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Abstract: Gene editing, especially with clustered regularly interspaced short palindromic repeats as-
sociated protein 9 (CRISPR-Cas9), has advanced gene function science. Gene editing’s rapid advance-
ment has increased its medical/clinical value. Due to its great specificity and efficiency, CRISPR/Cas9
can accurately and swiftly screen the whole genome. This simplifies disease-specific gene therapy. To
study tumor origins, development, and metastasis, CRISPR/Cas9 can change genomes. In recent
years, tumor treatment research has increasingly employed this method. CRISPR/Cas9 can treat
cancer by removing genes or correcting mutations. Numerous preliminary tumor treatment studies
have been conducted in relevant fields. CRISPR/Cas9 may treat gene-level tumors. CRISPR/Cas9-
based personalized and targeted medicines may shape tumor treatment. This review examines
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CRISPR/Cas9 for tumor therapy research, which will be helpful in providing references for future
studies on the pathogenesis of malignancy and its treatment.

Keywords: CRISPR/Cas; advanced technologies; advanced therapeutics; cancer; cancer treatment;
oncoviruses; clinical trials

1. Introduction

Clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-
Cas9) is the natural immune defense system (acquired) mediated by RNA that is present in
archaea and bacteria [1,2]. As its name indicates, single-guide RNAs (Cr and Cas9 nuclease)
are its major constituents [3]. It encodes a guide RNA, and double-stranded breaks (DSBs)
are produced at a particular location of DNA that is being targeted. The direct binding of
Cas9 nuclease and a target DNA sequence occurs, which generates DSBs [4]. CRISPR/Cas9
is a facilitator compared to transcription-activator-like effector nucleases (TALENs) [5]
and zinc-finger nucleases (ZFNs) [6], as it can target multiple DNA sites at a time through
multiplexing. For the joining of DSBs, two different mechanisms are present, including
non-homologous end joining (NHEJ) [7] for non-homologous sequences and homologous
directed repair (HDR) [8] for homologous sequences [9].

There are some other tools for editing the genome, including ZFNs [10,11] and TAL-
ENs [12,13], in which DNA-binding domains of transcription factors and the nuclease
domain of the restriction enzyme FokI fuse together. Nuclease activity is activated when
FokI domain site-specific nucleases form dimers when paired adjacent sequences are tar-
geted, forming DSBs near the binding sites. The fusion of DNA-binding proteins such as
TALENs, ZFNs, and dead CAS system 9 (dCas9) with fluorescent proteins (FPs), along
with their role in genome editing, also helps in the direct imaging of genomic loci in living
cells [14,15] (Table 1).

Table 1. Comparison and working apparatus of genome engineering tools.

Properties CRISPR ZNFs TALENs FLP-FRT CRE-LOXP Bibliography

DNA binding
moiety RNA Protein Protein

Flippase
recombination

target

Site-specific
recombinases

[16–21]

Ease of targeting
multiple targets High Low Low High High

Complexity of
design Simple Very complex Complex Simple Simple

Nuclease Cas FokI FokI Recombinase Recombinase

Off-target effects Variable Moderate - Specific Specific

Toxicity Low Variable to high Low Low Variable

Target recognition
size 22 nucleotides 18–36

nucleotides
30–40

nucleotides
20–35

nucleotides 38 nucleotides

Globally, the third largest cause of mortality is cancer, causing 20% of deaths in
Europe [22,23]. It is a step-wise progressive disease that results in the halting of growth
suppressors [24] and cell death signals [25] due to epigenetic changes in the cellular genome
and the buildup of mutations, which also promote an increase in genetic instability during
tumorigenesis [26]. Proinflammatory activity, angiogenesis, evasion of the immune system,
and invasiveness are the prominent features responsible for the progression of cancer [27].
Driver mutations are responsible for deactivating suppressor genes or the activation of
oncogenes [28], whereas passenger mutations are responsible for alterations of the genes in
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cancer cells [29]. The use of CRISPR/Cas9 technology in cancer immunotherapy could be a
revolutionary approach that promises to increase the chances of recovery among cancer
patients [30]. In order to treat cancer, this technique is very helpful in the manipulation of
the cancer genome [31], cancer immunotherapy [32], and the inactivation or elimination of
viral infections promoting cancer and the epigenome [33].

1.1. Behind CRISPR-Cas9

In 1987, a short palindromic repeat sequence was revealed, which was given the
name “CRISPR” in 2002 [34]. In 2012, mature CRISPR/RNAs (crRNAs) and transactivating
CRISPR RNA (tracrRNA) produced a particular double-stranded RNA structure using
complementary base pairing, instructing the Cas9 protein to produce breaks in double
strands of the target DNA [35]. The type II Cas system was used to cut DNA in mammalian
cells in 2013, which made it possible to use the CRISPR/Cas9 system for the editing of
genes [36]. The CRISPR/Cas9 technology has developed very fast, and in 2020 there was a
wide variety of available tools that were based on CRISPR/Cas9 for the editing of genes at
the RNA and DNA levels [37] (Table 2).

Table 2. The cascade contribution in the CRISPR system.

Years Findings Bibliography

1987 Discovery of the CRISPR clustered repeats [38]

2000 Acceptance of the widespread presence of CRISPR families in prokaryotes [39]

2002 The Cas gene was discovered and given the name “CRISPR.” [34]

2005 Adaptive immunity function was proposed, and foreign origins of spacers were identified using PAM [40]

2007 First experimental proof that CRISPR conferred adaptive immunity [41]

2008
CRISPR acts upon DNA target

[42,43]Discovered the function of crRNA

2009 Cleavage of RNA by Type III B Cmr CRISPR complex [44]

2010 Cleavage of target DNA via DSBs through Cas9 was guided by spacer sequences [45]

2011 Discovery of tracrRNA in conjunction with Cas9 that formed a duplex structure with crRNA [45]

2012 Characterization of Cas9’s DNA targeting in vitro [46]

2013
Mammalian cell genome editing for the first time

[47]Discovery of dCas9, CRISPRi, and CRISPRa

2014 Crystal structure of Cas9 in guide RNA and target DNA, genome-wide functional screening with Cas9,
and crystal structure of apo-cas9 [48–50]

2015 CRISPR/Cas9 was used to edit human embryos but with prominent off-target effects, CRISPR/Cas9
was used to develop virus-resistant tomato plants, and discovery of Cas 12a (Cpf1) [51,52]

2016
The invention of base editor (BE)

[53]Discovery of Cas13a (C2c2)

2019 The invention of nCATS by CRISPR/Cas9 [54]

2020 Discovery of the vfCRISPR [55]

PAM: protospacer adjacent motif. crRNA: CRISPR/RNAs. tracrRNA: transactivating CRISPR RNA. Cmr: CRISPR
RAMP module. dCAS: dead CAS system 9. CRISPRi: CRISPR interference. CRISPRa: CRISPR activation.

1.2. CRISPR/Cas9 Apparatus

Bacteria and archaea have adopted an immune system guided by RNA, which is
encoded with CRISPR loci and CRISPR-associated genes, which provide immunity (adap-
tive) against infections of bacteriophages and the transfer of plasmids [56]. Short pieces
of foreign DNA are inserted into the host chromosome’s CRISPR repeat spacer as new
spacers following exposure to invading genetic elements from plasmids or phages during
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the process of immunization [57]. As a result of this, the host cell saves this memory for
future protection from the same invader [58] (Figure 1).
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Endonucleolytic cleavage produces mature and short crRNAs due to the CRISPR
array’s transcription and the enzyme processing of CRISPR precursor transcripts [59]. At
the 5′ end, the sequence is complementary to the foreign genetic element, known as a
spacer, which is a short fragment of RNA, whereas at the 3′ end, the repeat sequence is
present [60]. The Cas nucleases destroy the RNA or DNA due to the hybridization of
the complementary target sequence of the foreign genome and the crRNA spacer, also
called a protospacer, during the second infection. [61]. One of the crucial aspects of the
CRISPR-Cas system is the formation of crRNA–effector complexes due to the assembly
of Cas proteins and crRNAs for the integration of DNA targets and the destruction of
similar sequences in foreign nucleic acids [62]. In the majority of CRISPR-Cas systems, a
protospacer adjacent motif (PAM) is a short conserved sequence of about (2–5 bp) that is
present near the crRNA-targeted sequence and has a promising role in the selection of the
DNA target and degradation [63].

2. The Era of CRISPR/Cas9 in Therapeutic Oncology

CRISPR/Cas9 is considered a source of treatment for cancer. It is being used globally
to treat different types of cancers such as brain cancer, renal cell carcinoma, colorectal
cancer, hepatocellular carcinoma, urinary bladder cancer, etc.

2.1. CRISPR/Cas9 in Brain Cancer

Irrespective of the patient’s gender or age, brain cancer has the highest mortality rate
of all cancers [64]. For the last five decades, the same therapies have been used against
brain cancers, including gliomas [65]. Researchers are facing technical difficulties at the
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genetic level to cope with this lethal disease, but CRISPR/Cas9 is a quick and effective
technique [66]. In a study conducted on the medulloblastomas and gliomas of human brain
cancer, four different types of animal models were used, including cell-derived xenografts
(CDXs) [67], an in vivo mouse model, patient-derived xenografts (PDXs) [68], and genet-
ically engineered mise. Through the CRISPR/Cas9 technique, the Nf1, Pten, and Trp53
genes responsible for glioblastoma and the Ptch1 gene accountable for medulloblastomas
were knocked out. By using this technique, genes involved in brain tumors can also be
knocked out [69].

Besides gene manipulation in the organism’s lineage, presumptive tumorigenesis
or tumor suppressor genes have long been recognized as the benchmark for simulating
carcinoma, especially brain tumors, in mice [70]. According to reports, gain-of-function
polymorphisms in a proto-oncogene and loss-of-function alterations in tumor suppressor
genes are the two main causes of glioblastoma. It has been determined that the carcinogenic
alteration of stem cells from embryos and the loss of function of tumor suppressor genes
are caused by homologous recombination-based classical cell-type-specific knockdown
approaches [71]. However, due to the lengthy process of genetically engineered murine
model (GEMM) creation and the ineffectiveness of gene duplication, its uses are restricted.
In contrast, the double-stranded break sites in target genomes are modified more success-
fully and accurately using the CRISPR/Cas9-guided endonuclease technique. One of the
key benefits of CRISPR/Cas9 is the speed at which a GEMM model may be produced.
Because it is more capable of understanding pathological conditions than conventional
genetic manipulation models, this flexible method of genome engineering has been utilized
to develop gene knockout models of both mice and rats, among other animals [72].

2.2. CRISPR/Cas9 in Hepatocellular Carcinoma

Different tumor-suppressing genes in the liver have been targeted with CRISPR-Cas9
in a variety of ways in hepatocellular carcinoma [73]. In one approach, through hydrody-
namic tail vein injections, the tumor suppressor genes p53 and Pten, either separately or
together, were targeted [74]. Liver tumors resembling those in CRE-loxP-deleted Pten and
p53 transgenic animals can be formed if p53 and Pten sgRNAs are used in combination.
Hepatocellular carcinoma has been successfully treated with CRISPR-Cas9 by navigating
the extended process of genetically modified strains with cyclization recombinase locus of
crossing over, x, P1 (CREloxP) technology [75].

Hepatocytes have demonstrated that CRISPR/Cas9 can fix a Fah mutation in a mouse
model of hereditary tyrosinemia type I. They co-injected single-stranded DNA (ssDNA)
with Cas9, sgRNA, the wild-type G nucleotide, and homology arms flanking the sgRNA
target area into the mouse model using a non-viral hydrodynamic injection. Less than
1/250 cells underwent early genetic repair in this experiment. Developing Fah-positive
hepatocytes can reverse weight loss in a mouse model of hereditary tyrosinemia type I.
Even so, only 0.4% of hepatocytes underwent hydrodynamic injection correction. When
that happened, a safer and more effective method of CRISPR delivery was considered [76].

The hereditary tyrosinemia type I mouse model has been effectively treated with a
cutting-edge therapy termed metabolic pathway remodeling. The second stage of tyrosine
catabolism is started by the enzyme hydroxyphenylpyruvate dioxygenase. Using an in vivo
CRISPR/Cas9 deletion of hydroxyphenylpyruvate dioxygenase, hepatocytes have been
changed from benign tyrosinemia type III to tyrosinemia type I. After that, the entire liver
was quickly replaced by modified hepatocytes [77]. By removing the hydroxyphenylpyru-
vate dioxygenase, tyrosine catabolism can be changed, limiting the buildup of harmful
catabolites and tyrosine. In contrast to gene therapy, metabolic pathway reprogramming
does not necessitate the ongoing expression of the disease-causing gene’s wild-type protein,
which may trigger an immunological response, restricting its long-term expression [78].
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2.3. CRISPR/Cas9 in Colorectal Cancer

This type of cancer targets the rectum or colon. Different genes are targeted and
mutated in this type of cancer, as revealed by tumor sequencing studies. Genes that are
mutated are involved in tumor progression, tumor phenotype, and carcinogenesis [79]. By
using mouse models that were genetically modified, this technique was found to be helpful
in the orthotropic organoid transplantation of mice to correct the Trp53 and APC tumor
suppressor genes in colon epithelial cells. It can be further used in different treatments for
determining the types of mutations occurring in transforming cells that promote growth
advantages in multiclonal tumors [80].

With the aid of several high-throughput genomic sequence identification methods,
critical genes that contribute to medication resistance in human malignancies have been
objectively identified. Many individuals previously employed RNA interference (RNAi)
profiling with an shRNA repository to silence specific genes [81]. However, their usage
was limited by wasteful quality-lowering and off-target effects. The CRISPR-Cas9 library
system, which combines improvements in genome editing technology, has lately presented
an alternate strategy to overcome these restrictions. It has been used to pinpoint the genes
that are essential for the growth, viability, and medication resistance of cancer cells both
in vitro and in vivo [82].

2.4. CRISPR/Cas9 in Renal Cell Carcinoma

The tubular cells of the kidney are prone to renal cell carcinomas (RCC) and a tumor
type known as clear-cell RCC (ccRCC) [83]. Five types of miRNA, including miR-1274, miR-
224, miR-1290, miR-210-3p, and miR-885-5p, are known to be upregulated in ccRCC [84,85],
miR-1274a and miR-1251 5p [86,87]. CRIPSR-Cas9 is known to be effective in a metastatic
renal cell carcinoma (mRCC) disease in which the tumor suppressor Von Hippel Lindau
(VHL) is knocked out. The development of this method allowed for its application to the
identification of various RCC-causing genes [88] (Figure 2).

For the diagnosis and regulation of tumor progression and development, the possible
biomarker is long non-coding RNA (lncRNA) [89]. Tumorigenesis in cancer of the bladder
is related to the upregulation of PANDAR, which is a long non-coding RNA. Different
lncRNA genes, including TP53 [90], long non-coding RNA related nuclear protein, and
urothelial carcinoma-associated 1 (UCA 1), are associated with carcinoma of the bladder [91].
CRISPR/Cas9 is a technique used for the editing of genes that can be used to manipulate
the lncRNA. The transfection of genomic DNA isolated from T24 bladder cancer cells
and 5637 cells with CRISPR/Cas9-UCA1 was performed and then observed using DNA
sequencing and T7 endonuclease 1 assays [92]. In a study, it was reported that this technique
was successful in knocking out the lncRNA-UCA1 [93], promoting the use of this technique
in other bladder cancers.

2.5. Application of CRISPR/Cas9 in Patient-Derived Organoids

Patient-derived organoids may fill in the gaps left by more conventional culturing
techniques in addressing the limitations of cancer stem cells in treatment response pre-
diction [94,95]. Organoids are three-dimensional in vitro cellular structures derived from
tissue-specific stem cells, with the ability to self-organize into “mini-organs” resembling
the tissue of origin. Organoids provide numerous ways to evaluate therapy responses
since they are reasonably easy to maintain and grow, in contrast to other culture methods.
The culturing methods may change based on the tissue of origin, much like organotypic
tissue slice cultures [96,97]. Using mitogenic stimuli and extracellular matrix, the organoid
culture technique promotes the ex vivo growth of tissue-resident stem cells by recreat-
ing the microenvironment, or “niche”, necessary for stem cell self-renewal. The Cas9
nuclease from Streptococcus pyogenes and the tailored guide RNA used in the archetypal
CRISPR-Cas9 system for editing the mammalian genome detect and target a specific DNA
sequence that comes before the protospacer neighboring motif sequence [98]. CRISPR-Cas9
permits the creation of a DNA double-strand break at a specified genomic site, despite
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the necessity of this motif sequence, which significantly varies across Cas9 variations [99].
Non-homologous end joining (NHEJ) and homology-directed repair are the two processes
used to repair double-strand breaks in mammalian DNA (HDR). The biallelic insertion of
indel mutations results in gene knockout because the error-prone NHEJ randomly inserts
indels throughout the repair process [100].

Curr. Oncol. 2022, 29, FOR PEER REVIEW  7 
 

 

 
Figure 2. CRISPR/Cas genome editing tool in the age of cancer treatment. 

For the diagnosis and regulation of tumor progression and development, the possible 
biomarker is long non-coding RNA (lncRNA) [89]. Tumorigenesis in cancer of the bladder 
is related to the upregulation of PANDAR, which is a long non-coding RNA. Different 
lncRNA genes, including TP53 [90], long non-coding RNA related nuclear protein, and 
urothelial carcinoma-associated 1 (UCA 1), are associated with carcinoma of the bladder 
[91]. CRISPR/Cas9 is a technique used for the editing of genes that can be used to manip-
ulate the lncRNA. The transfection of genomic DNA isolated from T24 bladder cancer 
cells and 5637 cells with CRISPR/Cas9-UCA1 was performed and then observed using 
DNA sequencing and T7 endonuclease 1 assays [92]. In a study, it was reported that this 
technique was successful in knocking out the lncRNA-UCA1 [93], promoting the use of 
this technique in other bladder cancers.  

2.5. Application of CRISPR/Cas9 in Patient-Derived Organoids 
Patient-derived organoids may fill in the gaps left by more conventional culturing 

techniques in addressing the limitations of cancer stem cells in treatment response predic-
tion [94,95]. Organoids are three-dimensional in vitro cellular structures derived from tis-
sue-specific stem cells, with the ability to self-organize into “mini-organs” resembling the 
tissue of origin. Organoids provide numerous ways to evaluate therapy responses since 
they are reasonably easy to maintain and grow, in contrast to other culture methods. The 
culturing methods may change based on the tissue of origin, much like organotypic tissue 
slice cultures [96,97]. Using mitogenic stimuli and extracellular matrix, the organoid cul-
ture technique promotes the ex vivo growth of tissue-resident stem cells by recreating the 
microenvironment, or “niche,” necessary for stem cell self-renewal. The Cas9 nuclease 
from Streptococcus pyogenes and the tailored guide RNA used in the archetypal CRISPR-
Cas9 system for editing the mammalian genome detect and target a specific DNA se-
quence that comes before the protospacer neighboring motif sequence [98]. CRISPR-Cas9 

Figure 2. CRISPR/Cas genome editing tool in the age of cancer treatment.

When certain DNA templates are given with CRISPR-Cas9, HDR, which is typically
used to replace a damaged allele using an intact genome, may be coopted for gene knock-
in [101]. For instance, missense mutations are introduced using single-strand oligonu-
cleotides or plasmids with nucleotide variations and homology arms, while selection
markers or gene reporters are integrated using HDR templates with functioning gene
cassettes [102]. While CRISPR-Cas9 technology has been developed for a variety of applica-
tions, including DNA base editing, RNA targeting, gene expression regulation, epigenome
editing, and the visualization of particular DNA loci, the use of CRISPR-Cas9 on organoids
primarily uses NHEJ and HDR mechanisms to engineer genes of interest. Organoids are in
fact ideal instruments for evaluating gene activities through potential genome engineer-
ing since the organoid system permits the development of undamaged tissues without
sacrificing genetic or phenotypic stability [103].

3. CRISPR/Cas9 in Oncolytic Viruses

Oncolytic viruses are the basis of viral vector delivery and can replicate inside cancer
cells [104]. Inside cancer cells, oncolytic viruses (OV) benefit from the reduced ability
to respond to proapoptotic signals and the resistance developed against apoptosis that
shields healthy and active cells from infection [105]. Retroviruses, vaccinia viruses, mumps,
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adenoviruses, and herpes simplex virus (HSV) are the viruses most often studied for
treatment [106]. These viruses are modified to enhance their efficacy and immunogenicity.

Oncoviruses have undergone different trials to use them as anticancer agents [107].
Their ability to infect neoplasms made them a perfect choice for CRISPR/Cas9 delivery
systems. After the failure of traditional viral vectors, to target the NARS gene in xenografts
of embryonic rhabdomyosarcoma in mice, the myxoma virus (MYXV) was a suitable vector
for CRISPR/Cas9 [108]. It can target multiple sequences due to the vast packaging capacity
of OV (161.8 kbp). The survival of mice was increased and the growth of tumors was
decreased as a result of the inactivation of NARS mediated by CRISPR/Cas9 [109,110].

4. Editing the Cancer Epigenome

Cancers can be treated using the CRISPR/Cas9-mediated epigenome editing tool [111].
In this technique, Cas9 is fused with a transcription activator for activation or with a
repressor for repression. Genetic mutations were found to be present in oncogenes or
tumor suppressor genes (TSGs) in cancer cells [112]. It is possible for CRISPR/Cas9 to
achieve gain-of-function or loss-of-function mutations. It was found to help identify the
causative genes in multiple cancers. The relative cancers can be controlled by identifying
and targeting these genes [113]. The ER regulator SRC-1 gene has a central role in the
progression of metastatic disease by ER tumors. SRC-1 cooperates with ER to regulate a
network of cancer-related genes linked to differentiation and proliferation [114]. Due to
the silencing of SRC-1 by CRISPR/Cas9-based epigenetics, genes involved in proliferation
and differentiation were poorly expressed. As a result, tumor metastasis or breast cancer
progression can be controlled effectively [115] (Table 3).

Table 3. Targeted cells, malignancy types, vector models, and genome engineering by
CRISPR/Cascade 9.

Disease Target Cells Gene/s Aim/Repair
Pathway Format/Delivery Reference

Myeloid
malignancies LSK

(TET2, RUNX1),
(SMC3, TET2),

(NF1, EZH2, and
DNMT3A) Knock out/NHEJ

Two-vector
system/Lentivirus [116]

Myeloid
malignancies

RN2 with
constitutive Cas9

expression

192 chromatin
regulatory
domains

One-vector
system/Lentivirus [117]

MDS K562 SRSF2 Point
mutation/HDR

CRISPR vector and
ssODN/Electroporation

[118]

MDS, CMML,
AML KBM5 ASXL1 Mutation

correction/HDR [119]

MLL HEK293 MLL and AF4 Chromosomal rear-
rangements/HDR

CRISPR vector and
template

plasmid/Lipofection
[120]

AML K562 IDH2 Knock in/HDR
CRISPR vector and

template
plasmid/Nucleofection

[121]

AML Primary AML
blasts IDH2

Mutation
correction/HDR

Two-vector
system/Lentivirus [122]

SCN iPSC HAX1 CRISPR vector and
ssODN/Lipofectamine [123]

Pediatric AML Human HPSC MLL and ENL Chromosomal
rearrange-

ments/NHEJ

One-vector
system/Lentivirus [124]

AML Human HPSC RUNX1 and ETO One-vector
system/Electroporation [125]
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Table 3. Cont.

Disease Target Cells Gene/s Aim/Repair
Pathway Format/Delivery Reference

AML and MDS Human HPSC

(TET2, U2AF1),
(DNMT3A,

RUNX1), (ASXL1,
TP53), (EZH2,

STAG2), (SMC3,
TP53, and SRSF2)

Knock out/NHEJ

One-vector
system/Lentivirus [126]

MDS U937 ASXL1 Two-vector
system/Electroporation [119]

CHIP Human HPSC DNMT3A and
TET2

One-vector
system/Lentivirus [127]

CHIP LSK
FLT3, DNMT3A,

SMC3, EZH2,
RUNX1, and NF1

RNP/Electroporation [128]

XCGD PLB CYBB Mutation
correction/NHEJ

One-vector
system/Lentivirus [129]

RNA-guided endonuclease gene editing is now carried out using the CRISPR-Cas9
system. An sgRNA and the nuclease Cas9 make up the system’s fundamental elements.
HNH and RuvC are the two catalytically active domains of the nuclease Cas9. The RuvC
domain has three subdomains spread over the linear protein sequence, while the HNH
domain is a single nuclease domain. RuvC I is located close to Cas9’s N-terminal region,
while RuvC II and III, which surround the HNH domain, are located close to the protein’s
midsection. The complementary and non-complementary strands of the target DNA may
be cut by the HNH and RuvC nuclease domains, respectively. The sgRNA is formed from
crRNA and tracrRNA, and it contains an invariant scaffold region and a spacer region.
Using a 20 nt guide sequence and base pairing to the genomic target, the sgRNA binds to
Cas9 and guides it to the region of interest. The Cas9 component of the CRISPR-Cas9 system
cleaves DNA 3–4 base pairs upstream of PAM and creates sequence-specific DSBs as a
result. The genetic engineering models used in epigenetics using CRISPR/Cas9 technology
are shown in Table 4.

Table 4. Genetic engineering models used for CRISPR/Cas9 epigenetics.

Different
Approaches Organisms Genes References

Gene knockout

Invertebrates
[130,131]Caenorhabditis elegans (unc-1, csr-1, dpy-3, and mes-6)

Silkworm (BmKMO and BmTH), (BmBLOS2 and Bm-ok), and (Bmtan and
BmWnt1) [132–134]

Yeast (ADE-2) [135]
Drosophila Yellow, white, and AGO1 [136]

Vertebrates
[137,138]Chicken Stra8 and Myostatin

Human
(MED12 and DMRT1), (OCIAD1 and DMRT3), (NF1 and NF2),
(CUL3 and H69), (TADA2B and TADA1), and (MAGEC2 and

S100A4) [139–143]

Mouse Rp9
Zebrafish cyp19a1a, valopa, and valopb [144]
Monkey Ppar-γ and Rag1 [145]

Plants
[146–150]Rice and Arabidopsis

Tobacco Sorghum
(IAA2 and CDK), (PDS3 and OsSWEET11), and (TTG1 and

OsSWEET14)
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Table 4. Cont.

Different
Approaches Organisms Genes References

Gene knock-in

Invertebrates
[151]Silkworm Bmku70

Drosophila Yellow locus, white locus, and nanos [136,152]
Caenorhabditis elegans unc-119 [130]

Plants
[153]Tobacco No

Arabidopsis PDS3 and AtFLS2
Rice WDV [154]

Vertebrates
[155]Mouse Rosa26, KRAS, p53, and LKB1

Chicken yRad52 [154]
Pig COL1A [156]

Human DACT1, IFIT1, and EGR1 [157]
Zebrafish Fus, Zebrafish th, and tardbp [158]

Gene knockdown
and silencing
approaches

Invertebrates

[159]
Caenorhabditis elegant TRHR-1

Drosophila roX1 and roX2
Silkworm No

Vertebrates
[160,161]Mouse Chicken Pig

Zebrafish
Human

No
EPHA1, mmp21, and Nr1

No

Gene correction

Invertebrates

[162]
Silkworm

NoDrosophila
Caenorhabditis elegans

Vertebrates

[163,164]

Zebrafish
NoChicken

Human MYBPC3
Pig No

Mouse Hemophilia B and Pde6b

Conditional
approaches

Invertebrates
[165]Caenorhabditis elegans dpy-5, unc-76, and lon-2

Silkworm No
Drosophila wg, bam, cid, nos, ms(3)k81, and wg [166]

Vertebrates
[165]Zebrafish tyr, insra; insrb, and ascl1a

Human puroR and Ctnnb1
Chicken No [138]

Pig PFFs [167]
Mouse Kras, Mecp2, Lkb1, Ispd, and p53 [158,168]

5. Clinical Trials of CRISPR/Cas9

The first clinical trial (ex vivo) on non-small-cell lung cancer patients was performed
in China using CRISPR/Cas9 as a tool for the editing of genes [169]. The electroporation of
Cas9 and sgRNA was performed, in which the PD-1 gene present in T cells in the peripheral
blood of patients was targeted and inculcated back into the patients [170]. In the peripheral
blood, edited T cells were found to be present in the patients who received infusions within
a very short period. As a result, they discovered that this method was efficient and secure,
which improved therapeutic efficacy [33].

A phase 1 in-human CRISPR-Cas9-technology-based clinical trial was conducted in
which three patients with refractory cancer at an advanced stage were enrolled, which was
recently reported by White et al. [171]. Genes that were encoding chains of endogenous
PDCD1 and TCR, i.e., TRBC and TRAC, were taken out of the T lymphocytes of the patients
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to boost antitumor immunity. The introduction of a transgene (NY-ESO-1) allowed for the
detection of tumors. The patients were able to tolerate the engineered T lymphocytes for
up to 9 months after they were reintroduced [172].

Another clinical trial was carried out for CD19 tumor cells and suggested CAR-T-cell
therapy for relapsed hematological malignancies. At the TRAC locus of cells that can
effectively recognize CD19 cells, the integration of CARs, including CD20 or CD22 and
CD19, was carried out [173]. To deliver CARs via a lentivirus (LV) to patients with relapsed
or resistant CD19+ lymphoma and leukemia, gene-disrupted allogeneic universal CD19-
specific CAR-T cells (UCART019) were used in a different trial [174]. Endogenous genes,
such as B2M and TCR, were disrupted through electrophoresed CRISPR RNA. In a clinical
experiment, the CTX130 allogenic CRISPR-Cas9-edited T-cell line was evaluated against
renal cell carcinoma and hematological malignancies. This trial targeted CD70 [175].

For the treatment of Leber’s congenital amaurosis 10 (LCA10), AGN-151587, a CRISPR-
Cas9 gene therapy drug, was directly administered through a subretinal injection in the eye
in a 2019 in vivo clinical trial. A CEP290 gene mutation caused this illness to manifest [176].
For the first time, a CRISPR-Cas9 gene-editing therapy was used inside a human body in
this study. Recently, there were 19 registered CRISPR-Cas9 gene editing interventional
clinical studies [177].

6. CRISPR/Cas9 in Cancer Immunotherapy

Immunotherapy has provided effective outcomes in tumors, which makes it an
emerging and promising therapeutic strategy [178]. The editing of genomes mediated
by CRISPR/Cas9 has numerous applications, including the production of chimeric anti-
gen receptor T (CAR-T) in gene therapy [179]. Cancer antigens are attacked ex vivo by
collecting and engineering autologous T cells. Then, the cells are returned to the pa-
tients. Through CRISPR/Cas9-mediated genome editing, patients with cancer may have
their pools of available CAR-T cells increased, allowing their use in treatment. It was
reported by Razeghian et al. [180] that the interruption of genes that encode T-cell signaling
molecules or inhibitory receptors improved CAR-T-cell function, which was mediated by
the CRISPR/Cas9 system [181].

Another novel benefit of this technology is the use of CRISPR/Cas9 in cellular trans-
plantation to correct major histocompatibility complex mismatches and aid in the replace-
ment of large MHCs at native loci [182]. In a study in humans, human primary CD4+ T
cells were employed to knock out the B2M gene through CRISPR/Cas9, as a result of which
the expression of the MHC-I surface was lost [183]. Due to its advantage in the production
of transferable T cells, many cancer patients can be treated with this method, despite the
antigen genotypes of human leukocytes. Patients with B-cell malignancies were found to
have strong antileukemic function due to CAR19 T cells [184].

CRISPR/Cas9-mediated genome editing can be used to remove genes that encode
inhibitory T-cell surface receptors, such as cytotoxic T-lymphocyte-associated protein
4 (CTLA-4) and programmed cell death protein 1 (PD-1), to increase the effectiveness of
T-cell-based immunotherapy in treating cancer. Currently, CRISPR/Cas9 is undergoing
various trials to examine its potential use in various cancer therapies [185,186]. It has been
established that immunotherapy is a successful method for treating various cancers [187].

For the treatment of various cancers, several clinical trials have been established to
examine the security and effectiveness of CRISPR-Cas9 technology [188]. The potential
benefits of CRISPR-Cas9 technology may help cancer immunotherapy advance, as im-
munotherapy has emerged as one of the most significant therapeutic modalities for many
diseases [189] (Table 5).
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Table 5. CRISPR/Cas9 in cancer immunotherapy.

Objective Trails Cell Markers Library Markers
CRISPR/Cas9

Delivery
Methods

Immune
Selective
Pressure

Significant
Targets References

Antigen
processing and

presentation
pathway

(IFN-y-pathway)

(Melanoma cell
lines)

(411,123 sgRNAs
targeting

>50 genes) (Lentiviral
vector)

(NY-ESO-1-
specific TCR T

cells)
APLNR [190]

9872 sgRNAs
targeting 2368

genes
(PD-1 blockade) PTPN2 [191]

(T-cell activation
regulators) (Jurkat T cells)

Total of 250,000
sgRNAs targeting

all distinct
Refseq-annotated

(hg19)
protein-coding

genes.

- FAM49B [192]

(T-cell
stimulation
regulators)

(Primary human
CD8+ T cells)

(19,114 genes
targeted by 77,441

sgRNAs)

(Lentiviral
infection with
Cas9 protein

electroporation
through

single-guide
RNA-sgRNA)

- (RASA2, SCS1),
(CBLB, TCEB2) [193]

Chromatin
regulators

B16F10
melanoma cells >100 genes

(Lentiviral
vector)

(Pmei-1 T cells,
OT-I T cells)

(PBAF, PBRM1,
ARID2) [194]

Tumor infiltration
and

degranulation
regulators

(Human CD8 T
cells and mouse)

(128,209 specific
genes) - (DHX-37) [195]

(IFNg-
independent

signaling
pathway)

(IFNGR1-
deficient

melanoma cells)
(GeCKO library) (MART-1 T

cells) (TRAF-2) [196]

(Metabolic
regulators of T

cell)
(OT-1 T cells)

(3017 genes
linked with
metabolism)

- (Regnase-1) [197]

(Targets of cell
membrane)

(CD8 T cells of
mouse)

(1658 genes
encoding

membrane
protein of mouse)

(Sleeping
Beauty

transposon
system and
AVV vector)

- (Lag 3, Mgat5),
(PDIA3, Emp-1) [198]

Antigen
processing and

presentation
pathway

(IFN-y-pathway)

Melanoma cells
(B16-F10)

(Brief
genome-wide

sgRNA library) (Lentiviral
vector)

(Mouse NK
cells) (Jak-1) [199]

Epigenetic
regulators

(KrasG12D/
Trp53−/−

lung cancer cells)

(524 genes
encoding
epigenetic
regulation)

(Anti-PD-1
antibody) (Asf1a) [200]

(Regulators of
PD-L1)

(Adenocarcinoma
cell line H358
cells of human

lung)

(GeCKO version
2 library of

human)
- (eIF5B) [201]

(Gene regulatory
programs in

Foxp-3
expression)

(Primary mouse
Tregs) (Brie library) (Retroviral

vector) - (Rnf20, Usp22) [195]
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7. CRISPR/Cas9 in the Elimination or Inactivation of Carcinogenic Viral Infections

The CRISPR/Cas9 system has several advantages, including its role in targeting and
disrupting certain genes of viruses, including polyomavirus JC (JCV), HPV-18, HPV-16, the
hepatitis B virus (HBV), and the Epstein–Barr virus (EBV) [202]. In order to knock out E6
or E7 genes, which are responsible for inducing cervical carcinoma from the human papil-
lomavirus (HPV), CRISPR/Cas RNA has a promising role [203]. The CRISPR/Cas9 system
also aids in inducing mutations in ccDNA, which was found to be helpful in HCC treat-
ment [204]. The CRISPR/Cas9 system was also successful in treating EBV-related cancers
during the latent phase of EBV infections by targeting EBV viral genomes [205]. Another
life-threatening human disease known as progressive multifocal leukoencephalopathy
(PML) failed to be treated with available treatments, causing the deaths of patients in
months to 2 years [206]. With the advancement, Cas9 was found to be effective in treating
this disease, as it causes the direct cleavage of the JCV genome in human cell lines [207].
CRISPR/Cas9 was used to stop viral replication in transformed human glial cells as a result
of the inactivation of the T-antigen-coding genes. This paved a way for using CRISPR/Cas9
as a novel anti-JCV therapeutic agent in the coming years [208].

8. Limitations of the CRISPR-Cas9 System

Oncogenes, tumor suppressor genes, chemoresistant genes, metabolism-related genes,
and cancer stem cell related genes are all associated with cancer genesis and dissemination.
The ultimate goals of cancer treatment are to limit malignant formation and expansion by
correcting mutations and resuming the production of dysfunctional genes. The frequent
deployment of the CRISPR/Cas9 gene editing system has culminated in some promising ad-
vances in cancer research. The knockout of tumor suppressor genes has a significant role in
the occurrence and prognosis of cancer. Oncogenes are activated by tumor-suppressor gene
silencing, absence, or mutation, which leads to the initiation and growth of tumors [209].
Notably, the CRISPR/Cas9 system has revolutionized cancer research by making it possible
to quickly validate tumor-suppressor genes in vitro and in vivo [210,211].

Like most metastatic cells, tumor cells require sufficient energy to support their mi-
gration, invasion, and proliferation. According to a study, the new characteristic of cancer
is metabolic reprogramming, which regulates energy metabolism to encourage rapid cell
growth and multiplication. Even in environments with an adequate supply of oxygen,
cancer cells frequently choose the “Warburg effect”, which encourages glycolysis or aerobic
glycolysis. Cancer cells also exhibit aberrant lipid metabolism, amino acid metabolism,
mitochondrial biogenesis, and other bioenergy metabolism pathways in addition to glucose
metabolism problems. In order to target energy generation routes in the treatment of cancer,
it may be useful to understand how energy metabolism works [212,213].

Lentiviral vectors can encounter large DNA fragments and then transduce many
dividing and non-dividing cells. Therefore, they are beneficial sources for delivering
components of CRISPR/Cas9 [214]. These viral vectors were shown to have smaller
impacts on transduced cells during their life cycles and have much less immunogenicity
and toxicity. Therefore, they are considered safe and effective for correcting defects due
to human hereditary diseases, including cystic fibrosis [215], and for treating infections of
HBV, HSV-1, and HIV-1 [216]. Although this system is effective in treating these diseases, it
has some limitations because it causes unintended side effects that limit its use in genome
editing, which requires high efficiency [217]. The persistent expression of gRNA/Cas
in vitro makes mismatches in the PAM and the guide-matching region more tolerable, in
return facilitating double-strand breaks (DSBs) [149]. As a result, a high concentration of
gRNA and Cas9 facilitates the ratio of deletions and insertions at target and off-target sites
in vivo [218]. These findings indicated that non-integrating vectors can be a better choice
for delivering CRISPR/Cas9 components (Figure 3).
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Adeno and adeno-associated viruses are considered a vector of choice for ex vivo and
in vitro applications [219]. AVV was used as a vector for CRISPR/Cas9 delivery by Platt
and colleagues [220] for SpCas9. For the in vivo modeling of loss-of-function mutations
in the LKB1 and P53 genes in mouse lung adenocarcinomas, endonucleases and sgRNA
were packed into viral particles. The Spcas9 gene’s large size interfered with the AVVs’
ability to pack tightly (4.2 kb). However, a split-intein Cas9 system was developed by Gang
Bao’s group that can be divided into two AAV cassettes [221] to overcome this hurdle.
Due to the development of a potent Cas9 enzyme derived from S. aureus that is able to
be packed and delivered by AAV vectors, an efficient SaCas9/guide RNA system was
developed [222]. In the mouse liver, PCSK9 (cholesterol regulatory gene) was targeted
using the CRISPR/Cas9 system.

The effectiveness of editing and the fitness of modified cells are the areas where the
use of CRISPR/Cas9 technology might be challenging. The number of cell populations
with the necessary genetic alterations rises when the editing efficiency is high. However,
there are fewer modified cells if the editing efficiency is poor. Edited cells often have fitness
disadvantages compared to unedited cells, which reduces their therapeutic effects. The
quantity of cells that must initially be edited decreases to fight cancer. On the other hand, if
the edited cells are more flexible than the unedited cells, it gives the modified cells a selective
advantage. Apart from this, the delivery techniques and any off-target consequences might
also be challenging. For the delivery of Cas9/sgRNA, a variety of delivery techniques
may be utilized, including viruses, plasmids, mRNA, and nanoparticles. There are also
other physical and chemical techniques, such as electroporation, microinjections, and
lipid-mediated transfection.
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9. Conclusions and Future Directions

The current review highlights the background of the era of CRISPR/Cas9 in oncol-
ogy treatments, the use of CRISPR-Cas9 in oncolytic viruses, the use in epigenetics, the
ongoing clinical trials of CRISPR-Cas9 for cancer treatment, the use in cancer immunother-
apy, and the use of CRISPR/Cas9 in the elimination or inactivation of carcinogenic viral
infections. The current review of CRISPR/Cas9 technology shows significant promise
as a tool for treating cancers at the genome level. Individualized and precise treatments
using CRISPR/Cas9 hold great promise for the future of cancer treatment. In this review,
we reviewed the achievements of CRISPR/Cas9 in immunotherapy, tumor therapy, and
research and provided a framework of studies in the future on the pathophysiology and
scientific therapy of malignancies. Genome editing with CRISPR/Cas9 is thought to be
substantially quicker, more affordable, and ultimately much superior. Medical regeneration
treatments using CRISPR/Cas9 cells have the ability to avoid the rejection issues related to
transplantation procedures, which demand donor compatibility. These operations, which
are referred to as autologous, involve genetic alteration to correct a mutation in a patient’s
own tissues. For disorders that can be addressed by modifying cells that can be readily
corrected from a patient, CRISPR/Cas9 genome editing is particularly promising. This
opens the door for additional testing to ensure that genetic editing does not lead to any
unintended changes.
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The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023, 11, 173.
[CrossRef]

81. Munro, M.J.; Tan, S.T.; Gray, C. Applications for Colon Organoid Models in Cancer Research. Organoids 2023, 2, 37–49. [CrossRef]
82. Takeda, H.; Kataoka, S.; Nakayama, M.; Ali, M.A.; Oshima, H.; Yamamoto, D.; Park, J.-W.; Takegami, Y.; An, T.; Jenkins, N.

CRISPR-Cas9–mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver
genes. Proc. Natl. Acad. Sci. USA 2019, 116, 15635–15644. [CrossRef] [PubMed]

83. Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell
carcinoma. Nat. Rev. Dis. Prim. 2017, 3, 17009. [CrossRef]

84. Yoshino, H.; Yonemori, M.; Miyamoto, K.; Tatarano, S.; Kofuji, S.; Nohata, N.; Nakagawa, M.; Enokida, H. microRNA-210-3p
depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget 2017, 8, 20881.
[CrossRef]

85. Yoshino, H.; Yonezawa, T.; Yonemori, M.; Miyamoto, K.; Sakaguchi, T.; Sugita, S.; Osako, Y.; Tatarano, S.; Nakagawa, M.; Enokida,
H. Downregulation of microRNA-1274a induces cell apoptosis through regulation of BMPR1B in clear cell renal cell carcinoma.
Oncol. Rep. 2018, 39, 173–181. [CrossRef]

86. Zhu, S.-j.; Wang, X.; Hu, S.-l.; Fang, Y.; Guan, B.-x.; Li, J.; Li, G.; Xu, J.-y. Clinical Significance and Biological Function of miR-1274a
in Non-small Cell Lung Cancer. Mol. Biotechnol. 2022, 64, 9–16. [CrossRef]

87. Yue, L.; Lin, H.; Yuan, S.; Wu, L.; Chen, G.; Wang, J.; Feng, J. miR-1251-5p Overexpression Inhibits Proliferation, Migration, and
Immune Escape in Clear Cell Renal Cell Carcinoma by Targeting NPTX2. J. Oncol. 2022, 2022, 3058588. [CrossRef]

88. Fenner, A. RCC classification using miRNA signatures. Nat. Rev. Urol. 2011, 8, 120. [CrossRef]
89. Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Prim.

2017, 3, 17022. [CrossRef]
90. Cao, Y.; Tian, T.; Li, W.; Xu, H.; Zhan, C.; Wu, X.; Wang, C.; Wu, X.; Wu, W.; Zheng, S. Long non-coding RNA in bladder cancer.

Clin. Chim. Acta 2020, 503, 113–121. [CrossRef]
91. Terracciano, D.; Ferro, M.; Terreri, S.; Lucarelli, G.; D’Elia, C.; Musi, G.; de Cobelli, O.; Mirone, V.; Cimmino, A. Urinary long

noncoding RNAs in nonmuscle-invasive bladder cancer: New architects in cancer prognostic biomarkers. Transl. Res. 2017, 184,
108–117. [CrossRef]

92. Quan, J.; Pan, X.; Zhao, L.; Li, Z.; Dai, K.; Yan, F.; Liu, S.; Ma, H.; Lai, Y. LncRNA as a diagnostic and prognostic biomarker in
bladder cancer: A systematic review and meta-analysis. OncoTargets Ther. 2018, 11, 6415. [CrossRef]

93. Duan, W.; Du, L.; Jiang, X.; Wang, R.; Yan, S.; Xie, Y.; Yan, K.; Wang, Q.; Wang, L.; Zhang, X. Identification of a serum circulating
lncRNA panel for the diagnosis and recurrence prediction of bladder cancer. Oncotarget 2016, 7, 78850. [CrossRef]

94. Aberle, M.R.; Burkhart, R.A.; Tiriac, H.; Olde Damink, S.; Dejong, C.H.; Tuveson, D.A.; van Dam, R.M. Patient-derived organoid
models help define personalized management of gastrointestinal cancer. J. Br. Surg. 2018, 105, e48–e60. [CrossRef]

95. Wang, J.; Feng, X.; Li, Z.; Chen, Y.; Huang, W. Patient-derived organoids as a model for tumor research. Prog. Mol. Biol. Transl. Sci.
2022, 189, 259–326.

96. Bartfeld, S.; Clevers, H. Stem cell-derived organoids and their application for medical research and patient treatment. J. Mol. Med.
2017, 95, 729–738. [CrossRef]

97. Zhou, Z.; Cong, L.; Cong, X. Patient-derived organoids in precision medicine: Drug screening, organoid-on-a-chip and living
organoid biobank. Front. Oncol. 2021, 11, 5625. [CrossRef]

98. Drost, J.; Clevers, H. Translational applications of adult stem cell-derived organoids. Development 2017, 144, 968–975. [CrossRef]
[PubMed]

99. Fujii, M.; Clevers, H.; Sato, T. Modeling human digestive diseases with CRISPR-Cas9–modified organoids. Gastroenterology 2019,
156, 562–576. [CrossRef] [PubMed]

http://doi.org/10.1186/s13073-015-0178-7
http://doi.org/10.1021/acscentsci.1c01143
http://doi.org/10.1002/advs.202001424
http://doi.org/10.1038/s41598-017-03070-8
http://doi.org/10.7150/ijbs.33481
http://doi.org/10.1177/15330338211045206
http://doi.org/10.1136/gutjnl-2016-313565
http://doi.org/10.1038/nm.3802
http://www.ncbi.nlm.nih.gov/pubmed/25706875
http://doi.org/10.3390/biomedicines11010173
http://doi.org/10.3390/organoids2010003
http://doi.org/10.1073/pnas.1904714116
http://www.ncbi.nlm.nih.gov/pubmed/31300537
http://doi.org/10.1038/nrdp.2017.9
http://doi.org/10.18632/oncotarget.14930
http://doi.org/10.3892/or.2017.6098
http://doi.org/10.1007/s12033-021-00385-w
http://doi.org/10.1155/2022/3058588
http://doi.org/10.1038/nrurol.2011.16
http://doi.org/10.1038/nrdp.2017.22
http://doi.org/10.1016/j.cca.2020.01.008
http://doi.org/10.1016/j.trsl.2017.03.005
http://doi.org/10.2147/OTT.S167853
http://doi.org/10.18632/oncotarget.12880
http://doi.org/10.1002/bjs.10726
http://doi.org/10.1007/s00109-017-1531-7
http://doi.org/10.3389/fonc.2021.762184
http://doi.org/10.1242/dev.140566
http://www.ncbi.nlm.nih.gov/pubmed/28292843
http://doi.org/10.1053/j.gastro.2018.11.048
http://www.ncbi.nlm.nih.gov/pubmed/30476497


Curr. Oncol. 2023, 30 1972

100. Nagle, P.W.; Plukker, J.T.M.; Muijs, C.T.; van Luijk, P.; Coppes, R.P. Patient-derived tumor organoids for prediction of cancer
treatment response. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2018; pp. 258–264.

101. Ramakrishna, G.; Babu, P.E.; Singh, R.; Trehanpati, N. Application of CRISPR-Cas9 based gene editing to study the pathogenesis
of colon and liver cancer using organoids. Hepatol. Int. 2021, 15, 1309–1317. [CrossRef]

102. Yang, H.; Sun, L.; Liu, M.; Mao, Y. Patient-derived organoids: A promising model for personalized cancer treatment. Gastroenterol.
Rep. 2018, 6, 243–245. [CrossRef]

103. Okamoto, T.; Natsume, Y.; Yamanaka, H.; Fukuda, M.; Yao, R. A protocol for efficient CRISPR-Cas9-mediated knock-in in
colorectal cancer patient-derived organoids. STAR Protoc. 2021, 2, 100780. [CrossRef] [PubMed]

104. Zheng, M.; Huang, J.; Tong, A.; Yang, H. Oncolytic viruses for cancer therapy: Barriers and recent advances. Mol. Ther.-Oncolytics
2019, 15, 234–247. [CrossRef]

105. Tysome, J.R.; Li, X.; Wang, S.; Wang, P.; Gao, D.; Du, P.; Chen, D.; Gangeswaran, R.; Chard, L.S.; Yuan, M. A Novel Therapeutic
Regimen to Eradicate Established Solid Tumors with an Effective Induction of Tumor-Specific ImmunitySequential Use of Two
Oncolytic Viruses for Cancer Treatment. Clin. Cancer Res. 2012, 18, 6679–6689. [CrossRef]

106. Chulpanova, D.S.; Solovyeva, V.V.; Kitaeva, K.V.; Dunham, S.P.; Khaiboullina, S.F.; Rizvanov, A.A. Recombinant viruses for cancer
therapy. Biomedicines 2018, 6, 94. [CrossRef]

107. Macedo, N.; Miller, D.M.; Haq, R.; Kaufman, H.L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer
2020, 8, e001486. [CrossRef]

108. Yuan, M.; Webb, E.; Lemoine, N.R.; Wang, Y.J.V. CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses. Viruses
2016, 8, 72. [CrossRef]

109. Yi, L.; Li, J. CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochim. Biophys. Acta-Rev. Cancer
2016, 1866, 197–207. [CrossRef]

110. Lin, C.; Li, H.; Hao, M.; Xiong, D.; Luo, Y.; Huang, C.; Yuan, Q.; Zhang, J.; Xia, N. Increasing the efficiency of CRISPR/Cas9-
mediated precise genome editing of HSV-1 virus in human cells. Sci. Rep. 2016, 6, 34531. [CrossRef] [PubMed]

111. Nakamura, M.; Gao, Y.; Dominguez, A.A.; Qi, L.S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 2021, 23,
11–22. [CrossRef]

112. Hilton, I.B.; D’ippolito, A.M.; Vockley, C.M.; Thakore, P.I.; Crawford, G.E.; Reddy, T.E.; Gersbach, C.A. Epigenome editing
by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 2015, 33, 510–517.
[CrossRef] [PubMed]

113. Thakore, P.I.; D’ippolito, A.M.; Song, L.; Safi, A.; Shivakumar, N.K.; Kabadi, A.M.; Reddy, T.E.; Crawford, G.E.; Gersbach, C.A.
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 2015, 12,
1143–1149. [CrossRef] [PubMed]

114. Sarvari, P.; Sarvari, P.; Ramírez-Díaz, I.; Mahjoubi, F.; Rubio, K. Advances of Epigenetic Biomarkers and Epigenome Editing for
Early Diagnosis in Breast Cancer. Int. J. Mol. Sci. 2022, 23, 9521. [CrossRef]

115. Pei, W.-D.; Zhang, Y.; Yin, T.-L.; Yu, Y. Epigenome editing by CRISPR/Cas9 in clinical settings: Possibilities and challenges. Brief.
Funct. Genom. 2020, 19, 215–228. [CrossRef]

116. Tothova, Z.; Krill-Burger, J.M.; Popova, K.D.; Landers, C.C.; Sievers, Q.L.; Yudovich, D.; Belizaire, R.; Aster, J.C.; Morgan, E.A.;
Tsherniak, A. Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis
and myeloid neoplasia. Cell Stem Cell 2017, 21, 547–555.e548. [CrossRef]

117. Sachdeva, M.; Sachdeva, N.; Pal, M.; Gupta, N.; Khan, I.; Majumdar, M.; Tiwari, A. CRISPR/Cas9: Molecular tool for gene therapy
to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther. 2015, 22, 509–517. [CrossRef]

118. Pabst, G.; Foßelteder, J.; Schlacher, A.; Auinger, L.; Martinez-Krams, D.; Ediriwickrema, A.; Kashofer, K.; Beham-Schmid, C.;
Greinix, H.T.; Woelfler, A. Modeling the Development of SRSF2 Mutated Myeloid Malignancies By CRISPR/Cas9 Mediated
Genome Engineering of Primary Human Hematopoietic Stem and Progenitor Cells. Blood 2021, 138, 2160. [CrossRef]

119. Valletta, S.; Dolatshad, H.; Bartenstein, M.; Yip, B.H.; Bello, E.; Gordon, S.; Yu, Y.; Shaw, J.; Roy, S.; Scifo, L. ASXL1 mutation
correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 2015,
6, 44061. [CrossRef] [PubMed]

120. Castaño, J.; Herrero, A.B.; Bursen, A.; González, F.; Marschalek, R.; Gutiérrez, N.C.; Menendez, P. Expression of MLL-AF4 or
AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget 2016, 7, 30440. [CrossRef]

121. Barnabas, G.D.; Lee, J.S.; Shami, T.; Harel, M.; Beck, L.; Selitrennik, M.; Jerby-Arnon, L.; Erez, N.; Ruppin, E.; Geiger, T. Serine
Biosynthesis Is a Metabolic Vulnerability in IDH2-Driven Breast Cancer ProgressionSerine Biosynthesis as Metabolic Vulnerability
of IDH2. Cancer Res. 2021, 81, 1443–1456. [CrossRef]

122. Ivy, K.S.; Cote, C.H.; Ferrell Jr, P.B. IDH2 Mutations Induce Altered STAT Signaling and Cytokine Responses Which Are Restored
by Enasidenib. Blood 2018, 132, 1468. [CrossRef]

123. Ritter, M.U.; Secker, B.; Nasri, M.; Klimiankou, M.; Dannenmann, B.; Amend, D.; Haaf, J.; Mir, P.; Bernhard, R.; Steiert, I. Efficient
Correction of HAX1 Mutations in Primary HSPCs of Severe Congenital Neutropenia Patients Using CRISPR/CAS9 GENE-Editing.
Blood 2020, 136, 22. [CrossRef]

124. Reimer, J.; Knöß, S.; Labuhn, M.; Charpentier, E.M.; Göhring, G.; Schlegelberger, B.; Klusmann, J.-H.; Heckl, D. CRISPR-Cas9-
induced t (11; 19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo. Haematologica
2017, 102, 1558. [CrossRef]

http://doi.org/10.1007/s12072-021-10237-z
http://doi.org/10.1093/gastro/goy040
http://doi.org/10.1016/j.xpro.2021.100780
http://www.ncbi.nlm.nih.gov/pubmed/34585151
http://doi.org/10.1016/j.omto.2019.10.007
http://doi.org/10.1158/1078-0432.CCR-12-0979
http://doi.org/10.3390/biomedicines6040094
http://doi.org/10.1136/jitc-2020-001486
http://doi.org/10.3390/v8030072
http://doi.org/10.1016/j.bbcan.2016.09.002
http://doi.org/10.1038/srep34531
http://www.ncbi.nlm.nih.gov/pubmed/27713537
http://doi.org/10.1038/s41556-020-00620-7
http://doi.org/10.1038/nbt.3199
http://www.ncbi.nlm.nih.gov/pubmed/25849900
http://doi.org/10.1038/nmeth.3630
http://www.ncbi.nlm.nih.gov/pubmed/26501517
http://doi.org/10.3390/ijms23179521
http://doi.org/10.1093/bfgp/elz035
http://doi.org/10.1016/j.stem.2017.07.015
http://doi.org/10.1038/cgt.2015.54
http://doi.org/10.1182/blood-2021-149591
http://doi.org/10.18632/oncotarget.6392
http://www.ncbi.nlm.nih.gov/pubmed/26623729
http://doi.org/10.18632/oncotarget.8938
http://doi.org/10.1158/0008-5472.CAN-19-3020
http://doi.org/10.1182/blood-2018-99-117783
http://doi.org/10.1182/blood-2020-140260
http://doi.org/10.3324/haematol.2017.164046


Curr. Oncol. 2023, 30 1973

125. Matsumoto, A.; Yoshida, T.; Shima, T.; Yamasaki, K.; Tadagaki, K.; Kondo, N.; Kuwahara, Y.; Zhang, D.-E.; Okuda, T. C11orf21, a
novel RUNX1 target gene, is down-regulated by RUNX1-ETO. BBA Adv. 2022, 2, 100047. [CrossRef]

126. Almosailleakh, M.; Schwaller, J. Murine models of acute myeloid leukaemia. Int. J. Mol. Sci. 2019, 20, 453. [CrossRef] [PubMed]
127. Christen, F.; Hablesreiter, R.; Hoyer, K.; Hennch, C.; Maluck-Böttcher, A.; Segler, A.; Madadi, A.; Frick, M.; Bullinger, L.; Briest, F.

Modeling clonal hematopoiesis in umbilical cord blood cells by CRISPR/Cas9. Leukemia 2022, 36, 1102–1110. [CrossRef]
128. Liu, T.; Shen, J.K.; Li, Z.; Choy, E.; Hornicek, F.J.; Duan, Z. Development and potential applications of CRISPR-Cas9 genome

editing technology in sarcoma. Cancer Lett. 2016, 373, 109–118. [CrossRef]
129. Sweeney, C.L.; Pavel-Dinu, M.; Choi, U.; Brault, J.; Liu, T.; Koontz, S.; Li, L.; Theobald, N.; Lee, J.; Bello, E.A. Correction of X-CGD

patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed
repair. Gene Ther. 2021, 28, 373–390. [CrossRef]

130. Frøkjær-Jensen, C. Exciting prospects for precise engineering of Caenorhabditis elegans genomes with CRISPR/Cas9. Genetics
2013, 195, 635–642. [CrossRef] [PubMed]

131. Arribere, J.A.; Bell, R.T.; Fu, B.X.; Artiles, K.L.; Hartman, P.S.; Fire, A.Z. Efficient marker-free recovery of custom genetic
modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 2014, 198, 837–846. [CrossRef]

132. Wei, W.; Xin, H.; Roy, B.; Dai, J.; Miao, Y.; Gao, G. Heritable genome editing with CRISPR/Cas9 in the silkworm, Bombyx mori.
PLoS ONE 2014, 9, e101210. [CrossRef] [PubMed]

133. Dong, Z.; Dong, F.; Yu, X.; Huang, L.; Jiang, Y.; Hu, Z.; Chen, P.; Lu, C.; Pan, M. Excision of nucleopolyhedrovirus form transgenic
silkworm using the CRISPR/Cas9 system. Front. Microbiol. 2018, 9, 209. [CrossRef] [PubMed]

134. Dong, Z.; Huang, L.; Dong, F.; Hu, Z.; Qin, Q.; Long, J.; Cao, M.; Chen, P.; Lu, C.; Pan, M.-H. Establishment of a baculovirus-
inducible CRISPR/Cas9 system for antiviral research in transgenic silkworms. Appl. Microbiol. Biotechnol. 2018, 102, 9255–9265.
[CrossRef] [PubMed]

135. Jacobs, J.Z.; Ciccaglione, K.M.; Tournier, V.; Zaratiegui, M. Implementation of the CRISPR-Cas9 system in fission yeast. Nat.
Commun. 2014, 5, 5344. [CrossRef]

136. Bassett, A.R.; Liu, J.-L. CRISPR/Cas9 and genome editing in Drosophila. J. Genet. Genom. 2014, 41, 7–19. [CrossRef]
137. Oishi, I.; Yoshii, K.; Miyahara, D.; Kagami, H.; Tagami, T. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci. Rep.

2016, 6, 23980. [CrossRef]
138. Chojnacka-Puchta, L.; Sawicka, D. CRISPR/Cas9 gene editing in a chicken model: Current approaches and applications. J. Appl.

Genet. 2020, 61, 221–229. [CrossRef]
139. Ming, Z.; Vining, B.; Bagheri-Fam, S.; Harley, V. SOX9 in organogenesis: Shared and unique transcriptional functions. Cell. Mol.

Life Sci. 2022, 79, 522. [CrossRef] [PubMed]
140. Fear, V.S.; Forbes, C.A.; Anderson, D.; Rauschert, S.; Syn, G.; Shaw, N.; Jamieson, S.; Ward, M.; Baynam, G.; Lassmann, T. CRISPR

single base editing, neuronal disease modelling and functional genomics for genetic variant analysis: Pipeline validation using
Kleefstra syndrome EHMT1 haploinsufficiency. Stem Cell Res. Ther. 2022, 13, 69. [CrossRef]

141. Kurata, M.; Yamamoto, K.; Moriarity, B.S.; Kitagawa, M.; Largaespada, D.A. CRISPR/Cas9 library screening for drug target
discovery. J. Hum. Genet. 2018, 63, 179–186. [CrossRef] [PubMed]

142. Yue, J.; Du, Z.; Zhou, F.-M.; Dong, P.; Pfeffer, L.M. Applications of CRSIPR/Cas9 in cancer research. Cancer Med. Anti Cancer
Drugs 2016, 1, 1000103. [CrossRef]

143. Wang, J.; Song, X.; Guo, C.; Wang, Y.; Yin, Y.J.C.s. Establishment of MAGEC 2-knockout cells and functional investigation of
MAGEC 2 in tumor cells. Cancer Sci. 2016, 107, 1888–1897. [CrossRef]

144. Hang, C.Y.; Moriya, S.; Ogawa, S.; Parhar, I.S. Deep brain photoreceptor (val-opsin) gene knockout using CRISPR/Cas affects
chorion formation and embryonic hatching in the zebrafish. PLoS ONE 2016, 11, e0165535. [CrossRef]

145. Niu, Y.; Shen, B.; Cui, Y.; Chen, Y.; Wang, J.; Wang, L.; Kang, Y.; Zhao, X.; Si, W.; Li, W. Generation of gene-modified cynomolgus
monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014, 156, 836–843. [CrossRef]

146. Endo, M.; Mikami, M.; Toki, S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell
Physiol. 2015, 56, 41–47. [CrossRef]

147. Zeng, X.; Luo, Y.; Vu, N.T.Q.; Shen, S.; Xia, K.; Zhang, M. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11
confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol. 2020, 20, 313.

148. Ma, L.; Zhang, D.; Miao, Q.; Yang, J.; Xuan, Y.; Hu, Y. Essential role of sugar transporter OsSWEET11 during the early stage of rice
grain filling. Plant Cell Physiol. 2017, 58, 863–873. [CrossRef]

149. Yan, L.; Wei, S.; Wu, Y.; Hu, R.; Li, H.; Yang, W.; Xie, Q. High-efficiency genome editing in Arabidopsis using YAO promoter-driven
CRISPR/Cas9 system. Mol. Plant 2015, 8, 1820–1823. [CrossRef]

150. Ryder, P.; McHale, M.; Fort, A.; Spillane, C. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using
CRISPR/Cas9 genome editing. Plant Cell Rep. 2017, 36, 1005–1008. [CrossRef] [PubMed]

151. Lei, C.; Gui, W.; Ya-Nan, Z.; Xiang, H.; Wen, W. Advances and perspectives in the application of CRISPR/Cas9 in insects. Zool.
Res. 2016, 37, 136.

152. Gratz, S.J.; Rubinstein, C.D.; Harrison, M.M.; Wildonger, J.; O’Connor-Giles, K.M. CRISPR-Cas9 genome editing in Drosophila.
Curr. Protoc. Mol. Biol. 2015, 111, 31–32. [CrossRef] [PubMed]

153. Tyagi, S.; Kumar, R.; Das, A.; Won, S.Y.; Shukla, P. CRISPR-Cas9 system: A genome-editing tool with endless possibilities. J.
Biotechnol. 2020, 319, 36–53. [CrossRef]

http://doi.org/10.1016/j.bbadva.2022.100047
http://doi.org/10.3390/ijms20020453
http://www.ncbi.nlm.nih.gov/pubmed/30669675
http://doi.org/10.1038/s41375-021-01469-x
http://doi.org/10.1016/j.canlet.2016.01.030
http://doi.org/10.1038/s41434-021-00251-z
http://doi.org/10.1534/genetics.113.156521
http://www.ncbi.nlm.nih.gov/pubmed/24190921
http://doi.org/10.1534/genetics.114.169730
http://doi.org/10.1371/journal.pone.0101210
http://www.ncbi.nlm.nih.gov/pubmed/25013902
http://doi.org/10.3389/fmicb.2018.00209
http://www.ncbi.nlm.nih.gov/pubmed/29503634
http://doi.org/10.1007/s00253-018-9295-8
http://www.ncbi.nlm.nih.gov/pubmed/30151606
http://doi.org/10.1038/ncomms6344
http://doi.org/10.1016/j.jgg.2013.12.004
http://doi.org/10.1038/srep23980
http://doi.org/10.1007/s13353-020-00537-9
http://doi.org/10.1007/s00018-022-04543-4
http://www.ncbi.nlm.nih.gov/pubmed/36114905
http://doi.org/10.1186/s13287-022-02740-3
http://doi.org/10.1038/s10038-017-0376-9
http://www.ncbi.nlm.nih.gov/pubmed/29158600
http://doi.org/10.4172/2576-1447.1000103
http://doi.org/10.1111/cas.13082
http://doi.org/10.1371/journal.pone.0165535
http://doi.org/10.1016/j.cell.2014.01.027
http://doi.org/10.1093/pcp/pcu154
http://doi.org/10.1093/pcp/pcx040
http://doi.org/10.1016/j.molp.2015.10.004
http://doi.org/10.1007/s00299-017-2125-0
http://www.ncbi.nlm.nih.gov/pubmed/28289885
http://doi.org/10.1002/0471142727.mb3102s111
http://www.ncbi.nlm.nih.gov/pubmed/26131852
http://doi.org/10.1016/j.jbiotec.2020.05.008


Curr. Oncol. 2023, 30 1974

154. Wang, L.; Yang, L.; Guo, Y.; Du, W.; Yin, Y.; Zhang, T.; Lu, H. Enhancing targeted genomic DNA editing in chicken cells using the
CRISPR/Cas9 system. PLoS ONE 2017, 12, e0169768. [CrossRef] [PubMed]

155. Platt, R.J.; Chen, S.; Zhou, Y.; Yim, M.J.; Swiech, L.; Kempton, H.R.; Dahlman, J.E.; Parnas, O.; Eisenhaure, T.M.; Jovanovic, M.
CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014, 159, 440–455. [CrossRef] [PubMed]

156. Park, K.-E.; Park, C.-H.; Powell, A.; Martin, J.; Donovan, D.M.; Telugu, B.P. Targeted gene knockin in porcine somatic cells using
CRISPR/Cas ribonucleoproteins. Int. J. Mol. Sci. 2016, 17, 810. [CrossRef] [PubMed]

157. Lackner, D.H.; Carré, A.; Guzzardo, P.M.; Banning, C.; Mangena, R.; Henley, T.; Oberndorfer, S.; Gapp, B.V.; Nijman, S.;
Brummelkamp, T.R. A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat. Commun. 2015, 6, 10237. [CrossRef]

158. Ahmad, G.; Amiji, M. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery. Drug Discov. Today 2018,
23, 519–533. [CrossRef]

159. Ghosh, S.; Tibbit, C.; Liu, J.-L. Effective knockdown of Drosophila long non-coding RNAs by CRISPR interference. Nucleic Acids
Res. 2016, 44, e84. [CrossRef] [PubMed]

160. Roy, B.; Zhao, J.; Yang, C.; Luo, W.; Xiong, T.; Li, Y.; Fang, X.; Gao, G.; Singh, C.O.; Madsen, L. CRISPR/Cascade 9-mediated
genome editing-challenges and opportunities. Front. Genet. 2018, 9, 240. [CrossRef] [PubMed]

161. Dai, B.; Zhang, X. SOCS2 affects the proliferation, migration, and invasion of nasopharyngeal carcinoma cells via regulating
EphA1. Neoplasma 2020, 67, 794–801. [CrossRef] [PubMed]

162. Zhu, L.; Mon, H.; Xu, J.; Lee, J.M.; Kusakabe, T. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining
pathway enhances gene targeting in silkworm cells. Sci. Rep. 2015, 5, 18103. [CrossRef]

163. Ledford, H. CRISPR fixes disease gene in viable human embryos. Nature 2017, 548, 13–14. [CrossRef]
164. Baumann, K. Biotechnology: CRISPR-Cas becoming more human. Nat. Rev. Drug Discov. 2017, 16, 601–602. [CrossRef] [PubMed]
165. Shen, Z.; Zhang, X.; Chai, Y.; Zhu, Z.; Yi, P.; Feng, G.; Li, W.; Ou, G. Conditional knockouts generated by engineered CRISPR-Cas9

endonuclease reveal the roles of coronin in C. elegans neural development. Dev. Cell 2014, 30, 625–636. [CrossRef]
166. Costa, M.A.; de Araújo, E.F.; van den Berg, C.; Bastos, C.A. A tecnologia CRISPR/Cas9 aplicada ao modelo biológico Drosophila

melanogaster/CRISPR/Cas9 technology applied to the Drosophila melanogaster biological model. Braz. J. Dev. 2022, 8,
27610–27642. [CrossRef]
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