hi) ≡ 1 + hj (mod q + 1), i.e., (q − 1) |
(hi+ hj + 2) and (q + 1) | (hi− hj). Note that

(h− 1)(q − 1) < 2 + 2h · (h− 1)(q + 1)

2h
≤ hi+ hj + 2 ≤ 2h(q − 2) + 2 < 2h(q − 1).

Write hi+ hj +2 = ℓ2(q− 1), where h ≤ ℓ2 ≤ 2h− 1. Thus
hi+hj = ℓ2(q+1)−2(1+ℓ2). Therefore h | 2(1+ℓ2), which
implies that h | (1+ ℓ2). It follows from h+1 ≤ 1+ ℓ2 ≤ 2h
that 1 + ℓ2 = 2h, i.e., ℓ2 = 2h− 1. On the other hand,

0 < hi− hj ≤ h(q − 2− (h− 1)(q + 1)

2h
)

< h
(
(q + 1)− (h− 1)(q + 1)

2h

)
= (q + 1) · h+ 1

2
.

We then have hi− hj = ℓ1(q + 1), where 1 ≤ ℓ1 ≤ h−1
2 .

Now from hi − hj = ℓ1(q + 1) and hi + hj + 2 = (2h −
1)(q − 1), it follows that 2hi = (2h− 1 + ℓ1)(q + 1)− 4h. If
h = 3, then ℓ1 = 1 and thus i = q−1. This is a contradiction,
since i ≤ q− 2 by assumption. If h = 5, then 1 ≤ ℓ1 ≤ 2 and
i = (9+ℓ1)

q+1
10 −2 > q−2, which also yields a contradiction.

Similar argument shows that h = 7 is impossible as well. This
completes the proof.

Using the Hermitian construction and the quantum Single-
ton bound, we have the following quantum MDS codes.

Theorem IV.2. Let h ∈ {3, 5, 7} and let q be an odd prime
power with h | (q + 1). Then there exist quantum MDS codes
with parameters [[ q

2−1
h , q2−1

h − 2d + 2, d]]q, where 2 ≤ d ≤
(q+1)(h+1)

2h − 1.

Proof: Let n = q2−1
h and r = h. Let λ ∈ Fq2 be a

primitive rth root of unity. Recall that every q2-cyclotomic
coset modulo rn contains precisely one element. We assume
that Cδ is a λ-constacyclic code of length n over Fq2 with
defining set

Zδ =
{
1 + h

( (h− 1)(q + 1)

2h
+ i

) ∣∣∣ 0 ≤ i ≤ δ − 1
}

(IV.3)

where δ is a positive integer with 1 ≤ δ ≤ (q+1)(h+1)
2h − 2.

Clearly, Zδ is a subset of Z where Z is given in (IV.1). By
Lemma IV.1, we have Zδ

∩
Z−q

δ = ∅. It follows that Cδ is a
dual-containing code with parameters [n, n− d+1, d], where
d is a positive integer with d = δ + 1. Using the Hermitian
construction and the quantum Singleton bound, we can obtain
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q [[n, k, d]]q d
11 [[40, 40− 2d+ 2, d]]11 2 ≤ d ≤ 7
17 [[96, 96− 2d+ 2, d]]17 2 ≤ d ≤ 11
23 [[176, 176− 2d+ 2, d]]23 2 ≤ d ≤ 15
9 [[16, 16− 2d+ 2, d]]9 2 ≤ d ≤ 5
13 [[24, 24− 2d+ 2, d]]13 2 ≤ d ≤ 7
27 [[104, 104− 2d+ 2, d]]27 2 ≤ d ≤ 15

TABLE I
QUANTUM MDS CODES

a quantum MDS code with parameters [[ q
2−1
h , q2−1

h − 2d +
2, d]]q.

Example IV.3. In Table I, we list some quantum MDS codes
obtained from Theorem IV.2.

B. New quantum MDS codes of length 2t(q − 1)

Let q be an odd prime power with 8 | (q + 1). Let t be an
odd divisor of q + 1, n = 2t(q − 1) and r = q+1

2t . Clearly,
q ≥ 7 and r ≥ 4. We now obtain q-ary quantum MDS codes
of length n through λ-constacyclic codes of length n over Fq2 ,
where λ ∈ Fq2 is a primitive rth root of unity.

Let C be a λ-constacyclic code of length n over Fq2 with
defining set

Z =
{
1 + ri

∣∣∣ − (2t− 1) ≤ i ≤ 4t− 2
}
. (IV.4)

It follows from 2rt = q+1 and q ≥ 7 that 0 < 1+r(4t−2) <
q2−1

2 and − q2−1
2 < 1 − r(2t − 1) < 0. Then, |Z| = 6t − 2.

The next result shows that C is a dual-containing code.

Lemma IV.4. If C is a λ-constacyclic code of length n
over Fq2 with defining set Z as in (IV.4), then C is a dual-
containing code.

Proof: Since 8 | (q + 1) and t | (q + 1) with t being
odd, we can assume that q + 1 = 8kt, where k is an integer.
Suppose that C is not a dual-containing code. By Lemma
II.7, we have Z

∩
Z−q ̸= ∅. Hence, two integers i, j with

−(2t− 1) ≤ i, j ≤ 4t− 2 can be found such that

−q(1 + ri) ≡ 1 + rj (mod q2 − 1). (IV.5)

If i = j, then −q(1+ ri) ≡ 1+ ri (mod q2−1), which gives
(q − 1) | (1 + ri). Let 1 + ri = ℓ(q − 1), for some integer ℓ.
Note that r = q+1

2t = 4k. Thus 1+ ri = 1+4ki = ℓ(8kt−2),
i.e., 1 = 2(4ℓkt− ℓ− 2ki). This is a contradiction.

Without loss of generality, we may assume that i > j. By
Equation (IV.5), −q(1+ri) ≡ 1+rj (mod q−1) and −q(1+
ri) ≡ 1 + rj (mod q + 1), i.e., (q − 1) |

(
r(i + j) + 2

)
and

(q + 1) | r(i− j). Recall that r = q+1
2t ≥ 4. We have

−2(q − 1) < −2q + 2r = −2r(2t− 1) + 2

≤ r(i+ j) + 2 ≤ q + 1

2t
(8t− 4) + 2

= 4q − 4r + 6 < 4(q − 1)

and

0 < r(i− j) ≤ q + 1

2t
(4t− 2 + 2t− 1) =

q + 1

2t
(6t− 3)

< 3(q + 1).

q t [[n, k, d]]q d
7 1 [[12, 12− 2d+ 2, d]]7 2 ≤ d ≤ 5
23 3 [[132, 132− 2d+ 2, d]]23 2 ≤ d ≤ 17

TABLE II
QUANTUM MDS CODES

Write r(i + j) + 2 = ℓ1(q − 1) and r(i − j) = ℓ2(q + 1),
where −1 ≤ ℓ1 ≤ 3 and 1 ≤ ℓ2 ≤ 2. Thus, 2ri = ℓ1(q −
1)− 2 + ℓ2(q + 1) = (q + 1)(ℓ1 + ℓ2)− 2(1 + ℓ1). It follows
that r | (1 + ℓ1). By 4 | r, we have 4 | (1 + ℓ1). Since
ℓ1 ∈ {−1, 0, 1, 2, 3}, we obtain ℓ1 = −1 or 3.

If ℓ1 = −1, then 2rj = ℓ1(q− 1)− ℓ2(q+1)− 2 = −(1 +
ℓ2)(q + 1), which gives j = −(1 + ℓ2)t. Since ℓ2 ∈ {1, 2},
we have j = −2t or −3t, contradicting the assumption that
j ≥ −(2t− 1).

If ℓ1 = 3, then 2ri = (q + 1)(ℓ2 + 3) − 8. It follows that
2r | 8, which forces r = 4. We then have i = t(ℓ2 + 3) − 1.
Since ℓ2 ∈ {1, 2}, we get i = 4t− 1 or 5t− 1, contradicting
the assumption i ≤ 4t− 2.

Using the Hermitian construction, we have the following
quantum MDS codes.

Theorem IV.5. Let q be an odd prime power with 8 | (q+1).
Let t be an odd divisor of q+1. Then, there exists a quantum
MDS code with parameters [[2t(q−1), 2t(q−1)−2d+2, d]]q,
where d is a positive integer with 2 ≤ d ≤ 6t− 1.

Proof: Let n = 2t(q − 1) and r = q+1
2t . Let λ ∈ Fq2 be

a primitive rth root of unity. Noting that every q2-cyclotomic
coset modulo rn contains precisely one element, we assume
that Cδ is a λ-constacyclic code of length n over Fq2 with
defining set

Zδ =
{
1 + r

(
− 2t+ 1 + i

) ∣∣∣ 0 ≤ i ≤ δ − 1
}

(IV.6)

where δ is a positive integer with 1 ≤ δ ≤ 6t − 2. It
follows from Lemma IV.4 that Cδ is a dual-containing code
with parameters [n, n − d + 1, d], where d is a positive
integer with 2 ≤ d ≤ 6t − 1. Using the Hermitian construc-
tion, we can obtain a quantum MDS code with parameters
[[2t(q − 1), 2t(q − 1)− 2d+ 2, d]]q.

Example IV.6. In Table II, we list some quantum MDS codes
obtained from Theorem IV.5.

C. New quantum MDS codes of length 3(q − 1)

Let q be an odd prime power such that 32 | (q + 1). Let
n = 3(q − 1) and r = q+1

3 . Clearly, r ≥ 6. Let λ ∈ Fq2 be a
primitive rth root of unity. Let C be a λ-constacyclic code of
length n over Fq2 with defining set

Z =
{
1 + ri

∣∣∣ − 2 ≤ i ≤ q − 3

2

}
. (IV.7)

It is clear that 0 < 1+r
(
q−3
2

)
< q2−1

2 and − q2−1
2 < 1−2r <

0. Thus, |Z| = q+3
2 . We show that C is a dual-containing code.

Lemma IV.7. If C is a λ-constacyclic code of length n
over Fq2 with defining set Z as in (IV.7), then C is a dual-
containing code.
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Proof: Suppose otherwise that C is not a dual-containing
code. It follows from Lemma II.7 that Z

∩
Z−q ̸= ∅. Hence,

two integers i, j with −2 ≤ i, j ≤ q−3
2 can be found such that

−q(1 + ri) ≡ 1 + rj (mod q2 − 1). (IV.8)

If i = j, then −q(1+ ri) ≡ 1+ ri (mod q2 − 1), so (q− 1) |
(1+ri). Let 1+ri = ℓ(q−1), where ℓ is an integer. Note that
18 | (q+1), and we assume that q+1 = 18k, for some positive
integer k. Thus 1 + 6ki = ℓ(18k − 2) = 18ℓk − 2ℓ, which is
equivalent to 1 = 2(9ℓk − ℓ− 3ki). This is a contradiction.

Without loss of generality, we may assume that i > j. By
Equation (IV.8), −q(1+ri) ≡ 1+rj (mod q−1) and −q(1+
ri) ≡ 1 + rj (mod q + 1), i.e., (q − 1) |

(
r(i + j) + 2

)
and

(q + 1) | r(i − j). Note that −2(q − 1) < r(i + j) + 2 <
q+1
3 (q − 1) and 0 < r(i − j) ≤ (q+1)2

6 . Let r(i + j) + 2 =
ℓ2(q−1) and r(i− j) = ℓ1(q+1), where −1 ≤ ℓ2 ≤ q+1

3 −1
and 1 ≤ ℓ1 ≤ q+1

6 . By r(i + j) + 2 = ℓ2(q − 1), we get
rj = ℓ2(q − 1)− 2− ri. Substituting rj into Equation (IV.8)
yields −q(1 + ri) ≡ 1 + ℓ2(q − 1) − 2 − ri (mod q2 − 1),
i.e., (q − 1)ri ≡ −(q − 1)(1 + ℓ2) (mod q2 − 1). Thus ri ≡
−(1 + ℓ2) (mod q + 1), which implies that q+1

3 | (1 + ℓ2).
Since −1 ≤ ℓ2 ≤ q+1

3 − 1, we get 1 + ℓ2 = 0 or q+1
3 .

If 1 + ℓ2 = 0, combining r(i + j) + 2 = ℓ2(q − 1) and
r(i − j) = ℓ1(q + 1) yields 2rj = −(1 + ℓ1)(q + 1). From
ℓ1 ≥ 1, we get 2j = −3(1 + ℓ1) ≤ −6, which gives j ≤ −3,
contradicting our assumption j ≥ −2.

If 1 + ℓ2 = q+1
3 , combining r(i + j) + 2 = ℓ2(q − 1) and

r(i− j) = ℓ1(q+1) yields 2ri = (ℓ1+ ℓ2)(q+1)−2(1+ ℓ2).
Noting that r = q+1

3 and ℓ1 ≥ −1, we get 2i = 3(ℓ1+ℓ2)−2 =
3ℓ1+q−4 ≥ q−1. It follows that i ≥ q−1

2 , which contradicts
our assumption i ≤ q−3

2 .
Using the Hermitian construction, we have the following

quantum MDS codes.

Theorem IV.8. Let q be an odd prime power such that
32 | (q + 1). Then, there exists a quantum MDS code with
parameters [[3(q − 1), 3(q − 1) − 2d + 2, d]]q, where d is a
positive integer with 2 ≤ d ≤ q+5

2 .

Proof: Let n = 3(q − 1) and r = q+1
3 . Let λ ∈ Fq2 be

a primitive rth root of unity. Recall that every q2-cyclotomic
coset modulo rn contains precisely one element. We assume
that Cδ is a λ-constacyclic code of length n over Fq2 with
defining set

Zδ =
{
1 + r

(
− 2 + i

) ∣∣∣ 0 ≤ i ≤ δ − 1
}

(IV.9)

where δ is a positive integer with 1 ≤ δ ≤ q+3
2 . It follows from

Lemma IV.7 that Cδ is a dual-containing code with parameters
[n, n−d+1, d], where d is a positive integer with 2 ≤ d ≤ q+5

2 .
Using the Hermitian construction, we can obtain a quantum
MDS code with parameters [[2t(q−1), 2t(q−1)−2d+2, d]]q.

Example IV.9. In Table III, we list some quantum MDS codes
obtained from Theorem IV.8.

q [[n, k, d]]q d
17 [[48, 48− 2d+ 2, d]]17 2 ≤ d ≤ 11
53 [[156, 156− 2d+ 2, d]]53 2 ≤ d ≤ 29

TABLE III
QUANTUM MDS CODES

D. New quantum MDS codes of length 2fs(q + 1)

Let q be an odd prime power with 2e∥(q−1) and s | (q−1),
where e is a positive integer and s is an odd positive integer.
Assume that f is an integer satisfying 0 ≤ f < e. Let n =
2fs(q+1) and r = 2. It is easy to see that 2n | (q2−1), which
implies that every q2-cyclotomic coset modulo 2n contains
exactly one element. Assume that C is a negacyclic code of
length n over Fq2 with defining set

Z =
{
2i− 1

∣∣∣ 1 ≤ i ≤ q − 1

2
+ 2fs

}
. (IV.10)

It is clear that |Z| = q−1
2 + 2fs. We show that C is a dual-

containing code.

Lemma IV.10. If C is a negacyclic code of length n over Fq2

with defining set Z as in (IV.10), then C is a dual-containing
code.

Proof: Suppose otherwise that C is not a dual-containing
code. It follows from Lemma II.7 that Z

∩
Z−q ̸= ∅. Hence,

two integers i, j with 1 ≤ i, j ≤ q−1
2 + 2fs can be found

such that −q(2i − 1) ≡ 2j − 1 (mod 2n). Expanding this
congruence gives

j + qi ≡ q + 1

2
(mod n). (IV.11)

Recall that 2es | (q−1). We can assume, therefore, that q−1 =
2esc, where c is a positive integer. From 1 ≤ i ≤ q−1

2 + 2fs,
one gets 1 ≤ i ≤ 2fs(2e−f−1c+1). Write i = 2fsu+v, where
u, v are integers with 0 ≤ u ≤ 2e−f−1c and 1 ≤ v ≤ 2fs. By
Equation (IV.11), we have

j + qv − 2fsu ≡ q + 1

2
(mod n). (IV.12)

We obtain a desired contradiction by considering the fol-
lowing cases:

(i) 0 ≤ u ≤ 2e−f−1c and 1 ≤ v ≤ 2fs − 1. In this case,
0 < q+3

2 = 1 + q − 2fs · 2e−f−1c ≤ j + qv − 2fsu ≤ q−1
2 +

2fs+q(2fs−1) = n− q+1
2 < n. This is a contradiction, since

we would obtain j + qv − 2fsu = q+1
2 by Equation (IV.12).

(ii) 0 ≤ u ≤ 2e−f−1c and v = 2fs. In this case, i = 2fsu+
v = 2fs(u+ 1). By Equation (IV.11), j ≡ q+1

2 + 2fs(u+ 1)
(mod n). Clearly, 0 < j < n and 0 < q+1

2 + 2fs(u + 1) ≤
q+1
2 + 2fs · 2e−f−1c + 2fs = q + 2fs ≤ 2fs(q + 1) = n. If

q+1
2 +2fs(u+1) = n, we obtain j = 0, which is impossible.

Thus, we can assume q+1
2 + 2fs(u + 1) < n. It follows that

j = q+1
2 + 2fs(u+ 1). However, q+1

2 + 2fs(u+ 1) ≥ q+1
2 +

2fs > q−1
2 + 2fs ≥ j. This is a contradiction.

Using the Hermitian construction, we have the following
quantum MDS codes.

Theorem IV.11. Let q be an odd prime power with 2e∥(q−1)
and s | (q − 1), where e is a positive integer and s is an
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q [[n, k, d]]q d
17 [[72, 72− 2d+ 2, d]]17 2 ≤ d ≤ 13
49 [[600, 600− 2d+ 2, d]]49 2 ≤ d ≤ 37

TABLE IV
QUANTUM MDS CODES

odd positive integer. Assume that f is an integer satisfying
0 ≤ f < e. Then, there exists a quantum MDS code with
parameters [[2fs(q+1), 2fs(q+1)− 2d+2, d]]q, where d is
a positive integer with 2 ≤ d ≤ q+1

2 + 2fs.

Proof: Let n = 2fs(q + 1). Recall that every q2-
cyclotomic coset modulo 2n contains precisely one element.
We assume that Cδ is a negacyclic code of length n over Fq2

with defining set

Zδ =
{
2i+ 1

∣∣∣ 0 ≤ i ≤ δ − 1
}

(IV.13)

where δ is a positive integer with 1 ≤ δ ≤ q−1
2 + 2fs. It

follows from Lemma IV.10 that Cδ is a dual-containing code
with parameters [n, n−d+1, d], where d is a positive integer
with 2 ≤ d ≤ q+1

2 + 2fs. Using the Hermitian construction,
we can obtain a quantum MDS code with parameters [[2fs(q+
1), 2fs(q + 1)− 2d+ 2, d]]q.

Note that Theorem IV.11 is a generalization of some results
of [25]. Taking f = 0 (resp. f = 1), [25, Theorem 3.7]
(resp. [25, Theorem 3.10]) is an immediate consequence of
Theorem IV.11, as stated below.

Corollary IV.12. Let q be an odd prime power with s | (q−1),
where s is an odd positive integer. Then, there exists a quantum
MDS code with parameters [[s(q+1), s(q+1)− 2d+2, d]]q,
where d is a positive integer with 2 ≤ d ≤ q+1

2 + s.

Corollary IV.13. Let q be an odd prime power such that q ≡ 1
(mod 4) and s | (q − 1), where s is an odd positive integer.
Then, there exists a quantum MDS code with parameters
[[2s(q + 1), 2s(q + 1) − 2d + 2, d]]q, where d is a positive
integer with 2 ≤ d ≤ q+1

2 + 2s.

Moreover, taking 2fs = q−1
2 in Theorem IV.11, we can

obtain q-ary quantum MDS codes of length q2−1
2 , which has

been given previously in [25, Theorem 3.2].

Corollary IV.14. Let q be an odd prime power. Then, there
exists a quantum MDS code with parameters [[ q

2−1
2 , q2−1

2 −
2d+ 2, d]]q, where d is a positive integer with 2 ≤ d ≤ q.

Example IV.15. In Table IV, we list some quantum MDS codes
obtained from Theorem IV.11.

V. SUMMARY

Through explicit dual-containing MDS constacyclic codes,
we have constructed four new classes of quantum MDS codes
using the Hermitian construction of [2]. We summarize in
Table V the parameters of all known quantum MDS codes.
Classes 17–20 of Table V are the new ones obtained in Section
4.

In Table VI, fixing the value of q yields the value (or range
of values) of the length n. We next compare the minimum

Class q n d d (Class 3) d (Class 8) d (Class 12)
17 11 40 7 5 3 -
17 19 72 11 9 3 -
18 7 12 5 3 3 4
18 23 132 17 12 3 12
19 17 48 11 8 3 9
19 53 156 29 26 3 27
20 17 72 13 8 3 -
20 49 600 37 24 3 -

TABLE VI
COMPARISON WITH PREVIOUSLY KNOWN QUANTUM MDS CODES

distances of the new quantum MDS codes of length n with
those of previously known ones of the same length. It can
be seen that the new quantum MDS codes exhibited here
often have minimum distance bigger than what was previously
known in the literature, for the same q and length.

For example, with q = 11 and h = 3, Class 17 gives n =
(121 − 1)/3 = 40. We then search among Classes 1–16 of
Table V to see in which classes can the length 40 be attained.
For example, in Class 3, we find 40 = 4 × 11 − 4; but in
Class 4, there does not exist any positive integer r such that
r× (11− 1)+ 1 = 40. In fact, with q = 11, it can be verified
that the length 40 can only be attained in Classes 3 and 8. We
then compare the largest possible minimum distances of these
codes of the same length (as in the row with q = 11 in Table
VI).
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