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Despite the fact that great efforts have been made in the prevention and therapy of

HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. Highly active

antiretroviral therapy (HAART) can suppress virus replication, but it cannot eradicate

latent viral reservoirs in HIV-1/AIDS patients. Recently, the clustered regularly interspaced

short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system has

been engineered as an effective gene-editing technology with the potential to treat

HIV-1/AIDS. It can be used to target cellular co-factors or HIV-1 genome to reduce HIV-1

infection and clear the provirus, as well as to induce transcriptional activation of latent

virus in latent viral reservoirs for elimination. This versatile gene editing technology has

been successfully applied to HIV-1/AIDS prevention and reduction in human cells and

animal models. Here, we update the rapid progress of CRISPR/Cas9-based HIV-1/AIDS

therapy research in recent years and discuss the limitations and future perspectives of

its application.
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INTRODUCTION

Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) is still a
severe health problem worldwide. According to the statistics from World Health Organization
(WHO) (http://www.who.int/hiv/en/), about 36.9 million people were living with HIV by the
end of 2017, with about 1.8 million newly infected individuals. Interestingly, only 59% of
infected patients received highly active antiretroviral therapy (HAART), which is still the main
therapeutic strategy for HIV-1 patients and has reduced themorbidity andmortality of HIV-related
disease (Palella et al., 1998). However, HAART cannot efficiently eliminate latent viral reservoirs,
making HIV-1/AIDS a chronic and incurable disease (Chun et al., 1997b; Lorenzo-Redondo
et al., 2016; Huang et al., 2018). Moreover, the high costs of therapy, side effects, and drug
resistance should also be considered in HIV-1/AIDS treatment (Larder et al., 1989). Therefore,
new therapeutic strategies to inhibit HIV-1 replication and eliminate latent reservoirs are
urgently needed.

In the recent years, the three main nuclease-mediated gene editing tools including transcription
activator-like nucleases (TALENs), zinc finger nucleases (ZFNs), and clustered regularly
interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) have been
widely used in HIV-1/AIDS treatment researches (Tebas et al., 2014; Yin et al., 2018; Yu et al., 2018).
A clinical trial with ZFNmediated C-C chemokine receptor type five (CCR5) editing in autologous
CD4T cells had been successfully conducted in HIV-1 infected patients, which demonstrated
ZFNs-CCR5 modification may be effective and safe in human AIDS therapy (Tebas et al., 2014).

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2019.00069
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2019.00069&domain=pdf&date_stamp=2019-03-22
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:guodeyin@mail.sysu.edu.cnl
mailto:chen-shuliang@whu.edu.cn
https://doi.org/10.3389/fcimb.2019.00069
https://www.frontiersin.org/articles/10.3389/fcimb.2019.00069/full
http://loop.frontiersin.org/people/661559/overview
http://www.who.int/hiv/en/


Xiao et al. CRISPR/Cas9 Application in HIV-1/AIDS Therapy

Due to the costly and time-consuming construction of TALENs
and ZFNs (Khalili et al., 2015), the newest gene-editing technique
CRISPR/Cas9 has been developed rapidly with the advantages
of precise insertion, deletion, and replacement of target DNA
sequences (Hsu et al., 2014). The first CRISPR/Cas9 application
in the prevention of HIV-1 infection was performed in 2013 by
disruption of latent HIV-1 provirus (Ebina et al., 2013). From
then on, numerous studies on HIV-1/AIDS gene therapy by
CRISPR/Cas9 technology have been reported (Wang et al., 2014,
2017; Ye et al., 2014; Hou et al., 2015; Kang et al., 2015; Li C. et al.,
2015; Zhu et al., 2015; Liu et al., 2017; Xu et al., 2017; Chen et al.,
2018; Qi et al., 2018), suggesting its tremendous potential to treat
HIV-1/AIDS. In this review, we summarize studies concerning
the principles, function, and application of CRISPR/Cas9 in HIV-
1/AIDS treatment in the last few years, and highlight problems
that need to be addressed in the future.

HUMAN IMMUNODEFICIENCY VIRUS

AIDS is still a major global health problem. It is caused by
HIV infection and induces immune destruction (Bowers
et al., 2014). There are two different types of HIV, HIV-
1, and HIV-2. They both have many similarities and both
can lead to AIDS (Nyamweya et al., 2013). Compared
to HIV-1, HIV-2 has lower transmissibility and is less
pathogenic. HIV-1 is recognized as the major cause
of AIDS and becomes the main target to prevent and
cure AIDS.

HIV-1 is a retrovirus with an RNA genome of about 9.8 kb.
The complete genome is flanked by two long terminal repeat
(LTR) sequences and it encodes 10 viral proteins including gag,
pol, vif, vpr, vpu, env, tat, rev, nef, and the antisense protein (ASP)
(Cassan et al., 2016; Liu Z. et al., 2018), which have different
functions in virus invasion and replication (Figure 1). Three
main routes that spread HIV-1 are sex, intravenous injection, and
vertical transmission (Hladik and McElrath, 2008; Cohen et al.,
2011). All HIV-1 infected patients have three stages, acute HIV
infection, chronic HIV infection (clinical latency), and clinical
disease (AIDS) (Sharp and Hahn, 2011). Mechanistically, HIV-
1 invades host cells by binding its gp120 envelope protein to
the CD4 receptor on the membrane of the target cell, and then
interacts with the CCR5 or CXCR4 coreceptor which depends
on the tropism of viral strain. The host cells mainly correspond
to T cells, monocytes and dendritic cells and even microglial
cells, astrocytes, and perivascularmacrophages in central nervous
system. The life cycle of HIV-1 is complex, which contributes to
ineffective virus elimination (Figure 2). HIV-1 entry into cells
will establish two types of infection including latent infection
and active infection. Latent infection occurs in the early stage
of infection within a few cells, while active infection appears
in most cells (Chun et al., 1997a,b, 1998; Chavez et al., 2015).
For active infection, the provirus is active and produces viral
particles which make infected cells bud new progeny virions. The
establishment of latent infection may be mediated by complex
mechanisms, including RNA interference (Huang et al., 2007;
Patel et al., 2014; Ruelas et al., 2015), chromatin environment (du

Chene et al., 2007; Gallastegui et al., 2011), transcription factors
(Barboric et al., 2001; Mojica et al., 2005; Lenasi et al., 2008),
and HIV-1 provirus integration sites (du Chene et al., 2007;
Sunshine et al., 2016). Latent infection results in the generation
of latent reservoirs, which contain infected resting CD4+ T cells
(Siliciano et al., 2003; Chun et al., 2008), astrocytes (Churchill
et al., 2006; Narasipura et al., 2014), macrophages (Smith et al.,
2003), and microglial cells (Bagasra et al., 1996; Nath, 2015).
The latent reservoirs are often located in gastrointestinal tracts
(Smith et al., 2003; Chun et al., 2008), brains (Bagasra et al.,
1996; Fischer-Smith et al., 2001), and lymphoid tissues (Chun
et al., 2008), which are difficult to reach by antiviral drugs.
Once the latently infected cells are reactivated by stimuli, newly
generated virus will be produced and infect neighboring cells,
then a new latent reservoir will re-establish. Therefore, HIV-1
latent reservoirs are the major challenge for an effective cure
for HIV-1/AIDS.

CRISPR/CAS9 TECHNOLOGY

CRISPR repetitive sequences were first observed in 1987 (Ishino
et al., 1987) and were later shown to derive from conjugative
plasmids and bacteriophages and act as a mechanism of adaptive
immunity (Mojica et al., 2005, 2009; Barrangou et al., 2007).
Breakthrough research was made by Jinek et al. that showed a
DNA endonuclease Cas9 guided by two RNAs could introduce
target DNA cleavage in vitro (Jinek et al., 2012). From then on,
CRISPR/Cas9 technology was developed rapidly and achieved
great progress in the field of gene therapy in human CD34+

hematopoietic stem and progenitor cells (HSPCs) (De Ravin
et al., 2017; Niethammer et al., 2018). The CRISPR-Cas9
apparatus, involves the Cas9 helicase which can bind to RNA
transcribed from the palindromic repeats of host DNA and cleave
invasive DNA paired with RNA spacers, a transcript from the
short stretches of host DNA acquired from extra chromosomal
elements. In this system, the transcript of palindromic repeats
of DNA named the trans activating CRIPSR RNA (tracr RNA),
while the spacers’ transcript called CRIPSR RNA (crRNA). The
tracr RNA and crRNA can be linked together to form a single
guide RNA (sgRNA) that can direct Cas9 to induce DNA
cleavage in the Protospacer adjacent motifs (PAMs) region (Jinek
et al., 2012; Cong et al., 2013; Hsu et al., 2014). The Cas9
nuclease has two activity domains histidine-asparagine-histidine
(HNH) and RuvC, cleaving different DNA strands (Jinek et al.,
2014; Nishimasu et al., 2014). The sgRNA base-pairs with the
target strand, which is cleaved by the HNH domain, while the
non-target strand is cleaved by the RuvC domain (Figure 3A)
(Jinek et al., 2012). The cleavage induced double stranded DNA
break (DSB) will be repaired by non-homologous end-joining
(NHEJ) in the absence of template or homology-directed repair
(HDR) with homologous template such as double strand DNA
(dsDNA) and single strand DNA (ssDNA) (Figure 3A). If the
donor DNA delivered to the cell has homology arms flanking
the locus targeted by Cas9, it will be used as a template for
repair and therefore introduces the desired substitution sequence
(Ran et al., 2013b; Hsu et al., 2014). However, for the NHEJ,
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FIGURE 1 | HIV-1 DNA genome structure for CRISPR-Cas9 targeting. HIV-1 genome is ∼9.8 kb with 5′LTR, 3′LTR, and encodes 10 viral proteins. Each gene is

showed in its specific location based on HXB2 (K03455). The Cas9 target sequences listed in Table 1.

FIGURE 2 | The life cycle of HIV-1 provides possible CRISPR-Cas9 targets. HIV-1 life cycle is carried out in six stages: (1) Binding and entry. HIV-1 invades into host

cells by binding its gp120 to CD4 receptor on the cell surface, and then to the co-receptor CCR5 or CXCR4. This binding causes HIV-1 and cell membrane fusion, by

which HIV-1 enters into host cells and releases its viral RNA. (2) Reverse transcription. HIV-1 RNA was reverse transcribed into double stranded DNA by reverse

transcriptase. (3) Integration. The viral DNA enter into nucleus and integrate into host genomic DNA by integrase. (4) Replication and assembly. New viral RNA

generated by proviral DNA can be used as genomic RNA to make viral proteins. These proteins combining with viral RNA moves to cell surface to form immature viral

particles. (5) Budding. The immature viral particles are released from cells and produce viral protease which can break the long protein chain to form the mature virus.

Many regulators play important roles in the life cycle of HIV-1, thus provide potential CRISPR-Cas9 targets as listed in Table 2.

it will randomly introduce insertion, deletion, and replacement
(Figure 3A) (Ran et al., 2013b).

CRISPR/Cas9 technology can not only mediate gene editing
effectively, but also confer biological functions. Mutation of
Cas9 in two nuclease domains induces inactive Cas9 (dCas9),

which is used as locus-specific DNA-binding protein (Figure 3B)
(Gilbert et al., 2013; Qi et al., 2013). This dCas9 fused with a
transcription activator or repressor domain can regulate gene
expression (Figure 3B) (Konermann et al., 2015). Moreover,
other gene editing technologies, such as CRISPR/Cpf1, a single
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FIGURE 3 | Schematic diagram of HIV-1 provirus DNA modification by CRISPR/Cas9 technology. (A) Cas9 protein combined with sgRNAs can induce gene editing at

specific sites. The double stranded breaks are repaired by two pathways. One is Non-homologous ending joining (NHEJ) with no template, which will induce deletion,

replacement, and insertion. The other is Homologous dependent repair (HDR) with donor templates. (B) Cas9 can be engineered into catalytically inactive Cas9

(dCas9) by mutations of two nuclease domains RuvC and HNH. The dCas9 can be fused with various effectors with a site-specific DNA-binding domain to activate

the latent virus by sgRNAs target the HIV-1 LTR region.

RNA-guided endonuclease without tracrRNA, and CRISPR-
Cas13a/C2c2, a RNA-guided RNA-targeting effector that induces
ssRNA cleavage, have been developed based on the foundation of
CRISPR/Cas9 technology (Zetsche et al., 2015; Gootenberg et al.,
2017). Therefore, CRISPR/Cas9 is a powerful gene editing tool
with unlimited potential in biomedical research field.

CRISPR/CAS9 TECHNOLOGY
APPLICATION IN HIV-1/AIDS TREATMENT

CRISPR/Cas9 technology has been widely applied in HIV-
1/AIDS research using experimental laboratory adapted HIV-
1 strains in the past few years because of its characteristics

of simple, high efficiency, and limited off-target effect (Duan
et al., 2014). Its targets include HIV-1 genome (Table 1) and host
factors (Table 2).

Inactivation and Elimination of HIV-1
Provirus by CRISPR/Cas9 Technology
The main obstacle for HIV/AIDS treatment is efficient targeting
of latent viral reservoirs. HAART can control HIV-1 replication
in patients, but it cannot completely eliminate the provirus in
resting CD4+ T cells, resulting in the stability of latent viral
reservoirs for many years (Siliciano et al., 2003). In early studies,
researchers used Tre-recombinases to specifically target HIV-1
LTR, which resulted in the excision of HIV-1 provirus in HeLa
cells (Sarkar et al., 2007). Qu et al. also generated ZFNs to target
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TABLE 1 | CRISPR/Cas9 systems target HIV-1 provirus for excision and elimination.

CRISPR-

Cas

Delivery Target region Cell type/organism Targeting

locus

Target sequence Efficiency References

SpCas9 Transfection LTR (U3 region) 293T, Hela, Jurkat 465–484 GTTAGACCAGATCTGAGCCT 30–90% Ebina et al. (2013)

SpCas9 Transfection LTR (U3 region) CHME5, TZM-Bl, U937 101–127 GCCAGGGATCAGATATCCACTGACCTT 30–90% Hu et al. (2014)

312–341 GAGTACTTCAAGAACTGCTGACATCGAGCT

SpCas9 Lentivirus LTR (R region) 293T-CD4-CCR5, 293

Primary T cells, hPSC

464–486 GGTTAGACCAGATCTGAGCCTGG 20–90% Liao et al. (2015)

485–507 GGGAGCTCTCTGGCTAACTAGGG

SpCas9 Transfection Rev (the second

exon)

JLat10.6 8513–8532 GGTGGTAGCTGAAGAGGCAC 30% Zhu et al. (2015)

SpCas9 Lentivirus Gag/Pol/Rev/Env SupT1 2249–2277 TCAGATCACTCTTTGGCAGCGAC 30–90% Wang Z. et al. (2016)

8497–8525 GTGCCTCTTCAGCTACCACCGCT

SpCas9 Lentivirus LTR (U3 and R

region)

J.Lat FL,SupT1 300–408 GCCACTCCCCAGTCCCGCCC 35–98% Lebbink et al. (2017)

463–482 GCTCAGATCTGGTCTAACCA

SaCas9 Lentivirus

AAV

LTR and gag (U3

region)

Tg26 transgenic mouse 83–103 GCAGAACTACACACCAGGGCC 20–80% Yin et al. (2017)

380–399 GTGTGGCCTGGGCGGGACTG

1061–1081 GGATAGATGTAAAAGACACCA

SaCas9 Lentivirus LTR (U3 region) TZM-Bl, C11 289–309,

9364–9384

ACATGGCCCGAGAGCTGCATC 20–60% Wang Q. et al. (2018)

379–399,

9454–9474

GGTGTGGCCTGGGCGGGACTG

TAR region in HIV-1 LTR, which led to efficient cleavage of
integrated HIV-1 proviral DNA in Jurkat T cells and the latent
cell line C11 (Qu et al., 2013).

The CRISPR/Cas9-based approach was first tested in HIV-
1/AIDS treatment in 2013. Ebina et al. successfully used
CRISPR/Cas9 to suppress the expression of HIV-1 genes in Jurkat
cell lines by targeting HIV-1 LTR (Ebina et al., 2013). The target
sites were the NF-κB binding cassettes located in the U3 region of
LTR and TAR sequences in R region, respectively. This resulted
in efficient inhibition of HIV-1 provirus transcription and
replication (Ebina et al., 2013). More importantly, it also showed
that CRISPR/Cas9 could eliminate internal integrated viral genes
from the infected host cell chromosome, which suggested that
CRISPR/Cas9 may be a potential tool for HIV-1/AIDS treatment
(Ebina et al., 2013). Soon afterwards, research on excision of
HIV-1 genome via CRISPR/Cas9 was conducted by Hu et al.
(2014). They used Cas9/gRNA to target conserved sites in HIV-
1 LTR U3 region, resulting in inactivating viral gene expression
and restricting virus replication in a HIV-1 latently infected T
cell line, pro-monocytic cell line, and microglial cell line with
little genotoxicity, and no detectable off-target editing (Hu et al.,
2014). Liao et al. also demonstrated that targeting multiple
sites of the HIV-1 genome could increase the efficiency of
excision and disruption of non-integrated proviral genome (Liao
et al., 2015). In addition, combination of two effective sgRNAs
to target different regions of the HIV genome could prevent
viral replication and escape (Lebbink et al., 2017). Recently,
Wang et al. also demonstrated that Staphylococcus aureus Cas9
(SaCas9)/gRNAs in an all-in-one lentiviral vector could excise
latent HIV-1 provirus and suppress provirus reactivation (Wang
Q. et al., 2018). Furthermore, the combined SaCas9/gRNAs
showed higher efficiency in disrupting HIV-1 genome than single
sgRNA mediated SaCas9 editing (Wang Q. et al., 2018).

Mutational inactivation of HIV-1 provirus by a single sgRNA
induced CRISPR/Cas9 editing has also been reported (Wang G.
et al., 2018). When targeting the LTR sequence and essential
genes for viral replication by a single sgRNA, the HIV-1
provirus was inactivated by mutation of the target site. However,
the virus can escape from a single gRNA mediated cleavage.
This viral breakthrough can be alleviated by a combinatorial
CRISPR/Cas9 gene-editing approach (Lebbink et al., 2017). Zhu
et al. used CRISPR/Cas9 target LTR of provirus in HIV-1
latently infected T cell lines. Sequencing analysis demonstrated
mutations occur at each target site, resulting in reduction of
viral gene expression and viral production while on tumor
necrosis factor alpha (TNFα) treatment (Zhu et al., 2015).
Several studies also performed targeting on incoming virus by
CRISPR/Cas9 system. They confirmed that dual sgRNAs have
higher cleavage efficiency on a non-integrated HIV-1 reporter
plasmid than a single sgRNA (Wang et al., 2016a; Lebbink
et al., 2017). Recent work also suggested that CRISPR/Cas9
could cleave the non-integrated HIV-1, resulting in a 3–4-fold
reduction of integrated HIV-1 provirus. Surprisingly, the NHEJ-
mediated DNA repair mechanism also responds for the non-
integrated HIV-1 provirus (Mefferd et al., 2018). Thus, the
CRISPR/Cas9 functions in both HIV-1 and proviral DNA in
latent cells, of which makes it more potential and promising in
HIV-1/AIDS treatment.

Excision of HIV-1 proviral DNA in animal models was
reported in 2017 (Yin et al., 2017). Researchers demonstrated
the feasibility and efficiency of disrupting HIV-1 provirus
using an all-in-one adeno-associated virus (AAV) combined
with multiplex sgRNAs and SaCas9 in three different animal
models. Quadruplex sgRNA/SaCas9 AAV-DJ/8 intravenously
injected into Tg26 mice could cleave HIV-1 proviral DNA
and significantly reduce virus replication. Additionally, after
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TABLE 2 | CRISPR/Cas9 systems target co-receptor CCR5 or CXCR4 and restriction factors.

CRISPR-

Cas9

Delivery Target

gene/restriction

factors

Cells Strategy Target sequence Efficiency

(%)

References

SpCas9 Transfection CCR5 K562 Disruption TGACATCAATTATTATACAT 13 Cho et al. (2013)

SpCas9 Transfection CCR5 iPSC CCR5132 GATACAGTCAGTATCAATTC 33–100 Ye et al. (2014)

SpCas9 Lentivirus CCR5 TZM-Bl, CEMss, Disruption GCTTGTGACACGGACTCAAG

GGTCCTGCCGCTGCTTGTCA

GTAAACTGAGCTTGCTCGCT

10.8–67.7 Wang et al. (2014)

SpCas9 Lentivirus

Adenovirus

CCR5 TZM-Bl, CHO, C8166,

primary CD4+ T

Disruption TCACTATGCTGCCGCCCAGT

CAATGTGTCAACTCTTGACA

32–75 Li C. et al. (2015)

SpCas9 Transfection CCR5 iPSC Disruption TGACATCAATTATTATACAT

CATACAGTCAGTATCAATTC

GACATTAAAGATAGTCATCT

12.5–30.8 Kang et al. (2015)

SpCas9 Transfection CCR5 K562, CD34+ HSPC Disruption ACTGGGCGGCAGCATAGTGA

CCCAGAAGGGGACAGTAAGA

19–46 Xu et al. (2017)

SpCas9 Lentivirus CCR5 Jurkat, primary CD4+ T CCR5132 ACAGTCAGTATCAATTCTGG

GACATTAAAGATAGTCATCT

40–60 Qi et al. (2018)

SpCas9 Lentivirus CXCR4 Ghost, Jurkat, primary

CD4+ T

Disruption GCTTCTACCCCAATGACTTG

GTTCCAGTTTCAGCACATCA

10–45 Hou et al. (2015)

SaCas9 Lentivirus AAV CXCR4 TZM-Bl, Ghost, Jurkat,

primary CD4+ T

Disruption CCTGGTATTGTCATCCTGTCC

TCCTGCTATTGCATTATCATC

8.5–80 Wang et al. (2017)

SpCas9 Lentivirus CCR5 and CXCR4 TZM-Bl, Jurkat, primary

CD4+ T

Disruption GCTTCTACCCCAATGACTTG

GTTCCAGTTTCAGCACATCA

CATACAGTCAGTATCAATTC

15–40.5 Liu et al. (2017)

SpCas9 Lentivirus Restriction factors 293T, CEMss APOBEC3G(A3G)

and

APOBFC3B(A3B)

– 50–90 Bogerd et al. (2015)

– – Restriction factors - SERINC, HUSH,

NONO

– – Rosa et al. (2015);

Gonzalez-Enriquez

et al. (2017);

Chougui et al.

(2018); Lahaye et al.

(2018); Yurkovetskiy

et al. (2018)

intravenous injection of quadruplex sgRNA/SaCas9 AAV-DJ/8 in
humanized bone marrow/liver/thymus (BLT) mice infected with
HIV-1, the cleavage of provirus was detected in brain, colon,
spleen, heart, and lung. This system could also inhibit HIV-1
replication in Eco-HIV acutely infected mice (Yin et al., 2017).
This successful application of excision and elimination of HIV-1
proviral DNA by SaCas9/gRNA in vivo delivered via AAV lays the
foundation for the design of clinical trials in humans.

Disruption of Co-receptors CCR5 and
CXCR4 by CRISPR/Cas9 Technology
In addition for targeting HIV-1 genome, CRISPR/Cas9
technology can also be used to block HIV-1 entry by editing of
co-receptors. HIV-1 enters host cells through binding to the CD4
receptor and CCR5 or CXCR4 co-receptors (Cocchi et al., 1995).
As CD4 is critical for functional immune system, disruption of
CD4 is an unadvisable strategy in preventing HIV-1 infection.
It has been reported that individuals with a homozygous 32-bp
deletion of the CCR5 gene (CCR5132) could live healthily and
resist R5-tropic HIV-1 infection naturally (Samson et al., 1996;
Biti et al., 1997). Transplantation ofCCR5132HSPCs to a “Berlin
Patient” who experienced with acute myeloid leukemia (AML)

and HIV-1 infection accidently prevented HIV-1 replication and
rebound so far (Hutter et al., 2009; Allers et al., 2011). This is
an encouraging case, but due to the few homozygous CCR5132
donors, broad application of this strategy to HIV-1/AIDS
patients is significantly limited (Michael et al., 1997; Zimmerman
et al., 1997). Therefore, co-receptors CCR5 and CXCR4 become
the potential targets for HIV-1/AIDS gene therapy. Gene editing
of CCR5 by ZFNs has been successfully used in CD4+ T cells
and CD34+ HSPCs, which could resist HIV-1 infection (Perez
et al., 2008; Holt et al., 2010). Tebas et al. conducted disruption
of CCR5 via ZFN delivered by adenoviral vector in CD4+ T
cells from HIV patients and reinfused autologously after ex
vivo expansion, leading to significant decrease of HIV DNA
and RNA to undetectable level in most patients (Tebas et al.,
2014). This important clinical trial (NCT00842634) was followed
by additional studies showing that CCR5-modified cells could
be detected in HIV-1 patients for several months (Tebas et al.,
2014). For the other co-receptor, CXCR4 could also be modified
by ZFN to resist to X4-tropic HIV-1 infection (Wilen et al.,
2011). While, simultaneous editing of CXCR4 and CCR5 by
ZFN in Sup T1-R5 and primary CD4+ T cells was also reported
(Didigu et al., 2014). Interestingly, the in vivo study showed a
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significant survival advantage in the presence of HIV-1 infection
in NSG mouse transferred with modified primary CD4+ T cells
compared to the unmodified cohort (Didigu et al., 2014).

Compared with ZFN technology, the CRISPR/Cas9 approach
provides appropriate target sites with simple design and plasmid
construction. CRISPR/Cas9 has been widely used in disrupting
CCR5 and CXCR4 expression. In 2013, Cho et al. showed
that silencing of CCR5 by CRISPR/Cas9 can be successfully
achieved in human embryonic kidney (HEK) 293T cells by
transfecting Cas9 and sgRNAs (Cho et al., 2013). Soon after
that, in 2014, Ye et al. conducted a combined CRISPR/Cas9
or TALENs with the piggyBac technology to perform the
homozygous CCR5132 mutation in induced pluripotent stem
cells (iPSCs) seamlessly. These CCR5-modified iPSCs could
normally differentiate into monocytes/macrophages, which were
resistant to HIV-1 infection (Ye et al., 2014). In 2015, Li et al.
used adenovirus-delivered CRISPR/Cas9 combined with sgRNAs
targeting the fourth exon of CCR5 to disrupt CCR5 expression.
Two specific sgRNAs can induce more than 60% cutting
efficiency in TZM-BL cells. The results were also confirmed in
Chinese hamster ovary (CHO) and human T cell lines. Finally,
they used a chimeric Ad5/F35 adenovirus vector to deliver
CRISPR/Cas9 system to human CD4+ T cells to silence CCR5
expression, which protected cells from HIV-1 infection with high
efficiency and little off-target effects (Li C. et al., 2015). In 2017,
Xu et al. used CRISPR/Cas9 system to target CCR5 gene in
human CD34+ HSPCs and achieved long-term CCR5 disruption
in vivo, which resulted in inhibition of HIV-1 infection. Silencing
of CCR5 expression was stable in the secondary repopulating
hematopoietic stem cells (HSCs), which provides a basis for the
future of developing an HIV-1/AIDS cure for clinical application
by transplanting CCR5-modified HSCs (Xu et al., 2017).

Meanwhile, several studies have reported CXCR4 gene
disruption by CRISPR/Cas9. Hou et al. efficiently disrupted
CXCR4 expression in human CD4+ T cells and rhesus macaque
CD4+ T cells using CRISPR/Cas9 delivered by lentivirus and
two sgRNAs that specifically target CXCR4 conserved sequences.
Reduced p24 production was observed in the human CXCR4
knockout (KO) CD4+ T cells after infection with X4-tropic
HIV-1, which suggested that CXCR4-modified cells resist HIV-
1 infection (Hou et al., 2015). Moreover, CXCR4-edited CD4+

T cells by CRISPR/Cas9 behaved normally in propagation and
there was no detectable off-target effect and toxicity in CD4+

T cells (Hou et al., 2015). Other researchers also disrupted
CXCR4 expression by Cas9/gRNA ribonucleoprotein (Cas9
RNPs) in human CD4+ T cells, which reduced about 40%
of CXCR4 expression on the cell surface (Schumann et al.,
2015). When provided with repair template, the cellular repair
machineries could perform the desired modification in human
T cells. Although the CRISPR-Cas9 induced NHEJ process was
a stochastic event, the deep sequencing revealed the knock-
in efficiency up to 20% (Schumann et al., 2015). Further, a
Staphylococcus aureus(SaCas9), which is 1 kb shorter compared
to SpCas9, was used to disrupt CXCR4 in human primary
CD4+ T cells delivered by AAV and protected cells from HIV-1
infection with low toxicity and little off-target effects (Wang et al.,
2017). As CXCR4 and its ligand CXC12 (SDF-1) play pivotal

roles in hematopoietic/progenitor cells development and thymic
differentiation (Nagasawa et al., 1996; Dar et al., 2006), we should
consider the safety and side effects of clinical application by
targeting CXCR4 in HSPCs. However, CXCR4-deficient human
T cells remain functional in a mouse model (Chung et al., 2010;
Yuan et al., 2012), and we also used CRISPR-Cas9 and piggyBac
recombinant technologies to create CXCR4 P191A mutant with
HIV-1 infection inhibition function and without deficiency of
CXCR4 function(Liu S. et al., 2018), it is possible for CRISPR-
Cas9 editing of CXCR4 in human mature post-thymic CD4+ T
cells for the purpose of HIV-1/AIDS therapy.

Reactivation of Latent HIV-1 Virus by
CRISPR/Cas9 Technology
To eradicate latent HIV-1 reservoirs, it is necessary to reactivate
dormant virus in the host cells and induce cell killing by HAART
and activation of antiviral immune responses. This strategy is
known as “shock and kill” (Barboric et al., 2001; Huang et al.,
2007; Lenasi et al., 2008; Gallastegui et al., 2011; Archin et al.,
2012; Rasmussen et al., 2014; Ruelas et al., 2015; Delagreverie
et al., 2016; Kim Y. et al., 2018). Several drugs have been
showed to reactivate viral gene expression, such as the histone
deacetylase (HDAC) inhibitor (Manson McManamy et al., 2014;
Walker-Sperling et al., 2016), which introduces the acetylation
and remodeling of chromatin, thus resulting in the enhancement
of HIV-1 RNA expression in the latent reservoirs (Archin et al.,
2012). The drugs only induce the transcription of latent HIV-
1 in cells, but do not kill the virus or cause cell death (Kim
Y. et al., 2018). The combination use of latent reversing agents
(LRAs) might overcome several side effects in patients under
HAART and lead to a better efficiency of purging the HIV-1
latent reservoir (Bullen et al., 2014; Hill et al., 2014; Panfil et al.,
2018). However, this approach may not be able to target all viral
reservoirs, and therefore may not be much efficient (Ho et al.,
2013; Rasmussen et al., 2014). Moreover, given the important side
effects observed in patients treated with HAART and/or HDAC
inhibitors, additional strategies to reactivate HIV-1 reservoirs
need to be developed.

The CRISPR/Cas9 technology may be a potential tool for
the activation of latent HIV-1 viral reservoirs. Many researchers
have used deficient Cas9 (dCas9) fusion protein combined with
sgRNAs specific to effector domains of target DNA sequences
to activate or repress gene transcription (Gilbert et al., 2013,
2014; Sander and Joung, 2014; Konermann et al., 2015). The
catalytically inactive dCas9 fused with transcription activator
domains can activate viral gene expression in HIV-1 latent
reservoirs, which may improve the “shock and kill” strategy
(Zhang et al., 2015; Bialek et al., 2016; Ji et al., 2016; Limsirichai
et al., 2016; Saayman et al., 2016; Kim et al., 2017). Zhang
et al. designed 20 sgRNAs to target the LTR-U3 region of
HIV-1 promoter and screened two target sites located near
or at NF-κB binding sites with high specificity and efficiency
(Zhang et al., 2015). Those specific target sgRNAs could induce
reactivation of HIV-1 provirus in HIV-1 latent cell lines such
as TZM-Bl epithelial cells, CHME5 microglial cells, and Jurkat
T lymphocytic cells (Zhang et al., 2015). They also found that

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 March 2019 | Volume 9 | Article 69

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Xiao et al. CRISPR/Cas9 Application in HIV-1/AIDS Therapy

this reactivation could induce suicide death in CHME5microglial
cells and Jurkat T lymphocytic cells but not in TZM-Bl due to
the accumulation of toxic viral proteins, without any effect on
the non-reactivated cells (Zhang et al., 2015). Saayman et al.
also designed 23 sgRNAs to target the LTR U3 region of HIV-
1 provirus and found the robust activation sites also near NF-
κB binding sequences. This activation system worked more
efficiently than latency reversing compounds such as SAHA and
prostratin in different latent T cells models (Saayman et al., 2016).
Limsirichai et al. designed 7 sgRNAs to target the key functional
elements of HIV-1 LTR including U3 region, NF-κB and Sp-
1 binding sites, R domain, and U5 region (Limsirichai et al.,
2016). All 7 sgRNAs could induce gene activation from HIV-1
LTR promoter and only 2 sgRNAs, overlapping with the NF-κB
binding sites and transactivation response elements significantly
stimulated latent HIV-1 gene expression (Limsirichai et al.,
2016). Moreover, combining latency breaking reagents, including
prostratin and SAHA, with CRISPR activators could increase
latent HIV-1 re-activation (Limsirichai et al., 2016). Therefore,
CRISPR/Cas9-mediated activation of viral transcription may
provide an alternative approach to target and activate viral gene
expression in latent HIV-1 reservoirs.

Reactivation of Host Restriction Factors
During HIV-1 Infection
Several proteins in mammalian cells function as restriction
factors during infection by HIV-1 and other viruses
(Chemudupati et al., 2019). However, these host factors are
often weakly expressed in infected cells. Simultaneous activation
of the expression of restriction factors may represent an
alternative strategy to prevent HIV-1 replication. Borgerd et al
used a Cas9-based approach to induce the expression of the
restriction factors APOBEC3G (A3G) and APOBFC3B (A3B)
in human cells (Bogerd et al., 2015). They also found that using
two sgRNAs had higher efficiency than single sgRNA, and both
activated proteins could block Vif-deficient HIV-1 infection
by inducing dC residues to dU residues (dC-to-Du) editing of
HIV-1 genome (Bogerd et al., 2015). However, studies on the
application of CRISPR/Cas9 technology in activating cellular
host factors to inhibit HIV-1 infection are very limited. Recently
discovered restriction factors such as serine incorporator
five (SERINC5) (Rosa et al., 2015; Gonzalez-Enriquez et al.,
2017), human silencing hub (HUSH) (Chougui et al., 2018;
Yurkovetskiy et al., 2018), and NONO (Lahaye et al., 2018) may
be new targets to be considered for this application. SERINC5
inhibits virus infection by preventing virus and cell fusion
(Gonzalez-Enriquez et al., 2017). The HIV-1 accessory protein
Nef counteracts the function of SERINC5 by redirecting it to
a Rab7-positive endosomal compartment, thus preventing its
incorporation in newly generated virions (Rosa et al., 2015). The
HUSH complex, composed by TASOR, MPP8, and periphilin,
can be degraded by the viral protein Vpx via a DCAF1-dependent
proteasomal pathway in primary T cells and HIV-2 infected cells
(Chougui et al., 2018). Yurkovetskiy et al. also demonstrated
that the HUSH complex can be degraded by Vpx and Vpr from
HIV-1, HIV-2 and SIV to counteract HUSH-induced repression

of provirus transcription (Yurkovetskiy et al., 2018). The two
studies above suggested that the HUSH complex is a critical
host factor in HIV infection. Lahaye et al. identified NONO
as a capsid-binding factor for Cyclic GMP-AMP synthase
(cGAS)-mediated immune activation in macrophages and
dendritic cells after HIV-1/2 infection using a two-hybrid yeast
screening (Lahaye et al., 2018). NONO directly interacted with
HIV-1/2 capsid proteins to increase DNA sensing mediated by
cGAS but had little effect on HIV infection, which suggest the
important role of NONO in cGAS-mediated immune activation
after infection with HIV (Lahaye et al., 2018). Since these
representative restriction factors can inhibit HIV infection via
different mechanisms, the CRISPR/Cas9 technology could be
used to simultaneously activate their expression in infected
cells in order to target different phases of the viral life cycle.
This approach may provide new strategies for the treatment of
HIV-1 infection, and more efforts are needed to further develop
this toolset.

Activation of host restriction by CRISPR/Cas9 is usually
delivered by lentivirus with high transduction efficiency and easy
virus production. In addition, specific sgRNAs are essential for
the activation of target gene. Two sgRNAs will enhance the
expression of target gene by increasing the target specificity to
assure the complete activation of gene promoter (Bogerd et al.,
2015). As the restriction factors act on HIV-1 at different stages
in the life cycle and the expression of some restriction factors
is only induced by virus infection, better understanding of the
molecular mechanisms of HIV-1 counteraction with restriction
factors will provide more options and rationale for the design of
CRISPR/Cas9. In addition, several restriction factors have dual
functions in immunomodulation and different expression levels
in various cells, which makes its more complex in the activation
of gene expression by CRISPR/Cas9 (Chemudupati et al.,
2019). Moreover, whether the enforced long-term activation of
restriction factors expression has deleterious effects in vivo needs
further investigation. For example, the virus restriction factor
APOBEC3G, which is induced by IFNs, has an antiviral effect on
HIV-1 and HBV (Wang et al., 2008). It has different expression
levels in various cells. Whether its activated expression in
different cells over a long period of time has deleterious effects
in vivo has not been reported at present.

LIMITATIONS OF THE
CRISPR/CAS9 APPLICATION

CRISPR/Cas9 technology has been widely used not only in HIV-
1/AIDS treatment (Chen et al., 2018), but also in other human
diseases, such as frontotemporal lobar degeneration with tau
inclusions (FTLD-tau) (Jiang et al., 2018), Parkinson’s disease
(PD) (Zhou et al., 2018) and Duchenne muscular dystrophy
(DMD) (Lim et al., 2018),with the characteristics of safe, efficient
and simple construction. However, some limitations must be
considered before designing clinical trials.

One major concern is the potential off-target effect, which
may induce important gene mutations and chromosomal
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translocations (Kimberland et al., 2018). Reduction of off-
target effects is always of the greatest importance in clinical
application. Some researchers had proved that the off-target
cleavage mediated by Cas9 was very limited compared with other
nucleases including ZFNs, TALENs, and homing endonucleases
by ChIP-seq (Duan et al., 2014). However, the significant off-
target phenomena were actually detected even for sgRNAs with
six or more mismatches (Wang et al., 2015). Many efforts have
been made to reduce off-target effects such as dimerization
dependent RNA-guided FokI-dCas9 nucleases (RFNs) (Tsai et al.,
2014), truncated guide RNAs (tru-gRNAs) (Fu et al., 2014),
and paired Cas9 nickase (Ran et al., 2013a; Shen et al., 2014).
Kaminski et al. modulated the CRISPR/Cas9 system by placing
the Cas9 gene under the control of a minimal HIV-1 promotor,
which is activated by viral transcriptional activator, Tat. This
strategymakes Cas9 express in HIV-1 infectious cells and reduces
the complications that caused by unnecessary high expression of
Cas9 in cells (Kaminski et al., 2016). Otherwise, direct delivery
of Cas9 RNPs rather than expressing plasmid to target cells will
decrease the off-target effects. The Cas9 RNPs will be degraded
after editing the target DNA, resulting in maximum on-target
effects and minimum off-target effects. For example, the Cas9
RNPs have been used to disrupt CXCR4 in human primary
CD4T cells with undetectable off-target effects (Schumann et al.,
2015). A recent report has also demonstrated that a RNP
complex with R691A SpCas9 mutant introduces high efficient
gene editing in human HSPCs with reduced off-target editing
(Vakulskas et al., 2018). However, it has been showed that the
application of RNPs in some kinds of cells can trigger innate
immune responses, leading to cytotoxicity in cells. Chemical
synthesis and phosphatase treatment of sgRNA to remove its
5’-ppp can inhibit innate immune responses and reduce cell
death (Kim S. et al., 2018). Another recent report identified
the preexisting humoral and cell-mediated adaptive immune
responses to Cas9 in humans, of which should be taken in
consideration before clinical trials (Charlesworth et al., 2019).
As the immune response is determined by many factors such
as the target tissue, the route of administration and the dose
of Cas9 (Crudele and Chamberlain, 2018), the strategies about
instantaneous expression of Cas9 need to be improved and
developed, as well as the assessment of Cas9 immunogenicity
before clinical trials should be conducted in the future.

Another major challenge in CRISPR/Cas9 application is how
to effectively deliver this large complex into HIV-1 infected cells.
According to previous reports, the main delivery vectors include
adenoviral, lentiviral, and adeno-associated viral vectors (Wang
et al., 2014; Hou et al., 2015; Li C. et al., 2015). Adenoviral vectors
can be used in various CRISPR/Cas9 systems due to its capacity of
incorporating large DNA fragments and its immunogenic effects
in clinical trials have been improved (Wold and Toth, 2013).
However, generation of recombinant adenoviral vectors could
still represent an important limitation (Afkhami et al., 2016).
Lentiviral vectors are widely used for delivering CRISPR/Cas9
systems into cells with high efficiency. It can integrate into the
host genome and mediate stable expression, which will increase
the risk of off-target effects (Wang et al., 2014; Khalili et al.,
2017). Adeno-associated viral vectors have the characteristics of

safety, low toxicity, and efficient delivery (Mingozzi and High,
2013). However, due to their small packaging size, they can only
accommodate a small exogenous gene, and re-administration
with the same virus induces immune responses and reduce
efficacy of delivery and gene expression (Zaiss andMuruve, 2008;
Mingozzi and High, 2013). One early report found that adeno-
associated viral vectors could cause both cellular and humoral
immune responses although it had various advantages in gene
therapy (Mingozzi et al., 2009). These immune responses should
be avoided by development of new AAV variants with different
chemical modifications of AAV vector, immunological profiles
and immunosuppression (Louis Jeune et al., 2013).

In addition for the viral vectors, cationic polymer
polyethyleneimine (PEI) (Li L. et al., 2015), lipid-based
reagents (Cardarelli et al., 2016), and nanoparticles-based
approaches (Givens et al., 2018) have been also utilized to
deliver the CRISPR/Cas9 system. To improve the delivery
efficiency, researchers tried to combine the lipid nanoparticle
captured mRNA of Cas9 with adeno-associated virus encoding
a sgRNA and a repair template to mediate the correction of
a hereditary tyrosinemia gene, fumarylacetoacetate hydrolase
(FAH), in a mouse model (Yin et al., 2016). For the eradication
of latent reservoirs in the central nervous system of HIV-
1 infected patients, the major challenge of delivering the
CRISPR/Cas9 system into brain is the blood brain barrier
(BBB). The existence of the BBB will only allow limited
lipophilic molecules and smaller molecules cross but block
the transportation of large molecules. Although intracerebral
injection and intracerebroventricular infusion strategies can
overcome obstacles of BBB to cure brain diseases, the risk
of brain damage makes its unoptimistic for human therapy.
However, nanoparticle-based drug delivery to the brain may be
an alternative strategy to overcome BBB. Various nanoparticles
have been successfully used for brain target by receptor-mediated
transcytosis, such as polymer nanoparticles (Fornaguera et al.,
2015), magnetic nanoparticles (Nair et al., 2013), and gold
nanoparticles (Mout et al., 2017). Many novel nanoparticles
have been investigated as the potential carriers for delivering
CRISPR/Cas9 system with less cytotoxic effect. In addition,
different formulation of nanoparticles may have a predilection
for specific organs including liver and lung (Givens et al.,
2018). In conclusion, the potential of delivery CRISPR/Cas9
system by specific nanoparticles to target HIV-1 reservoirs
in brains requires more investigation in the future. More
recently, the Nanoblades delivery system, which involves murine
leukemia virus-like particles (VLPs) and Cas9-sgRNA RNPs,
has been confirmed to efficiently target EMX1 gene in human
induced pluripotent stem cells (IPSCs) and Myd88 in human
hematopoietic stem cells (HSCs), as well as Fto gene in mouse
bone-marrow cells (BM). It can induce HDR in HEK293T cells
by combination with a DNA template. It also can be engineered
for transcriptional activation purpose if it is used for delivery
of dCas9. In addition, the Nanoblades can be injected into the
perivitelline space of mouse-zygotes to generate transgenic mice
with mutations at Tyr gene. Moreover, in vivo editing of Hpd in
the mice liver was achieved by injection of Nanoblades (Mangeot
et al., 2019). Since the IPSCs and HSCs represent major interest
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for therapeutical applications, the Nanoblades has potential in
HIV-1/AIDS treatment in the future. However, the off-target
effect and safety of Nanoblades based editing of host factors,
such as CCR5 and CXCR4, as well as HIV-1 genome should be
tested in primary cells and animal models before application in
clinical therapy.

CRISPR/Cas9 is considered as a potential antiviral tool, but
HIV-1 has evolved escape mechanisms. Wang et al. found
that Cas9/gRNA could inhibit HIV-1 replication, but soon the
virus escaped from this inhibition due to NHEJ repair, which
inducedmutations around the cleavage sites (Wang et al., 2016b).
Other researches also demonstrated that CRISPR/Cas9 could
generate mutant viruses able to resist to Cas9/sgRNA by causing
DNA repair in host cells (Wang Z. et al., 2016; Yoder and
Bundschuh, 2016). To cope with this escape mechanism, Liang
et al. put forward alternative solutions such as modifying sgRNA,
reprogramming Cas9 nuclease and suppressing NHEJ activity
(Liang et al., 2016). The negative findings of CRISPR/Cas9
make us more careful in designing sgRNAs and applying this
technology for the treatment of HIV-1/AIDS in clinical trials.

CONCLUSION

Currently, HAART is still the major strategy for treatment of
HIV-1/AIDS patients in the clinic. It can reduce HIV-1 to an
undetectable level and make AIDS a chronic disease. Recently,
broadly neutralized antibodies showed promising results (Bar-
On et al., 2018; Mendoza et al., 2018; Liu et al., 2019), but
still have a long way to transfer from bench to bedside. With
the development of gene editing technologies, such as ZFN,
TALEN and CRISPR/Cas9, more and more recent work focuses
on using these new strategies to eliminate the virus in patients.
ZFN, with the size of ∼1 kb, is easier to deliver. Nevertheless,
the limitation of target site and high off-target effects make it
difficult to be applied in the HIV-1/AIDS gene therapy field.
TALEN is more flexible in DNA target design and has lower off-
target effects compared with ZFN. However, the time-consuming
and costly construction of the recognition site of TALEN for
DNA target hampers the development of this gene editing tool.
For CRISPR/Cas9, with more convenient and efficient design
of target sites, less laborious vector construction, limited off-
target effects, it can be applied quickly in every research field,
not only in HIV-1/AIDS therapy. For different target DNA, it
needs only a change of sgRNA to find the most effective site. Even
though the large size of SpCas9 (∼4.1 kb) decreases the efficiency
of delivery, the alternative SaCas9 (∼3.3 kb) will overcome this
limitation to some extent. The CRISPR/Cas9 system is indeed
a promising gene editing tool applied in gene therapy fields,
however, the high target efficiency and effective delivery are
essential for successful application in clinical trial. Moreover,
the low off-target effect and safety must be the prerequisites
of consideration.

The research concerning successful application of gene editing
tools in vitro and mouse models to inhibit HIV-1 infection
allows clinical trials to come true. ZFN had been used in clinical
HIV-1/AIDS therapy and completed with promising results

(NCT00842634, NCT01252641, and NCT01044654). Disruption
of CCR5 by ZFN in autologous CD4+ T cells provided long-term
HIV-1 resistant when reinfused these cells back into patients.
Another clinical trial about ZFN gene-editing of CCR5 in HSPCs
followed autologous engraftment have been conducted in 2015
(NCT02500849). This phase I study will continue to 2019 to
estimate the potential of CCR5-disrupted HSPCs in HIV-1
resistance in AIDS patients. The CRISPR/Cas9 mediated clinical
trial was first conducted in 2016. The modified human T cells
were reinfused back into an individual with metastatic non-
small cell lung cancer, which is supposed to have a promising
result (Cyranoski, 2016). Therefore, gene editing of autologous
HSPCs provides an option for resistance of HIV-1 infection in
the future. For the successful editing of HSPCs by CRISPR/Cas9
in HIV-1/AIDS treatment, it is important to design and screen
effective sgRNAs to reduce the off-target effects. The safety
and delivery efficiency of CRISPR/Cas9 to HSPCs also need
consideration, since long term expression of Cas9/sgRNA may
induce non-specific injury to the host genome and immune
response (Kaminski et al., 2016; Charlesworth et al., 2019). For
the gene editing therapy in clinical treatment, the ethics of animal
and human experimentation and the rationale are always the
primary consideration before its application. Recently, the birth
of gene-edited babies in 2018 has aroused widespread criticism
around the scientific fields. It is the first time that the CCR5
gene edited human embryos by CRISPR-Cas9 were implanted to
women to have HIV-1 resistant babies. This work would make a
permanent change to the germ line, which could be passed on to
the future generations. Obviously, this experiment failed to meet
the ethical guideline concerning germline and embryo editing.
In addition, it lacks the rationale to modify CCR5 in human
embryos, since HAART can inhibit HIV-1 replication and the
experimental couple can have a healthy baby. For HIV-positive
mothers, cesarean section can protect babies fromHIV infection.
Even a HIV-positive father would have no risk to transmit to
the babies. Moreover, a CCR5 edited baby cannot resist all HIV
strains since the virus can evolved to utilize CXCR4 as alternative
co-receptor. Finally, CRISPR/Cas9 technology has limitations
in application such as off-target effects. The safety of heritable
germline editing should be monitored and evaluated. The side
effects of permanent editing of the CCR5 gene have not been
reported, yet some researches have showed that CCR5 deficiency
increases the risk of symptomaticWest Nile virus infection (Glass
et al., 2006; Lim et al., 2008).

The major obstacle to cure HIV-1/AIDS is the existence of
latent reservoirs. The “shock and kill” strategy is supposed
to clear the HIV-1 reservoirs. Latency reversing agents
(LRAs) have been used to reverse HIV-1 latency. However,
the lack of specificity and the heterogeneous and dynamic
nature of these drugs make this pharmacologic strategy
less safe and inefficient (Darcis et al., 2018). CRISPR-based
shock strategy with the characteristic of sequence specificity
have advantages over pharmacological, but its potential
drawbacks need to be evaluated, such as off-target effect and
less efficient delivery method. The low metabolic activity
in HIV-1 latently infected cells also inhibits the function
of CRISPR/Cas9 reagents, however, the stimulation of
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specific cytokines and HIDAC inhibitors can enhance the
CRISPR/Cas9 reagents mediated restricting of HIV-1 infection
in latent cells.

CRISPR/Cas9 technology is a powerful gene editing tool
and has been widely applied in experimental HIV-1/AIDS gene
therapy researches. Moreover, it also has great potential to be
applied in various areas such as medical genetic screening and
gene ontology analysis (Xue et al., 2016). Its emergence brings
the hope for 36.9 million individuals with HIV-1 infection,
but it is worth noting that the negative effects such as off-
target and viral escape must be considered. Therefore, successful
cure of HIV-1/AIDS still has a long way to go. Clinical trials
of CRISPR/Cas9 in HIV-1 treatment remains a challenge, and
ethic must always be put in first place. The limitations and
difficulties of this technology suggest that several aspects need
to be improved for future applications: (1) Exploration of new
vehicles to deliver CRISPR/Cas9 compound safely and effectively;
(2) For activating the latent viral reservoirs by CRISPR/Cas9,
several specific agents can be combined to enhance immune
responses to eliminate the virus; (3) Design specific sgRNAs
and explore new strategies to decrease off-target effects; (4)
Understanding the exact mechanism of viral escape from the
CRISPR/Cas9-induced effects is critical for the design of more
effective strategies (5) Optimization of animal models of HIV-
1/AIDS. The combination of the CRISPR/Cas9 technology
with other strategies may help overcoming these limitations,

thus leading to exciting and promising progress in the HIV-
1/AIDS field.
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