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Notation 

INDICES 

s  Source task 

e  Sink task 

i  Task 

j  Path from source to sink 

ik  Index of random variable ( )ik
it  

jv  Index of random variable  jvT  

ik   Realization of integer ik  

jv   Realization of integer jv  

critjv   Realization of integer jv  that satisfies Eq. (32) 

*
jv   Realization of integer jv  that corresponds to the optimal solution of Path-Oriented 

Formulation proposing in Section 5 

ref
jv  Realization of integer jv  for local search method in Section 6adj  Index of a task 

next to task i 
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i  Task that improvement of dispersion is allowed in Supplementary Material E 

SETS 

W  Set of tasks except for source and sink 

V  Set of paths 

jp  Set of tasks on path j except for dummy tasks 

A   Set of realizations for ,ik i W  

M   Set of realizations for ,jv j V  

jM  Set of realizations for the local search method 

E  Set of arcs in process network 

 1 2, , , rv v vH    Set that includes all  1 2, , , nk k k  satisfying condition     ,ji

j

vk
i j

i p
t T j V



   

 1 2, , , rv v vH   Set that includes all  1 2, , , nk k k  satisfying condition     ,ji

j

vk
i j

i p
t T j V



   for the 

local search method  
 

PARAMETERS 

n  Number of tasks 

r  Number of paths 

U
ic  Crash cost of task i 

U
ic  Vector of the crash cost of task i 

C  Maximum total cost 

   Target process completion time 

 i
i

k  Probability in bin ik  

 [ ]ik
i iN t  Number of samples within    1i ik

i i i
kt t t    

i   Proportionality constant for reducing duration of task i per additional cost in classical CPM 

formulation 

,M i  Proportionality constant for reducing expected value of duration of task i per additional cost in 
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proposing formulations 

,D i  Proportionality constant for dispersion of duration of task i per additional cost in proposing 

formulations 
ave

it   Average duration of task i without improvement 

 ik
it   Duration of task i without improvement in discretized form 

 jvT  Discretized time 

 1 2, , , rv v vh   Probability that sum of task durations 
 i

j

k
i

i p
t


  is smaller than  jv

jT  for all paths, j V  

   Search range in the local search method 

ref
,M ic  Realization of allocating cost on task i for the local search method as a reference value  

*
,M ic   Optimal value of ,M ic  of the Path-Oriented Formulation in Section 5 

a   Bin width for histograms in case studies 

 

CONTINUOUS VARIABLES 

ic  Allocating cost to task i in the classical CPM formulation 

ic  Vector of allocating cost to task i in proposing formulations 

,M ic  Allocating cost to reduce expected value of task duration 

,D ic  Allocating cost to reduce dispersion of task duration 

it  Duration of task i without improvement 

it  Duration of task i after improvement 
 ik

it  Duration of task i after improvement in discretized model 

 

BINARY VARIABLES 

 1 2, , , nk k kx   Binary variable in the Task-Oriented Formulation in Section 4 

 1 2, , , rv v vz   Binary variable in the Path-Oriented Formulation in Section 5 
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1．Introduction 

Network-based methods have been applied to many project management problems. A project is a set of 

activities with objectives and completion deadlines. Various projects such as production, building construction, 

system development, and research projects can be modeled as networks, which can be handled by advanced 

management techniques. In many cases, completing a project by the deadline is the most critical requirement. 

For example, meeting the delivery date of a product, which is set as a deadline, is a critical constraint for many 

manufacturers.  

The Critical path method (CPM) and the Project evaluation and review technique (PERT) are widely used 

as network-based methods for project management, which were proposed for the first time in 1950s (Malcolm 

et al., 1959) . The PERT method identifies the critical path (bottleneck), which is a sequence of tasks that has the 

longest duration in a project network. Identifying the critical path is a key step for project management because 

it determines the completion time of the project. In CPM problems, the trade-offs can be analyzed between cost 

allocation and shortening project the completion time, in addition to identifying the critical path. 

PERT/CPM methods are powerful techniques also for many chemical engineering problems (Kopanos et al., 

2014; Kyriakidis et al., 2012). For example, in batch chemical processes where multiple tasks can be expressed 

as project network, finding the capital investment strategy to optimize the scheduling can be formulated as a 

CPM problem. Furthermore, the PERT method can be applied to scheduling problems such as estimating 

uncertain completion times in chemical processes. These problems that can be handled by the PERT and CPM 

methods exist in many process industries such as steel, pharmaceuticals, semiconductor, and food. In addition, 

the PERT and CPM methods can be applied to construction of chemical plants as previously reported (Walton, 

1964). 

In classical PERT/CPM methods, task durations are handled as fixed values. However, actual task durations 

in many real applications have uncertainty for unpredictable reasons such as weather, human resources, 

equipment failure, etc. Examples of production systems with uncertain task durations are chemical and steel 

processes. Furthermore, there can be manual operations where the durations are highly uncertain. To represent 

realistic project management scenarios, handling uncertainty is often crucial, and various modifications have 

been proposed for the classical PERT/CPM methods. In following discussion, we discuss a classification based 

on the following three viewpoints: modeling of path durations, handling time-cost trade-off, and solving the 

problems by heuristic or deterministic approaches.  
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Here we classify approaches for modeling uncertainty in task or path durations into the following four 

classes: fixed time (point estimate), fuzzy numbers, probability distributions (continuous distributions), and 

histogram (discrete distributions). The first approach is to regard task durations using a few representative values. 

A common approach in this class is the three-point estimation method, where the distributions of the task 

durations are approximated by the following three values―the most likely, most optimistic, and most pessimistic 

values. The classical PERT method employs this method. However, it has been reported that approximations 

based on this approach may deviate from the true distributions (Hajdu and Bokor, 2014). The second approach 

is to regard task durations as fuzzy numbers described a membership functions. Examples of methods that use 

fuzzy numbers have been proposed by Sadjadi et al. (2012), Kaur and Kumar (2014), Xu et al. (2012), and Chen 

and Hsueh (2008). The third approach is to assume the task durations follow some known continuous distribution 

functions. For example, in Golenko-Ginzburg and Gonik (1997), it is assumed that the task durations follow 

normal or beta distributions. The fourth approach is to handle task or path durations as histograms, as in Herroelen 

and Leus (2004) and Bruni et al. (2009). Since the actual data of task or path durations is given as discrete values, 

handling the data histograms without approximation can be an advantage. In this paper, we also employ the 

fourth approach for production systems where histograms of task durations can be obtained from historical 

operation data.  

The time-cost trade off problem is one form of scheduling methods to find the optimal cost allocation to tasks 

or paths. For this problem, there have been various formulations proposed for the objective function. Some 

examples include Kelley and Walker (1959), Xu et al. (2012), and Hasuike (2013); among these studies, in 

Kelley and Walker (1959), the objective function is to minimize the project completion time or total allocation 

cost. In Xu et al., (2012), four kinds of optimization problems that have different objective functions were 

proposed such as minimizing the total allocating cost. On the other hand, Hasuike (2013) aimed to maximize an 

approximated project completion probability within a target completion time. In this paper, we employ a similar 

objective function as in Hasuike (2013) where the probability is maximized, while in this paper we evaluate the 

objective function is without approximation. For time-cost trade off problems, there are two approaches to model 

improvement of task or path durations by allocating costs to tasks or paths. The first approach is continuous 

improvement per allocating costs, which assumes task or path durations decreases in proportion to allocated costs 

continuously. In this approach, the relationship between the allocated cost and reduction of task (or path) 

durations must be modeled as a continuous function to formulate an optimization problem (Hasuike, 2013; 

Kelley and Walker, 1959; Xu et al., 2012). The other approach is to employ discrete improvement per allocating 

costs, which assumes task or path durations have discrete candidates by allocating some cost. In this approach, 

the relationship between the allocated cost and reduction of task (or path) durations must be modeled as a discrete 

function to formulate an optimization problem (Tao et al., 2017).  
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The other form of the scheduling method does not consider time-cost trade off. These methods generally 

have a single objective to estimate some indicators of the target project. Examples of these methods were 

proposed by Malcolm et al., (1959), Hajdu and Bokor (2014), Ke and Liu (2005). Among these studies, the 

classical PERT method (Malcolm et al., 1959) which aim to estimate the project completion time. Bruni et al. 

(2009) proposed a way to estimate minimum makespan that probability or “reliability level” of project 

completion is larger than a constant. Ke and Liu (2005) proposed three approaches to estimate such as minimum 

cost expectation value or probability that the cost exceeds the budget. In addition, Hajdu and Bokor (2014) 

proposed a way to estimate how the shape of the distribution function of each task durations affects the project 

completion time. 

We can also classify the project scheduling methods with uncertainty based on the solution approaches. These 

problems can be solved either by a heuristic or deterministic algorithm. Due to the difficulty of the CPM 

problems with uncertainty, many heuristic approaches have been proposed. Heuristic algorithms are often used 

for finding approximate solutions when a short computational time is desired, or the problem is difficult to be 

formulated as a deterministic problem. Such approaches include the Monte Carlo simulation (Li and Womer, 

2015), genetic algorithm (Azaron et al., 2005), and combining these two numerical techniques (Huang and Ding, 

2011; Ke and Liu, 2005). On the other hand, in deterministic approaches, the exact solution can be found without 

an approximation. Examples include Linear Programming (LP) by Kelley and Walker (1959), LP using fuzzy 

parameters by Kaur and Kumar (2014), and Mixed-Integer Linear Programming (MILP) by Bruni et al. (2009). 

In this paper, we propose a method to expand applications of CPMs in chemical and process engineering by 

considering uncertainty of task durations. Our proposed method is based on deterministic optimization where 

the task durations are handled as histograms considering time-cost trade-off. The proposed approach has the 

following three advantages. Firstly, by handling task durations as histograms, we can handle operation data 

without approximation and losing information. Secondly, we can consider time-cost trade off problem and find 

the optimal cost allocation that maximizes the project completion probability within a given completion time. 

Note that we consider two kinds of improvement of task durations to enable more flexible modeling, while past 

studies consider only a single way to improve task durations (Hasuike, 2013; Kelley and Walker, 1959; Xu et al., 

2012). Thirdly, by formulating the problem as an MILP problem that can be solved by deterministic algorithm, 

the exact solution can be found without an approximation in contrast to the heuristic approaches where only an 

approximate solution can be found.  

This paper is organized as follows. In Section 2, we discuss the classical CPM problem, and handling 

uncertainty as a background. In Section 3, we describe our assumptions in our problem formulation. In Section 

4, we propose a new approach called the Task-Oriented Formulation. In Section 5, we reformulate the same 
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problem to decrease the computational time. In Section 6, we propose an iterative local search method to shorten 

the computational time. In Section 7, we show examples. In Section 8, we conclude this paper. 
2. Background 
 

2.1 CPM without uncertainty 

The CPM is a method to analyze and optimize a project and production system. In this method, the entire 

project or production system is represented as a network figure that contains activities and sequences. There are 

two equivalent expressions for the CPM. In the activity on node type, activities with given durations are 

expressed as nodes. On the other hand, in the activity on arc type, they are expressed as arcs. These two 

expressions are equivalent, and in this paper, we use the former type. An example of activity on arc type project 

network is shown in Figure 1. In addition to the four activities, 1, 2, 3, and 4 shown in the middle of this figure, 

we consider a single source s, as well as a sink e. These source and sink are treated as dummy tasks that have no 

durations, where the solution remains the same. In this paper, we consistently refer to activities as tasks, since we 

consider only production systems. For the same reason, we call the project as a process and call the project 

completion time where all tasks are completed as process completion time. 
 

 
Figure 1. Example of project network [2-column fitting image] 

 

In addition to finding the critical path in a process, this approach can also be used to identify the most 

efficient improvement to reduce the process completion time. The objective of this problem is to minimize the 

process completion time of the production system. The critical path, which is the path that has the longest time, 

determines the process completion time. Thus, the process completion time can be shortened by reducing the 

task durations on the critical path. 
  

s
1 2

3
4 e
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The CPM problems without uncertainty, which aim to minimize the process completion time, can be 

formulated as min-max problem which assumes that task durations are reduced linearly with additional cost.  

 

Minimize: max

s.t.

0 ,   

j j

i i ij V i p i p

i
i W

U
i i

t c

c C

c c i W




 



   
  



  

 

   (1) 

where i is an index for tasks; n is the number of tasks excluding source and sink; {1,2, , }W n   is the set 

of tasks except for source and sink; j is a path from source to sink; r is the number of paths from the source to 

sink; {1,2, , }V r   is the set of all paths from source to sink; jp  is the set of tasks excluding dummy 

tasks on path j V ; it  is the duration of task i; i  is the proportionality constant of duration of task i per 

additional cost; U
ic  is the crash cost (maximum cost) of task i; C is the maximum total cost. These sets and 

parameters above are assumed to be known. On the other hand, ic , which is allocated cost of task i W , is a 

decision variable. Note that generally this problem can be formulated as Linear Programming (LP) (Kelley and 

Walker, 1959). The general formulation is shown as (A.1) in Supplementary Material A. 

The classical CPM problem without uncertainty assumes that the task durations are known and constant. 

However, such an assumption is often invalid in chemical and steel processes. To accommodate uncertainty in 

the CPM, it has been attempted to use the average or mean of task duration, or three-point estimation values to 

represent the distribution of the task duration based on the most likely, most optimistic, and most pessimistic 

values. However, these approaches are unable to fully utilize the information of the task duration distributions. 
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2.2 CPM with uncertainty 

We expand the concept of the CPM without uncertainty, and define “CPM with uncertainty” as follows: we 

aim to maximize the probability of finishing all tasks by a given target completion time  . Here, we define a 

cost vector of allocating some cost to task i as ic , assuming the maximum total cost is given as C. Additionally, 

the duration of task i has a probability distribution illustrated in Figure 2 (a), which can be improved by allocating 

some cost. 
Under these assumptions, the problem is generally formulated as 

  Maximize:Pr Process completion time   (2) 

 s.t. ,
i W

C


 ic   (3) 

 ,   i W  U
i i0 c c   (4) 

where ic  is the L1 norm of the vector of allocating cost ic  , U
ic   is a vector of the crash cost (maximum 

cost) of task i. In this formulation, the objective function in (2) is the probability of finishing all tasks by a target 

completion time  ; generally, calculating the objective function (2) requires multi-dimensional integrations 

and convolutions, which are complicated operations that require the information of all paths (Kamburowski, 

1992). Furthermore, to handle the task durations in the continuous time domain, it is necessary to model the 

probability distributions as some functional forms, which may require approximation. In this study, we avoid 

these two problems by discretizing the time domain, and converting this problem into a Mixed-Integer Linear 

Programming (MILP) problem as described in the next section.  

 

Figure 2. Probability distribution and histogram duration of task i [1-column fitting image] 
 
 

Task 
duration 𝑡

Pr
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y 𝛼 ( )

𝑡 ( ) 𝑡 ( )𝑡 ( )𝑡 ( ) ⋯⋯ 𝑡 ( )
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y

with cost
allocation

Task duration 𝑡

ic

(a) (b)
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3 . Assumption for proposed methods 
3.1 Obtaining discrete probability from operation data 

In this paper, we treat operation data as discrete probability distributions, which avoids approximation of the 

probability distribution to functional forms. Bruni et al. (2009) used discrete data for the same motivation. In our 

work, historical operation data is assumed to be available. Such data is an accumulated record of task durations, 

which can be shown graphically as histograms. This assumption does not require any approximation to 

probability distribution functions, and thus the solution is expected to be more accurate. We also assume that the 

duration of each task is independent (i.e. the duration of task i does not influence that of another task i ,i i ). 

To generate a discretized distribution from the operation data, we discretize the duration of task i using an 

index ik . Using this index, histograms of task distributions are discretized as illustrated in Figure 2 (b). Here, 

ik  is an integer which takes a value between 0 and m , and we define a set of all realizations of ik  as A. 

  0,1,2, , 1, .A m m    (5) 

The duration of task i without cost allocation, which is given as  ik
it , is uncertain and treated as a random 

variable, where the scenario (realization) is specified by the integer ik . As a result of the discretization,  ik
it  

has multiple scenarios;        0 1 1, ,   ,  ,  m m
i i i it t t t   (see Figure 2 (b)). Note that one realization of the 

discrete random variables from Task 1 to n as       1 2
1 2, , , nk

n
k kt t t  corresponds to a scenario that duration 

of task i is within    1i ik k
i i it t t    for all tasks i W , where it  is duration of task i (given as a continuous 

variable). Note that the number of all scenarios is nm , which is a large number. 

It should also be noted that the normalized distribution obtained from such data approaches the probability 

distribution as the historical record becomes larger with repeated operations. Figure 2 (b) is an illustration of the 

normalized distributions. We divide duration of task i into m bins, which give the probability  i

i

k



 to satisfy 

   ii
kk

i it t


 : 

 

     

 
 

Pr[ ]

[ ] , ,
[ ]

i ii

i

i

i

k kk
i i

k

i i
k

i i
A

i

k

t t

N t i W
N t


 





 

 


  (6) 

where ik  is the index for a certain realization of the random variable  ik

it


 ,  [ ]ik
i iN t   is defined as the 

number of samples within    1i ik k
i i it t t   . 
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3.2 Approaches to improve task durations 

Improvement (or shortening) task durations can be performed in a number of different ways, and outcomes 

can be difficult to predict. Some examples of such improvement are as follows: increasing the number of 

operators, and preparing a training manual for operators. Some more examples in chemical industries include 

upgrading the catalyst in a reactor, and increasing the pump capacity in a liquid transport unit. As a result of such 

improvement measures, the task durations can be shortened, and in addition the profile of the probability 

distributions (or histograms of the task duration data) may change significantly. It would not be easy to model 

and predict the change of probability distributions. 

In this study, we use simple approaches to model the improvement of task durations by using two parameters, 

the expected value (mean) and dispersion (variance) of the probability distributions. The first approach is to 

decrease the expected value of task durations linearly per additional cost while keeping the shape of the 

distribution as shown in Figure 3 (a). This approach shifts the entire distribution horizontally: 

 
   

, , , ,i i
k k

i i M i M it t c i W     (7) 

where 
 ik

it  is improved duration of task i by cost allocation; ,M ic  is allocated cost to reduce expected value 

of task duration; ,M i  is the decrease rate of 
 ik

it  per additional cost, which is assumed to be constant. We 

call this approach as improvement of expected value. 
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The second approach to improve the task duration is to narrow the dispersion while keeping the expected 

value of the distribution constant (Figure 3 (b)). In this approach, the task duration 
 ik

it   of task i after 

improvement is written as 

 
      ave

, , , ,i i i
k k k

i i i i D i D it t t t c i W      (8) 

where ,D ic  is allocated cost to reduce dispersion of task duration; and ,D i  is the proportionality constant of 

dispersion per additional cost; and ave
it  is average duration of task i without improvement, which we define as:  

 

   

 
ave , .

i i

i

i

i

k k
i i

k A
i k

i
k A

t N
t i W

N




 



  (9) 

We call this approach as improvement of dispersion. 

While the improvement of expected value is used commonly as in Kelley and Walker (1959), and Xu et al. 

(2012), the improvement of dispersion is unique and other papers have not considered this approach. Our 

proposed framework can handle both approaches, which is demonstrated in a case study in Section 7. 

 
Figure 3. Improvement of duration of task i [1-column fitting image] 
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4. Task-Oriented Formulation 
In this section, we propose a reformulation strategy for the problem given by the CPM with uncertainty (2)

- (4) into a MILP problem. This formulation is referred to as the Task-Oriented Formulation, while we discuss 

another reformulation in Section 5. 
 
4.1. Preparation for Task-Oriented Formulation 

To avoid the complex operation in evaluating the objective function by convolution introduced in 

Kamburowski (1992), we convert the objective function (2) into a simple linear equation. From (6) we express 

the joint probability that all tasks finish within the shaded bins in Figure 4 as the multiplication of probabilities 
 ik

i


 for all tasks i W  : 

             1 2

1 2Pr , .i ni
k k k kk

i i nt t i W   
        

   (10) 

i.e. Eq. (10) is the probability that each task i finishes in    ii
kk

i it t


  for i W . Here, it should be noted 

that there are a large number of combinations for the realizations of indices ik  in the random variables  ik
it , 

  1 2, , , .n
nk k k A   (11) 

In this work, we assign binary variables    1 2, , , 0,1nk k kx   that enumerate all possible realizations of the 

random variables. We consider a logic condition such that each of these random variables becomes positive only 
if the process completion time is equal to or shorter than  : 

 1 2, , , 1 if Project completion time
.

0 otherwise
nk k kx


 



           (12) 

Using Eq. (10) and (12), we rewrite Eq. (2) in a discretized form as follows: 
 

 

 
   

 
 

     
 

 

1 2

1 2

1 2 1 2

1 2

, , ,

, , ,

, , ,
1 2

, , ,

Pr Project completion time

Pr ,

.

i ni

n
n

n n

n
n

k k k kk
i i

k k k A

k k k k k k

n
k k k A

t t i W x

x  

   

   

     

   



     

















  (13) 

Here, instead of using the complex operations in evaluating Eq. (2) in the continuous time domain, we discretize 

the time domain and rely on the logic condition in Eq. (12). We implement this logic constraint within a 

framework of integer programming as shown below. 
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Figure 4. Concept of Equation (10) [1-column fitting image] 

 
 

  

Duration
Pr

ob
ab

ilit
y

Task 2

Duration

Pr
ob

ab
ilit

y

Task 1

Duration

Pr
ob

ab
ilit

y

Task i

Duration

Pr
ob

ab
ilit

y

Task n

( )

( )

( ) ( )

( )

( )

( )

( )

…s

1 2

i… n

…

e

…

… n-1



15 
 

4.2. Task-Oriented Formulation 

The optimization problem given in Eq. (2) - (4) can be reformulated into the following form using Eq. 

(12) and (13). Firstly we show overall formulation and then discuss each constraint. 
 

Task-Oriented Formulation (TOF) 

 
     

 

 1 2 1 2

1 2

, , ,
1 2

, , ,

Maximize: n n

n
n

k k k k k k
n

k k k A

x  


 



   (14) 

 s.t.     1 2, , ,
1 2{0,1}, , , ,nk k k n

nx k k k A     (15) 

  
   

 

ave1 2, , ,( ) ( )
, , , ,

1 2

, ,

, , ,

ni i

j j j

k k kk k
i M i M i i i D i D i

i p i p i p
n

n

t x c t t c j V

k k k A

 
  

 
      

 


  


  (16) 

 
, ,M i D i

i W i W
c c C

 

     (17) 

 
, ,

, ,

0 ,    

0 ,    ,

U
M i M i

U
D i D i

c c i W

c c i W

  

  
  (18) 

In this problem, the decision variables are  1 2, , , nk k kx   as well as the allocating costs 

 
,

,
, ,M i

D i

c
i W

c
 

  
 

ic   (19) 

where the costs ,M ic  and ,D ic , which are two improving approaches are introduced in Section 3.2, are vector 

elements of allocating cost ic  defined in (3) in this formulation. It can be seen that Eq. (17) can be given by 

substituting (19) into Eq. (3). 

It is critical to note that Eq. (16) is a constraint for the duration of path j that realizes the logic condition (12). 

Here we recall 
 ik

it  is the duration after improvement from ( )ik
it . Since 

 ik
it  is a result of two kinds of 

improvement; the improvement of expected value (7) and the improvement of dispersion (8), 
 ik

it   can be 

written as 

 
   ( ) ( ) ave

, , , , , .i i i
k k k

i i M i M i i i D i D it t c t t c i W        (20) 

Here summing (20) over all tasks on path j gives 

    ( ) ( ) ave
, , , , , .i i i

j j j j

k k k
i i M i M i i i D i D i

i p i p i p i p
t t c t t c i W 

   

          (21) 
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Here, we express the process completion time as the maximum value of 
 i

j

k
ii p

t
   among all paths j V , 

  (Process completion time) max i

j

k
i

j V i p
t




     (22) 

From (22), we rewrite the condition that the process completion time is below  : 

 
 

 

(Process completion time )

max

, .

i

j

i

j

k
i

j V i p

k
i

i p

t

t j V

 



 

  

   









 (23) 

Substituting (21) into the bottom inequality in (23) gives 

  ( ) ( ) ave
, , , , , .i i

j j j

k k
i M i M i i i D i D i

i p i p i p
t c t t c j V 

  

         (24) 

Here we compare Eqs.(16) and (24), and note (16) can be obtained by multiplying binary variables 
1 2( , , , )nk k kx   to the first term of (24). If the left hand side of (24) is over  , the binary variables 1 2( , , , )nk k kx   

become zero because the constraint (16) can be satisfied only when 1 2( , , , )nk k kx   are zero. On the other hand, 

if the left hand side of (24) is below  , the binary variables 1 2( , , , )nk k kx   can take either value, but the number 

of positive binary variables 1 2( , , , )nk k kx   is maximized since the objective function (14) should be maximized. 

From the discussion above, we see the logic condition (12) is rewritten to the constraints (16). 

We note that the problem size of the above formulation TOF is very large due to the large number of binary 

variables 1 2( , , , )nk k kx   . The number of the binary variables 1 2( , , , )nk k kx    is nm   as they are defined for 

enumerations 1 2( , , , ) n
nk k k A  for all possible random variables   ,ik

it i W  . In the next section, we 

show another formulation that reduces the problem size. 
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5. Path-Oriented Formulation 
We show an alternative formulation to (2) - (4) that has a smaller number of decision variables than TOF. 

The large number of decision variables in TOF was due to the large number of discretized bins for task durations. 

In the reformulation given below, we reduce the decision variables by considering the duration of each path, 

instead of each task. This reduction in the problem size is possible because the number of all paths in a process 

is significantly smaller than the total number of tasks. Note that in this reformulation, we only consider the 

improvement of the expected value (7) ignoring the improvement of dispersion (8) (i.e. , 0, D ic i W  ). 
 

5.1 Preparation for Path-Oriented Formulation 
Firstly we rewrite Eq. (21), and show that the improvement of dispersion discussed in Section3.2 cannot be 

considered in this formulation. Assuming the bin width in the histogram of each task is constant, we define 
discrete time to describe path durations as 

     ,j i

j

v k
i

i p
T t j V



   (25) 

in which the index jv  for the random variable  jvT  is within a set M : 

 , {0,1,2, , 1, },jv M M l l     (26) 

where l is the largest bin number of ,jv j V . By substituting (26) into (21), we obtain 

 
   ( ) ( ) ave

, , , , , .i j i

j j j

k v k
i M i M i i i D i D i

i p i p i p
t T c t t c j V 

  

        (27) 

Eq. (27) have two sets of indices, ik  and jv . Here, jv , the index in the random variable for the paths, is 

dependent on that for the tasks, ik , and the relationship between them cannot be expressed explicitly. In this 

work,  we eliminate ik   from Eq. (27) by ignoring the improvement of dispersion as , 0, D ic i W   . 

Under this assumption, we can express 
 i

j

k
i

i p
t


  only with the random variable for the paths ( )jvT  as: 

 
  ( )

, , , .i j

j j

k v
i M i M i

i p i p
t T c j V

 

     (28) 

Using Eq. (28), we rewrite Eq. (2) in a useful form. By substituting (28) into (23), we obtain 
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( )

, ,

Pr Process completion time

Pr , .j

j

v
M i M i

i p
T c j V



 

 
     

  


  (29) 

While (29) is important since it is another expression of the objective function (2), here we introduce some 

definitions that help rewriting (2) using (29) in a useful form. Here we define a parameter  1 2, , , rv v v
h

  
 which 

is the probability that the discrete time  jvT  is smaller than 
 jv

T


  for all paths j V : 

      1 2, , ,
Pr , ,r jjv v v vvh T T j V

        


  (30) 

  1 2, , , ,r
rv v v M      (31) 

where jv is the index for a given realization of the random variable 
 jv

T


. We show the concept of (30) in 

Figure 5, in which histograms of path durations are shown and the bins satisfying    jj vvT T


  are colored 

with gray. Here we define critical duration of path j that is equivalent to the target completion time   after 

allocating costs , ,M ic i W  as 

  crit

, , .j

j

v
M i M i

i p
T c



     (32) 

By substituting (32) into (30), 

 

   1crit 2crit crit crit, , , ( )

( )
, ,

Pr ,

Pr , .

r jj

j

j

v v v vv

v
M i M i

i p

h T T j V

T c j V


     
 

     
  





  (33) 

By substituting (29) into (33), we can rewrite (2) by using  1 2, , , rv v vh   as 

 
 
 1crit 2crit crit, , ,

Pr Process completion time

.rv v vh

 

 
  (34) 

Note that the parameter  1 2, , , rv v vh    is calculated by summing the probability (10) as given in 

Supplementary Material B. This calculation to prepare the parameters  1 2, , , rv v vh   should be executed before 

solving optimization problems shown in POF in the next Section 5.2 and (D.4) in Supplementary Material D. 

An example for this calculation is shown in case studies in Section 7.  
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Figure 5. Concept of Equation (30) [1-column fitting image] 
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5.2 Path-Oriented Formulation 

From the discussion above, (2) - (4) can be reformulated into an even simpler form. Firstly we show the 

overall reformulation and discuss the objective function and constraints later.  

 
Path-Oriented Formulation (POF) 

 
   

 

1 2 1 2

1 2

, , , , , ,

, , ,

Maximize: r r

r
r

v v v v v v

v v v M

h z


  


  (35) 

 
 

 

1 2

1 2

, , ,

, , ,

s.t. 1r

r
r

v v v

v v v M

z


 


  (36) 

            
   1 2, , ,

, , ,j r

j

v v v v
M i M i

i p
T z c j V



       (37) 

 
,M i

i W
c C



    (38) 

 , ,0 ,   U
M i M ic c i W      (39) 

   1 2, , ,
1 2{0,1}, , , ,rv v v r

rz v v v M                           (40) 

where    1 2, , , 0,1rv v vz    are binary variables that enumerate all possible realizations of the random 

variables. Decision variables are the binary variables  1 2, , , rv v vz 
 and allocating costs of task i as ,M ic . The 

correspondence between two formulations, the CPM without uncertainty and the POF is as follows: (2)→{(35), 

(36), (37), (40)}, (3)→(38), and (4)→(39). 

We consider a logic condition such that only one of the binary variables    1 2, , , 0,1rv v vz   becomes 

positive when the condition (32) is satisfied, and other binary variables become zero: 

 
     crit

1 2, , , 1 if , .
0 otherwize

j j
r

v vv v v T T j Vz


      



  (41) 

By multiplying  1 2, , , rv v vh   to  1 2, , , rv v vz   and summing them for all combination of realization of indices 

 1 2, , , rv v v  ,  1crit 2crit crit, , , rv v vh   can be expressed as 

    

 

 1crit 2crit crit1 2 1 2

1 2

, , ,, , , , , ,

, , ,

,rr r

r
r

v v vv v v v v v

v v v M

h z h


  


 (42) 

which is obtained from the logic condition (41). By substituting (42) into (34), it can be shown that Eq. (2) is 

equivalent with (35) as follows: 
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1 2 1 2

1 2

, , , , , ,

, , ,

Pr[Project completion time ] ,r r

r
r

v v v v v v

v v v M

h z


     



  (43) 

while satisfying the logic condition (41). 

In POF, the logic condition (41) is satisfied in the optimal solution of the (POF). The proof is given in 

Supplementary Material C. 
 
 
6. Path-Oriented Formulation with Local Search Algorithm 

In this section, we propose a local search method to the problem POF in order to further reduce decision 

variables and constraints of POF. We denote the Path-Oriented Formulation with Local Search Algorithm 

proposed in this section as (POF, Local Search). On the other hand, we call the original POF as (POF, Strict). A 

comparison between (POF, Strict) and (POF, Local Search) is illustrated in Figure 6. Note that the formulation 

(POF, Strict) finds certain indices of discrete random variables  * * *
1 2, , , rv v v   that correspond to the 

optimal solution of (POF, Strict) that satisfies  * * *
1 2, , , 1rv v vz 

  . This method uses the full search from all 

candidates of  * * *
1 2, , , rv v v , where the search range is (31). On the other hand, in (POF, Local Search), 

we limit the search within a local region and consider a limited number of candidates for  * * *
1 2, , , rv v v , 

which is around  ref re f re f
1 2, , , rv v v  that is a realization of some combination of the indices: 

  ref ref ref ref ref, , 1, , 1, , ,j j j j j jM v v v v v         (44) 

where   is a parameter. Using (44), the narrowed candidates of index for discrete random variables is given 

by: 

  1 2 1 2, , , .r rv v v M M M       (45) 

After this local search, we search the neighboring regions until the algorithm terminates. 
We note that the local search method does not guarantee to find the optimal solution of the original problem, 

(POF, Strict). Since the candidates of the binary variable  * * *
1 2, , , rv v vz   are limited, the optimal solution of (POF, 

Strict) may not be found by (POF, Local Search) if (45) does not contain  * * *
1 2, , , rv v v . This disadvantage 

must be weighed carefully against the advantage of the shorter computational time as demonstrated in our case 
study. Further details on the proposed local search method are given in Supplementary Material D. 
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Figure 6. Comparison between the (POF, Strict) and (POF, Local Search) [1-column fitting image] 
 
 
7. Case studies 

In this section, we present some examples to demonstrate the proposed methods. We compare the following 
three approaches: the CPM without uncertainty, the proposed two formulations, TOF and POF. In these 
examples, we assume that the widths of all bins are constant. Thus, we have 

    1 ,i ik k
i it t Wia     (46) 

In the following case studies, we set 5a   . We implemented these approaches on a desktop personal 

computer with a core i7, 3.4GHz processor. The problem is solved by Numerical Optimizer from NTT DATA 

Mathematical Systems Inc. (Tokyo, Japan). The algorithm in this solver is based on the branch-and-bound 

method.  
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7.1 Example 1 
 
In this example, we consider a production process shown in Figure 7, which shows the structure as well as 

the normalized distribution of each task. Table 1 shows the historical data for task duration  [ ]ik
i iN t  and 

given parameters. The sum of samples 
 [ ]i

i

k
i i

k A
N t


  are also shown for all tasks. Note that we introduced the 

historical data for task duration  [ ]ik
i iN t  in Section 3.1. For simplicity, we express  [ ]ik

i iN t  as  .ik
iN  

In this example, the maximum total cost and process completion time are given as follows: 250C   and 
100  . Note that the shortest and longest possible makespan are 70 and 165, respectively in this example. 

 
 

  
Figure 7. Production process of Example 1 [1-column fitting image] 
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Table 1 Historical operation data and given parameters for Example 1 

Task i  1
iN    2

iN   3
iN   4

iN   5
iN   6

iN   7
iN   8

iN   9
iN   10

iN   i

i

k
i

k A
N


  

1 2 10 20 30 26 18 4 - - - 110 

2 6 16 29 20 2 3 15 31 21 7 150 

3 15 17 18 18 18 18 16 - - - 120 

4 7 36 23 15 9 5 3 2 - - 100 

Task i   1
it   ,M i   ,

U
M ic   ,D i  ,

U
D ic  

1  15 0.24 40 0.020  30 

2  15 0.15 125 0.015  40 

3  45 0.20  125 0.010  40 

4  25 0.090  100 0.020  30 
 
 

Table 2 Results of Example 1 

 
CPM without 
uncertainty 

TOF 

w/o dispersion 
improvement 

with dispersion 
improvement 

# of decision variables 9 3924 3928 
# of constraints 20 7849 7857 

Task i ,M ic  ,M ic  ,M ic  ,D ic  

1 40.00 40.00 40.00 10.00 
2 61.80 80.00 1.040 40.00 
3 48.20 30.00 25.27 3.685 
4 100.0 100.0 100.0 30.00 

Probability finished by   0.8652 0.9070 0.9444 

Computational time <1s 17s 1027s 
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Table 2 shows the results for Example 1 by the classical approach, CPM without uncertainty and the proposed 

approach, TOF. In this example, we use the original formulation of the CPM without uncertainty shown in Eq. 

(A.1), where task duration ,it i W  is fixed while in this example task durations are given as the historical 

operation data in Table 1. In this study, we use the average duration ave
it  defined in Eq. (9) in place of the 

duration it  as ave ,i it t i W  . On the other hand, for the TOF, the proposed formulation in Section 4.2, we 

implemented two approaches in this example: without (w/o) dispersion improvement and with dispersion 

improvement. In the former approach, we do not consider improvement of dispersions  , 0,D ic i W   to 

compare it against the conventional approach on the basis of the same degree of freedom. In the latter approach 

of TOF, we consider both improvements, expected values and dispersions. 
The CPM without uncertainty leads to a low value of the objective function, 0.8652, or 86.52%, compared 

to the one calculated by the proposed methods, 0.9070. This value, 0.8652, was calculated by simply applying 

to the optimal cost allocations obtained by the CPM without uncertainty to the original problem that includes the 

uncertainty of task durations. This result indicates ignoring the problem uncertainty leads to poor cost allocation 

when task durations are uncertain. 

Here note that the objective value of TOF with dispersion improvement, 0.9444, is even higher than that of 

(TOF) without dispersion improvement, 0.9070; this difference is the result of the higher degrees of freedom by 

the improvement in the dispersion of task duration histograms. 

The advantages in the objective values discussed above are obtained at a cost of significantly longer 

computational time. In this example, the CPM without uncertainty needed only a short computational time (< 

1s) because the problem size is very small. In contrast, TOF without dispersion improvement needed a 

significantly longer computational time, 17 s, and that for TOF with dispersion improvement is even two orders 

of magnitudes larger, 1027 s, because of the complexity of algorithm. From this result, we see that considering 

two improvement approaches for task durations, dispersion in addition to expected value, makes the problem 

much more difficult to solve. Note that in Supplementary Material E, we discuss why the computational time for 

the TOF with dispersion improvement is much larger than that of TOF without dispersion improvement. 

We also analyze the optimal solution of TOF without uncertainty, and note that the allocation cost ,2Dc , 

which is the improved dispersion of Task 2, is the highest among all allocation costs , ,D ic i W  . This is 

because the dispersion of the task duration histogram in Task 2 is significantly larger than that of other tasks (see 

Figure 7), and thus improving this wide profile of task duration is effective. 
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7.2 Example 2 
To further observe the influence of the problem size of the three proposed methods, TOF, (POF, Strict) and 

(POF, Local Search), we apply these methods to another example that has a larger number of tasks and paths. 
The production process of Example 2 is shown in Figure 8, and historical operation data and parameters are 
given in Table 3. In this problem, we set the maximum total cost C  and the process completion time   as 
follows: 3 5 0C   and  180  . 

 
Figure 8. Production process of Example 2 [1-column fitting image] 
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Table 3 Historical operation data and parameters for Example 2 

Task i  1
iN   2

iN   3
iN   4

iN   5
iN   6

iN   7
iN   8

iN   9
iN   10

iN   i

i

k
i

k A
N


  

1 7 27 54 81 72 49 10 - - - 300 
2 38 42 45 45 45 45 40 - - - 300 
3 12 42 32 6 9 56 82 48 13 - 300 
4 116 69 44 28 19 11 8 5 - - 300 
5 12 32 57 39 3 6 31 62 43 15 300 
6 6 40 102 105 40 7 - - - - 300 
7 32 41 53 58 50 42 24 - - - 300 

Task i  1
it  ,M i  ,

U
M ic  

1 40 0.15 75 

2 30 0.15 125 

3 35 0.20  100 

4 35 0.25  150 

5 60 0.15  175 

6 30 0.15  75 

7 25 0.10  50 
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Table 4 Results of Example 2 

 
TOF 

w/o dispersion 
improvement 

(POF, Strict) 
(POF, Local Search) 
Search range 𝛽 = 2 

# of decision variables 2469614 14307 132 

# of constraints 7408815 42914 410 

Task i ,M ic   ,M ic  ,M ic  

1 
2 
3 
4 
5 
6 
7 

- 
- 
- 
- 
- 
- 
- 

75.00 
0.000 
75.74 
20.59 
67.65 
75.00 
36.03 

75.00 
0.000 
100.0 
15.00 
76.67 
33.33 
50.00 

Probability finished by   - 0.8635 0.8635 

Calculation time for 

 1 2, , , rv v vh   
- 95s 

5s  
(Sum over two 

iterations) 

Total computational time >24h 134s 
<6s  

(Sum over two 
iterations) 

 

Table 4 shows the solutions and computational statistics for Example 2. Note that TOF without dispersion 

improvement in this table is the same method introduced in Example 1; (POF, Strict) in this table is the Path-

Oriented Formulation shown in Section 5; (POF, Local Search) is the Path-Oriented Formulation with Local 

Search Algorithm shown in Section 6. It should be noted that (POF, Strict) and (POF, Local Search) can only 

consider improvement of expected value, and thus we compare TOF without dispersion improvement, not with 

dispersion improvement. In addition, we note that the complex calculation for  1 2, , , rv v vh   that appears in (30) 

and (D.3), which must be performed before solving the optimization problems for (POF, Strict) and (POF, Local 

Search), requires a significant amount of computational time; the computational time for this parameter is shown 

as “Calculation time for  1 2, , , rv v vh  ” in this table. Orders of computational time for calculating  1 2, , , rv v vh   

in (POF, Strict) and (POF, Local Search) are discussed in Supplementary Material F. 
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We compare the problem sizes and computational times in these three methods. It can be seen that TOF has 

the largest number of decision variables, 2469614, and constraints, 7408815. In contrast, (POF, Strict) has a 

significantly smaller number of decision variables,14307, and constraints, 42914. Furthermore, (POF, Local 

Search) has an even smaller number of decision variables and constraints than other two methods. The numbers 

of decision variables,132, and constraints 410, are for the first iteration, out of the total of the two iterations. Due 

to the large number of variables and constraints, TOF cannot be solved in 24 hours. In contrast, (POF, Strict) and 

(POF, Local Search) can be solved much faster than TOF: 134 seconds and below 6 second, respectively. Note 

that the computational time in (POF, Local Search) contains all steps of calculations shown in Supplementary 

Material D. 

It can be seen in Table 4 that while the objective values in (POF, Strict) and (POF, Local Search) are the same, 

0.8635, the optimal cost allocations found by these two methods are significantly different. This non-uniqueness 

of the optimal solution is due to Eq. (32), where many different combinations of the allocating cost ,ic i W
exist that give a single value of  critjvT . 

We can also find a general rule for cost allocations about tasks that are in series without any branching or 

merging: in this example, Task 2 and Task 3. In the optimal solution, the allocating cost on Task 2 is zero 

 ,2 0Mc   in both (POF, Strict) and (POF, Local Search), while for Task 3, which is the subsequent task to 

Task 2, a large amount of cost is allocated. This is because the cost coefficient for Task 3, ,3 0.20M  , is 

higher than that for Task 2, ,2 0.15M  . Since improvement of either task has the same influence on the 

process completion time, improving Task 3 should be pursued, which has the greater benefit for a given cost than 

Task 2. 

Finally we note the above problems are for illustrative purposes, and real problems in chemical industries can 

be significantly larger. For such large problems, one of the proposed approaches, (POF, Local Search), would be 

a promising technique. Further investigations into larger example problems remain as future work.  
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8. Conclusion 
In this paper, we advanced the classical CPM and proposed an optimization approach that maximizes the 

process completion probability within a target completion time, and utilizes historical data from production 

systems to handle uncertain task durations. Our method has mainly three advantages; handling the operation data 

without approximation; considering time-cost trade off by two kinds of improvement of task duration; and 

finding the optimal solution by formulating the problem as MILP. We proposed two formulations; Task-Oriented 

Formulation (TOF), and Path-Oriented Formulation (POF). Furthermore, we proposed the Path-oriented 

Formulation with Local Search, which applies a local search algorithm to POF and shortens the computational 

time. In addition, we applied these three formulations to two examples and demonstrated effectiveness of our 

approach.  

Finally, we note further room for improvement in the proposed approaches. We modeled the improvement of 

task durations using two parameters, expected value and dispersion, which should be validated carefully with 

some realistic data. Furthermore, in the POF, we needed to ignore the improvement in dispersion. In addition, 

the influence of the problem size to the computational time should be investigated. These remaining issues should 

be resolved in future work, where we will extend the concept of the improvement of dispersion, which is 

considered only in TOF, to POF, as well as to the local search method. 
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Supplementary Material A : The general formulation of the classical CPM 
 

Here we show another formulation of the classical CPM that is more commonly used than (1), which is 

given as the following Linear Programming (LP) problem. 
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  (A.1) 

where adj is the index of a task next to task i; E is a set of arcs in process network. These sets and parameters 

above are assumed to be known. On the other hand, decision variables are ic  that is allocating cost of task 

i W , and iy  that is the starting time of task i W . We define 𝑦  as the starting time of sink node e, which 

is equivalent to the process completion time of the production system. 
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Supplementary Material B : Evaluation of parameters in (30) with (10) 

We show that the parameter 
 1 2, , , rv v v

h
  

 defined in (30) can be expressed with the probability (10), 

which is also given as a parameter. From the definition of  jvT  in (25), 
 1 2, , , rv v v

h
  

 defined in (30) is 

the probability that the following condition is satisfied: 

       , .jj i

j

vv k
i

i p
T t T j V





     (B.1) 

Here we define a set 
 1 2, , , rv v v

H
  

, which includes all  1 2, , , nk k k  that satisfy the condition (B.1) as 

follows: 
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  (B.2) 

Using the set defined in (B.2), 
 1 2, , , rv v v

h
  

 can be rewritten from (30) as 
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Finally, by substituting (10) into (B.3), we obtain 
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Supplementary Material C : Proof that Eq. (41) is satisfied at the optimal 
solution of (POF) 
 

We show that the logic condition (41) is satisfied at the optimal solution of (POF). Firstly, we show a 

condition that the binary variables  1 2, , , rv v vz 
 satisfies. Here note that from the (30), which is the definition 

of  1 2, , , rv v vh  , it is obvious that the  1 2, , , rv v vh   increases monotonically as the index j of random variables 

,jv j V  increases: 

    1 2 1 2, , , , , , , , 1, , , .j r j rv v v v v v v vh h j V       (C.1) 

Therefore, to maximize the objective function (35) under the constraint (36), the following condition must be 

satisfied: 

 
   1 2 1 2, , , , , , , , 1, , , .j r j rv v v v v v v vz z j V    

  (C.2) 

Secondly, from Eq. (32), we have: 
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   (C.3) 

Finally, from Eq. (C.2), Eq. (C.3) and the constraint (36), the following condition is satisfied under the 

constraints (37): 

 
 1 2

crit
, , ,

crit

crit

0 if
1 if , .
0 if

r
j j

v v v

j j

j j

v v
z v v j V

v v

  
 
  
 


  (C.4) 

It can be seen that Eq. (C.4) is equivalent with (41). From the discussions above, it is proved that Eq. (41) is 

satisfied at the optimal solution of (POF). 
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Supplementary Material D. Algorithm of the local search method 
 

The local search method discussed above can be implemented as an algorithm described below. Additionally, 

a flow chart of this algorithm is given in Figure D.1. Note that if the search range (45) contains the indices for 

the random variables  * * *
1 2, , , rv v v , we can find the optimal solution to POF. In Steps 1 and 2, an initial 

guess to set the search range (45) is obtained. Step 3 is to prepare parameters to be used in Step 4, which is the 

step to solve POF where the search range is narrowed down. In Step 5, the optimality is checked by comparing 

the value of the objective function. 

 

 
Figure D.1. Flow chart of the algorithm of local search method [1-column fitting image] 
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[Step 1] 

In this step, we find one realization of allocating costs  ref ref ref
,1 ,2 ,, , , M M M nc c c    as a reference 

solution to find an initial guess to set the search range. Here we attempt to use the solution of the CPM without 

uncertainty shown in (A.1) as the realization of allocating costs  ref ref ref
,1 ,2 ,, , , M M M nc c c . In this study, 

we assume that the fixed task duration it  in (A.1) is calculated by ave
i it t . 

 

[Step 2]  
In this step, we decide the reference realization of the indices as  ref re f re f

1 2, , , rv v v   for 

     ref ref ref
21

1 2, , , rv v
r

vT T T  
 

 . Using this reference realization, the search range can be determined as shown 

in (44). To find the optimal solution, the candidates for search (45) must contain  * * *
1 2, , , rv v v . Therefore, 

the realization ref re f re f
1 2, , , rv v v , which is at the center of the search range, needs to be sufficiently close 

to  * * *
1 2, , , rv v v . However,  * * *

1 2, , , rv v v  cannot be found without executing POF and find optimal 

cost allocation  * * *
,1 ,2 ,, , , M M M nc c c  . Here, we attempt to use   ref ref ref

,1 ,2 ,, , , M M M nc c c   and set 

 ref re f re f
1 2, , , rv v v  to satisfy a similar condition to (32) as 
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[Step 3] 

In this step, the problem POF is prepared by calculating the probability  1 2, , , rv v v
h

  
 defined in (30) where 

the search range is narrowed down. Firstly we construct the local search range around the reference indices 

 ref re f re f
1 2, , , rv v v  as given in (44), where the candidates of discrete random variables is given by (45). 

Similarly with (B.2), here we define a set of  1 2, , , nk k k  that satisfies the condition (B.1) for the indices 

(45) where the search range is narrowed down:  
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  (D.2) 

Finally, we calculate the probability  1 2, , , rv v v
h

  
 by using (B.4) where the search range is narrowed down: 
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[Step 4] 

We solve the following problem, which is a modification to POF: 
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   (D.4) 

where in contrast to POF, the range of possible index of random variables (31) is replaced by the narrowed 

range (45). Note that the optimal solution of (D.4) may be different from the optimal solution of POF; only if 

the search range (45) contains  * * *
1 2, , , rv v v  we obtain  1crit 2cri t crit, , , rv v vh    as the objective value. Even 

if (D.4) cannot find the optimal solution of POF, by executing (D.4) we can find equivalent or better candidate 

where the objective value is higher compared to the reference value  ref ref ref
1 2, , , rv v vh  . 

 

[Step 5]  

This step is to decide whether the search in Step 3 is sufficient by comparing the objective function. If the 

binary variables  1 2, , , rv v vz 
  is the same as those in the previous execution of Step 4, we terminate the 

algorithm. If the solution is changed, return to Step 3 after replacing the reference indices 

 ref re f re f
1 2, , , rv v v  by that in the solution of Step 4. 
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Supplementary Material E. Consideration about computational time in Example 
1 
   Here we discuss why the computational time for the Task-Oriented Formulation (TOF) with dispersion 

improvement is much larger than that of TOF w/o dispersion improvement in Example 1. To consider this issue, 

we fix the cost coefficient for the dispersion, ,D ic  for some tasks. The following constraint is implemented: 

 , , ,0D ic i iW i    (E.1) 

where i is the index for the  task where improvement of dispersion is allowed. We change 'i one by one, 

and compare the optimal solution and computational time for each 'i . 

In Table 5, we show results of the TOF where i is varied from 1 to 4 along with the results that already 

appeared in Table 2 (without dispersion improvement and with dispersion improvement). To analyze the 

complexity of the problem, the numbers of partial problems (linear programming problems with relaxation) in 

the solution algorithm for the mixed integer programming problem, branch-and-bound method, are also shown 

there. In this algorithm, linear programming problems where the integer variables are relaxed or fixed are 

sequentially solved, and unattractive combinations of the integer variables where the objective value exceeds the 

upper bound are eliminated as the algorithm proceeds. 

It can be seen in Table 5 that the number of partial problems increases significantly when the dispersion 

improvement is allowd, and as a result the computational time increases; the computational time without 

dispersion improvement is only 17 seconds, but that for allowing dispersion improvement in only one task 

( ' 4i  ) increases it to 321 seconds. This is because  nearly equally attractive options cannot be eliminated early 

in the branch-and-bound search, and thus a larger number of partial problems must be solved. Comparing the 

results for 1,2,3,i  and 4 in Table 5, the number of partial problems and computational time for 2,4i   

are much larger than those for 1,3i  . From these results, it is estimated that in cases 2,4i  , improving 

dispersion of the task durations is nealy as attractive as the improvement of the expected value of task durations. 
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Table 5 Results of the TOF under different conditions 
 w/o 

dispersion 
improvement 

 
1i   

 
2i   

 
3i   

 
4i   

with 
dispersion 

improvement 
# of decision 

variables 3924 3925 3925 3925 3925 3928 

# of partial 
problems 8481 12323 139284 6837 155635 241547 

Computational 
time (s) 17 31 257 16 321 1027 

Probability 
finished by

  

0.9070 0.9070 0.9072 0.9070 0.9138 0.9444 

Task i ,M ic  ,M ic  ,D ic  ,M ic  ,D ic  ,M ic  ,D ic  ,M ic  ,D ic  ,M ic  ,D ic  

1 40 40 1.262 40 - 40 - 40 - 40 10 

2 80 78.73 - 54.76 25 76 - 62.67 - 62.67 40 

3 30 30 - 30 - 30.83 3.173 20 - 20 3.685 

4 100 100 - 100 - 100 - 100 25 100 30 
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Supplementary Material F. Calculation order of the parameter  1 2, , , rv v vh   

 

Since the amount of calculation for the parameters  1 2, , , rv v vh   is significant, here we note the calculation 

orders of  1 2, , , rv v vh   defined in (30) used in the Path-Oriented Formulation (POF, Strict) in Section 5 and 

Path-Oriented Formulation with Local Search Algorithm (POF, Local Search) in Section 6. 

Firstly, we show the calculation order of  1 2, , , rv v vh   in (POF, Strict) is  r nO l m . From Eq. (26) and 

(31), the number of  1 2, , , rv v vh   is rl . Furthermore, from (B.3), the each one of the  1 2, , , rv v vh   is sum 

of the probabilities      1 2

1 2
nk k k

n  
  

 in (10) where the total number of combinations for 
     1 2

1 2
nk k k

n  
  

  is nm as shown in (5) and (11).  

Similarly, the calculation order of  1 2, , , rv v vh   in (POF, Local Search) is   2 1 r nO m   , since the 

range of  1 2, , , rv v v  is reduced from l to  2 1   as in (44). 

 

 


