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Notation
INDICES
S Source task
e Sink task
] Task
J Path from source to sink
k, Index of random variable ti(k")
v, Index of random variable T’ ()
kl.' Realization of integer £,
vj' Realization of integer v,
V jerit Realization of integer v; that satisfies Eq. (32)
v j* Realization of integer v, that corresponds to the optimal solution of Path-Oriented
Formulation proposing in Section 5
vjrGf Realization of integer v; for local search method in Section 6 adj Index of a task

next to task i



l Task that improvement of dispersion is allowed in Supplementary Material E

SETS
w Set of tasks except for source and sink
V Set of paths
P, Set of tasks on path j except for dummy tasks
A Set of realizations for k.,ie W
M Set of realizations for v, j €V
M ; Set of realizations for the local search method
E Set of arcs in process network

) satisfying condition Z tl.(k[) < Tj(vf), jev

iep;

H"") Setthatincludes all (k,k,, -,k

n

HU ) Set that includes all (k.. k k,) satisfying condition Z tl.(k") < Tj(vf ), jeV forthe

Lk, .
iep;
local search method
PARAMETERS
n Number of tasks
r Number of paths
cl.U Crash cost of task i
¢, v Vector of the crash cost of task i
C Maximum total cost
r Target process completion time
a ) Probability in bin &
N[ ti(k")] Number of samples within ¢ i(ki_l) <t <t l.(ki)
ﬂi Proportionality constant for reducing duration of task i per additional cost in classical CPM

formulation

Proportionality constant for reducing expected value of duration of task i per additional cost in
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proposing formulations

/IDJ. Proportionality constant for dispersion of duration of task i per additional cost in proposing
formulations

A Average duration of task / without improvement

t,.(k") Duration of task i without improvement in discretized form

T (v) Discretized time

k; V.
AU ) Probability that sum of task durations Z f,-( 2 is smaller than T]( ) for all paths, j eV

iep;

B Search range in the local search method
Cy ,i‘ef Realization of allocating cost on task 7 for the local search method as a reference value
Cyr. ,.* Optimal value of ¢,,; ofthe Path-Oriented Formulation in Section 5
a Bin width for histograms in case studies

CONTINUOUS VARIABLES
c Allocating cost to task 7 in the classical CPM formulation
c; Vector of allocating cost to task 7 in proposing formulations
Cri Allocating cost to reduce expected value of task duration
Cp, Allocating cost to reduce dispersion of task duration
L Duration of task i without improvement
fl. Duration of task 7 after improvement
;i(ki) Duration of task i after improvement in discretized model

BINARY VARIABLES
ko) Binary variable in the Task-Oriented Formulation in Section 4
2012 ) Binary variable in the Path-Oriented Formulation in Section 5



1. Introduction

Network-based methods have been applied to many project management problems. A project is a set of
activities with objectives and completion deadlines. Various projects such as production, building construction,
system development, and research projects can be modeled as networks, which can be handled by advanced
management techniques. In many cases, completing a project by the deadline is the most critical requirement.
For example, meeting the delivery date of a product, which is set as a deadline, is a critical constraint for many
manufacturers.

The Critical path method (CPM) and the Project evaluation and review technique (PERT) are widely used
as network-based methods for project management, which were proposed for the first time in 1950s (Malcolm
etal., 1959) . The PERT method identifies the critical path (bottleneck), which is a sequence of tasks that has the
longest duration in a project network. Identifying the critical path is a key step for project management because
it determines the completion time of the project. In CPM problems, the trade-offs can be analyzed between cost
allocation and shortening project the completion time, in addition to identifying the critical path.

PERT/CPM methods are powerful techniques also for many chemical engineering problems (Kopanos et al.,
2014; Kyriakidis et al., 2012). For example, in batch chemical processes where multiple tasks can be expressed
as project network, finding the capital investment strategy to optimize the scheduling can be formulated as a
CPM problem. Furthermore, the PERT method can be applied to scheduling problems such as estimating
uncertain completion times in chemical processes. These problems that can be handled by the PERT and CPM
methods exist in many process industries such as steel, pharmaceuticals, semiconductor, and food. In addition,
the PERT and CPM methods can be applied to construction of chemical plants as previously reported (Walton,
1964).

In classical PERT/CPM methods, task durations are handled as fixed values. However, actual task durations
in many real applications have uncertainty for unpredictable reasons such as weather, human resources,
equipment failure, etc. Examples of production systems with uncertain task durations are chemical and steel
processes. Furthermore, there can be manual operations where the durations are highly uncertain. To represent
realistic project management scenarios, handling uncertainty is often crucial, and various modifications have
been proposed for the classical PERT/CPM methods. In following discussion, we discuss a classification based
on the following three viewpoints: modeling of path durations, handling time-cost trade-off, and solving the

problems by heuristic or deterministic approaches.



Here we classify approaches for modeling uncertainty in task or path durations into the following four
classes: fixed time (point estimate), fuzzy numbers, probability distributions (continuous distributions), and
histogram (discrete distributions). The first approach is to regard task durations using a few representative values.
A common approach in this class is the three-point estimation method, where the distributions of the task
durations are approximated by the following three values—the most likely, most optimistic, and most pessimistic
values. The classical PERT method employs this method. However, it has been reported that approximations
based on this approach may deviate from the true distributions (Hajdu and Bokor, 2014). The second approach
is to regard task durations as fuzzy numbers described a membership functions. Examples of methods that use
fuzzy numbers have been proposed by Sadjadi et al. (2012), Kaur and Kumar (2014), Xu et al. (2012), and Chen
and Hsueh (2008). The third approach is to assume the task durations follow some known continuous distribution
functions. For example, in Golenko-Ginzburg and Gonik (1997), it is assumed that the task durations follow
normal or beta distributions. The fourth approach is to handle task or path durations as histograms, as in Herroelen
and Leus (2004) and Bruni et al. (2009). Since the actual data of task or path durations is given as discrete values,
handling the data histograms without approximation can be an advantage. In this paper, we also employ the
fourth approach for production systems where histograms of task durations can be obtained from historical
operation data.

The time-cost trade off problem is one form of scheduling methods to find the optimal cost allocation to tasks
or paths. For this problem, there have been various formulations proposed for the objective function. Some
examples include Kelley and Walker (1959), Xu et al. (2012), and Hasuike (2013); among these studies, in
Kelley and Walker (1959), the objective function is to minimize the project completion time or total allocation
cost. In Xu et al., (2012), four kinds of optimization problems that have different objective functions were
proposed such as minimizing the total allocating cost. On the other hand, Hasuike (2013) aimed to maximize an
approximated project completion probability within a target completion time. In this paper, we employ a similar
objective function as in Hasuike (2013) where the probability is maximized, while in this paper we evaluate the
objective function is without approximation. For time-cost trade off problems, there are two approaches to model
improvement of task or path durations by allocating costs to tasks or paths. The first approach is continuous
improvement per allocating costs, which assumes task or path durations decreases in proportion to allocated costs
continuously. In this approach, the relationship between the allocated cost and reduction of task (or path)
durations must be modeled as a continuous function to formulate an optimization problem (Hasuike, 2013;
Kelley and Walker, 1959; Xu et al., 2012). The other approach is to employ discrete improvement per allocating
costs, which assumes task or path durations have discrete candidates by allocating some cost. In this approach,
the relationship between the allocated cost and reduction of task (or path) durations must be modeled as a discrete

function to formulate an optimization problem (Tao et al., 2017).
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The other form of the scheduling method does not consider time-cost trade off. These methods generally
have a single objective to estimate some indicators of the target project. Examples of these methods were
proposed by Malcolm et al., (1959), Hajdu and Bokor (2014), Ke and Liu (2005). Among these studies, the
classical PERT method (Malcolm et al., 1959) which aim to estimate the project completion time. Bruni et al.
(2009) proposed a way to estimate minimum makespan that probability or “reliability level” of project
completion is larger than a constant. Ke and Liu (2005) proposed three approaches to estimate such as minimum
cost expectation value or probability that the cost exceeds the budget. In addition, Hajdu and Bokor (2014)
proposed a way to estimate how the shape of the distribution function of each task durations affects the project
completion time.

We can also classify the project scheduling methods with uncertainty based on the solution approaches. These
problems can be solved either by a heuristic or deterministic algorithm. Due to the difficulty of the CPM
problems with uncertainty, many heuristic approaches have been proposed. Heuristic algorithms are often used
for finding approximate solutions when a short computational time is desired, or the problem is difficult to be
formulated as a deterministic problem. Such approaches include the Monte Carlo simulation (Li and Womer,
2015), genetic algorithm (Azaron et al., 2005), and combining these two numerical techniques (Huang and Ding,
2011; Ke and Liu, 2005). On the other hand, in deterministic approaches, the exact solution can be found without
an approximation. Examples include Linear Programming (LP) by Kelley and Walker (1959), LP using fuzzy
parameters by Kaur and Kumar (2014), and Mixed-Integer Linear Programming (MILP) by Bruni et al. (2009).

In this paper, we propose a method to expand applications of CPMs in chemical and process engineering by
considering uncertainty of task durations. Our proposed method is based on deterministic optimization where
the task durations are handled as histograms considering time-cost trade-off. The proposed approach has the
following three advantages. Firstly, by handling task durations as histograms, we can handle operation data
without approximation and losing information. Secondly, we can consider time-cost trade off problem and find
the optimal cost allocation that maximizes the project completion probability within a given completion time.
Note that we consider two kinds of improvement of task durations to enable more flexible modeling, while past
studies consider only a single way to improve task durations (Hasuike, 2013; Kelley and Walker, 1959; Xu et al.,
2012). Thirdly, by formulating the problem as an MILP problem that can be solved by deterministic algorithm,
the exact solution can be found without an approximation in contrast to the heuristic approaches where only an
approximate solution can be found.

This paper is organized as follows. In Section 2, we discuss the classical CPM problem, and handling
uncertainty as a background. In Section 3, we describe our assumptions in our problem formulation. In Section

4, we propose a new approach called the Task-Oriented Formulation. In Section 5, we reformulate the same



problem to decrease the computational time. In Section 6, we propose an iterative local search method to shorten

the computational time. In Section 7, we show examples. In Section 8, we conclude this paper.

2. Background

2.1 CPM without uncertainty

The CPM is a method to analyze and optimize a project and production system. In this method, the entire
project or production system is represented as a network figure that contains activities and sequences. There are
two equivalent expressions for the CPM. In the activity on node type, activities with given durations are
expressed as nodes. On the other hand, in the activity on arc type, they are expressed as arcs. These two
expressions are equivalent, and in this paper, we use the former type. An example of activity on arc type project
network is shown in Figure 1. In addition to the four activities, 1, 2, 3, and 4 shown in the middle of this figure,
we consider a single source s, as well as a sink e. These source and sink are treated as dummy tasks that have no
durations, where the solution remains the same. In this paper, we consistently refer to activities as tasks, since we
consider only production systems. For the same reason, we call the project as a process and call the project

completion time where all tasks are completed as process completion time.

Figure 1. Example of project network [2-column fitting image)]

In addition to finding the critical path in a process, this approach can also be used to identify the most
efficient improvement to reduce the process completion time. The objective of this problem is to minimize the
process completion time of the production system. The critical path, which is the path that has the longest time,
determines the process completion time. Thus, the process completion time can be shortened by reducing the

task durations on the critical path.



The CPM problems without uncertainty, which aim to minimize the process completion time, can be
formulated as min-max problem which assumes that task durations are reduced linearly with additional cost.
Minimize : max th‘ — Zﬂici

jev : :
i€p; iep;

S.t. ch_ <C (1)

ieW
0<c <c’, ieW

where i is an index for tasks; 7 is the number of tasks excluding source and sink; W ={1,2,---,n} isthe set
of tasks except for source and sink; j is a path from source to sink; 7 is the number of paths from the source to
sink; V' =1{1,2,---,r} is the set of all paths from source to sink; p; is the set of tasks excluding dummy

tasks on path J € V. I, is the duration of task ; A is the proportionality constant of duration of task i per

1

additional cost; v 1is the crash cost (maximum cost) of task #; C is the maximum total cost. These sets and

i

parameters above are assumed to be known. On the other hand, ¢, , which is allocated cost of task i € W ,isa
decision variable. Note that generally this problem can be formulated as Linear Programming (LP) (Kelley and

Walker, 1959). The general formulation is shown as (A.1) in Supplementary Material A.

The classical CPM problem without uncertainty assumes that the task durations are known and constant.
However, such an assumption is often invalid in chemical and steel processes. To accommodate uncertainty in
the CPM, it has been attempted to use the average or mean of task duration, or three-point estimation values to
represent the distribution of the task duration based on the most likely, most optimistic, and most pessimistic

values. However, these approaches are unable to fully utilize the information of the task duration distributions.



2.2 CPM with uncertainty

We expand the concept of the CPM without uncertainty, and define “CPM with uncertainty” as follows: we
aim to maximize the probability of finishing all tasks by a given target completion time I". Here, we define a
cost vector of allocating some cost to task 7 as ¢, , assuming the maximum total cost is given as C. Additionally,
the duration of task 7 has a probability distribution illustrated in Figure 2 (a), which can be improved by allocating

some cost.
Under these assumptions, the problem is generally formulated as

Maximize : Pr[Process completion time <I" ] )
st. Y| |<C 3)

iew
0<c <c¢’, ieW @)

where H ¢ H is the L1 norm of the vector of allocating cost €, , ciU is a vector of the crash cost (maximum
cost) of task 7. In this formulation, the objective function in (2) is the probability of finishing all tasks by a target
completion time I ; generally, calculating the objective function (2) requires multi-dimensional integrations
and convolutions, which are complicated operations that require the information of all paths (Kamburowski,
1992). Furthermore, to handle the task durations in the continuous time domain, it is necessary to model the
probability distributions as some functional forms, which may require approximation. In this study, we avoid
these two problems by discretizing the time domain, and converting this problem into a Mixed-Integer Linear

Programming (MILP) problem as described in the next section.

(a) (b)

S A
z _ ) a; (ki)
5 with cost 2 !
el allocation ¢, 2
£ £
Task
duration t;
=
‘ >
Task duration t; £, (0 ti(ki’—l)tl.(ki,) ¢,(m=D ¢,(m)

Figure 2. Probability distribution and histogram duration of task i [1-column fitting image]



3 . Assumption for proposed methods
3.1 Obtaining discrete probability from operation data
In this paper, we treat operation data as discrete probability distributions, which avoids approximation of the
probability distribution to functional forms. Bruni et al. (2009) used discrete data for the same motivation. In our
work, historical operation data is assumed to be available. Such data is an accumulated record of task durations,
which can be shown graphically as histograms. This assumption does not require any approximation to
probability distribution functions, and thus the solution is expected to be more accurate. We also assume that the
duration of each task is independent (i.e. the duration of task i does not influence that of another task ', #i").
To generate a discretized distribution from the operation data, we discretize the duration of task i using an
index kl . Using this index, histograms of task distributions are discretized as illustrated in Figure 2 (b). Here,

kl. is an integer which takes a value between 0 and m , and we define a set of all realizations of kl as A.

A={0,1,2,---;m—1,m. 5)

The duration of task i without cost allocation, which is given as tl.(k‘) , 1s uncertain and treated as a random
variable, where the scenario (realization) is specified by the integer kl . As a result of the discretization, ti(k“)
has multiple scenarios; ti(o),ti(l), R ti(m_l), tl.(m) (see Figure 2 (b)). Note that one realization of the

discrete random variables from Task 1 to » as (tl

() , tz(kz ) RETN tn(k”) ) corresponds to a scenario that duration
of task 7 is within tl.(k“fl) <t < ti(k”) foralltasks i €W ,where ¢ isdurationoftask i (given as a continuous
variable). Note that the number of all scenarios is 72" , which is a large number.

It should also be noted that the normalized distribution obtained from such data approaches the probability
distribution as the historical record becomes larger with repeated operations. Figure 2 (b) is an illustration of the
norrnaliz?d )dism'butions. We divide duration of task 7 into m bins, which give the probability al.(k[/) to satisfy
(6 =)

i i

== = jeW, (6)

! ki! .
where ](} is the index for a certain realization of the random variable tl.( ), N i[t,.(k")] is defined as the
)

number of samples within tl.(k"_l) <t < ti(k" .
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3.2 Approaches to improve task durations

Improvement (or shortening) task durations can be performed in a number of different ways, and outcomes
can be difficult to predict. Some examples of such improvement are as follows: increasing the number of
operators, and preparing a training manual for operators. Some more examples in chemical industries include
upgrading the catalyst in a reactor, and increasing the pump capacity in a liquid transport unit. As a result of such
improvement measures, the task durations can be shortened, and in addition the profile of the probability
distributions (or histograms of the task duration data) may change significantly. It would not be easy to model
and predict the change of probability distributions.

In this study, we use simple approaches to model the improvement of task durations by using two parameters,
the expected value (mean) and dispersion (variance) of the probability distributions. The first approach is to
decrease the expected value of task durations linearly per additional cost while keeping the shape of the

distribution as shown in Figure 3 (a). This approach shifts the entire distribution horizontally:
~ (k) k; .
ti =tl.( )—/IMJCM’Z.,Z ew, (7)

~ (k) . . . . . .
where ti( ) is improved duration of task i by cost allocation; ¢, ; is allocated cost to reduce expected value

. . ~ (k; .. . .
of task duration; A,, . is the decrease rate of ¢ i( ) per additional cost, which is assumed to be constant. We

0

call this approach as improvement of expected value.
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The second approach to improve the task duration is to narrow the dispersion while keeping the expected
~ ki
value of the distribution constant (Figure 3 (b)). In this approach, the task duration £ i( ) of task i after

improvement is written as
~ (& i i ave .
T _ ¢4 _( % ¢ )ﬂﬂicD’i,z ew, ®)

where ¢, is allocated cost to reduce dispersion of task duration; and A p.; 18 the proportionality constant of
dispersion per additional cost; and #,** is average duration of task / without improvement, which we define as:
Z ti(ki) Ni(ki)
" = kAZTl ew. ©)
kied
We call this approach as improvement of dispersion.
While the improvement of expected value s used commonly as in Kelley and Walker (1959), and Xu et al.

(2012), the improvement of dispersion is unique and other papers have not considered this approach. Our

proposed framework can handle both approaches, which is demonstrated in a case study in Section 7.

(a) (b)

AM,iCM,i

»
L
.

>

Probability
Probability

B

Duration ¢; t;2V¢ Duration t;

Figure 3. Improvement of duration of task i [1-column fitting image]
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4. Task-Oriented Formulation
In this section, we propose a reformulation strategy for the problem given by the CPM with uncertainty (2)
- (4) into a MILP problem. This formulation is referred to as the Task-Oriented Formulation, while we discuss

another reformulation in Section 5.

4.1. Preparation for Task-Oriented Formulation

To avoid the complex operation in evaluating the objective function by convolution introduced in
Kamburowski (1992), we convert the objective function (2) into a simple linear equation. From (6) we express
the joint probability that all tasks finish within the shaded bins in Figure 4 as the multiplication of probabilities
al.(k[/) foralltasks 1e W

Pr[ti(kf) _ ) e W} _ o 1) g (), (10)

n

ki’ . .
1.e. Eq. (10) is the probability that each task i finishes in ¢ l.(k") =t for i € W . Here, it should be noted

that there are a large number of combinations for the realizations of indices kl in the random variables tl.(k‘) ,

(kl,kz,- - -,kn) ed". (11)

In this work, we assign binary variables xlbrkek) o {O, 1} that enumerate all possible realizations of the

random variables. We consider a logic condition such that each of these random variables becomes positive only

if the process completion time is equal to or shorter than T :

1 if Project completion time<I"
ok k) :{ d p . 12)

0 otherwise

Using Eq. (10) and (12), we rewrite Eq. (2) in a discretized form as follows:

Pr [ Project completion time < F]

=2 Pr[fi(’”) SIURE W}x(’“”"*“"""') 13)
(klr’kQ'f",kn’)EA"

= Z a(kl’)a (kz')ma (kn')x(k{,kz’,m,k,,')'

(kl',k2',-~~,kn')eA”

Here, instead of using the complex operations in evaluating Eq. (2) in the continuous time domain, we discretize
the time domain and rely on the logic condition in Eq. (12). We implement this logic constraint within a

framework of integer programming as shown below.
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Task 1 Task 2
al(kll)
> > !/
= = k
3 fo a, 2
3 3
o o
o o
= 1, L1
Duration Duration
tl(kll) tz(kzl)
Task i Task n
> > !/
= = (kn')
2 , 2 it
k.
o o
> >
; (k") Duration N " Duration
. l n
l n

Figure 4. Concept of Equation (10) [1-column fitting image]
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4.2. Task-Oriented Formulation
The optimization problem given in Eq. (2) - (4) can be reformulated into the following form using Eq.

(12) and (13). Firstly we show overall formulation and then discuss each constraint.

Task-Oriented Formulation (TOF)

Maximize: > o"a")...q ) xloth) ”
(ki ok, e
S.t. X(kl oy E {O 1} ( .. akn ) c A" (15)
Ztl_(/ﬁ) X (kyoky e ZZM lCMl Z( (k) lave)iD’iCD’l. < F,J c V, (16)
iep; iep; i€p;

(ki ky ik, ) € A"
dey.t2 e, <C (17)

ieW ieW

0<c,, Scﬁlj,i, ieW

; (18)
0<c,,<cp,;, ieW,
In this problem, the decision variables are x(kl’kz’m’ ) as well as the allocating costs
C,
ci:{ M”},ieW, (19)
Cp,i

where the costs ¢, ; and ¢}, ;, which are two improving approaches are introduced in Section 3.2, are vector
elements of allocating cost €, definedin (3) in this formulation. It can be seen that Eq. (17) can be given by
substituting (19) into Eq. (3).

It is critical to note that Eq. (16) is a constraint for the duration of path ; that realizes the logic condition (12).
Here we recall ;i(k') is the duration after improvement from tl.(k") . Since Zi(ki) is a result of two kinds of
improvement; the improvement of expected value (7) and the improvement of dispersion (8), Ei(ki) can be

written as

~ (k; ) : ave
Zi( ):ti<k,)_ﬂM’icM,i_(t_(kl) )ﬂ, Copi€W. (20)

1

Here summing (20) over all tasks on path j gives

z = (k) Z ti(k’) _ z Aoy iCor i = Z (tl_<k,~> ave)Z’chDnl W 1)

iep; i€p; iep; iep;
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~ (k; .
Here, we express the process completion time as the maximum value of Z ot ,-( ) amongallpaths ] € V,
i€ep;

~ (&
(Process completion time) = max > 7 (22)
J€ i€p;

From (22), we rewrite the condition that the process completion time is below I :

(Process completion time <T")

~ (k,.)
Smax » o <I 23
na Zp} (23)

Y <r jev.

Substituting (21) into the bottom inequality in (23) gives

Zti(ki) - Zﬂ“M,iCM,i - Z(tz‘(ki) - )/ID,icD,i <I,jeV. 24)

iep; iep; iep;

Here we compare Egs.(16) and (24), and note (16) can be obtained by multiplying binary variables

xR )6 the first term of (24). If the left hand side of (24) isover T, the binary variables x>

. . kysky ek
become zero because the constraint (16) can be satisfied only when X (ko)

"’kn)

are zero. On the other hand,

ifthe left hand side of (24) is below T, the binary variables x''""
x(klskza“'akn)

can take either value, but the number
of positive binary variables is maximized since the objective function (14) should be maximized.
From the discussion above, we see the logic condition (12) is rewritten to the constraints (16).

We note that the problem size of the above formulation 7OF is very large due to the large number of binary

x(klskza' x(kl=k2""’kn)

variables ) The number of the binary variables is m" as they are defined for
enumerations (k,%,," k) €A for all possible random variables ti(k"),i € W . In the next section, we

show another formulation that reduces the problem size.
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5. Path-Oriented Formulation

We show an alternative formulation to (2) - (4) that has a smaller number of decision variables than 7OF.
The large number of decision variables in 7OF was due to the large number of discretized bins for task durations.
In the reformulation given below, we reduce the decision variables by considering the duration of each path,
instead of each task. This reduction in the problem size is possible because the number of all paths in a process
is significantly smaller than the total number of tasks. Note that in this reformulation, we only consider the

improvement of the expected value (7) ignoring the improvement of dispersion (8) (ie. Cp; = 0,iel).

5.1 Preparation for Path-Oriented Formulation
Firstly we rewrite Eq. (21), and show that the improvement of dispersion discussed in Section3.2 cannot be
considered in this formulation. Assuming the bin width in the histogram of each task is constant, we define

discrete time to describe path durations as

T =S jer (25)

iep;

m which the index v ; for the random variable T () 1s within a set M :

v,eM, M ={0,1,2,---,[ - LI}, (26)

where / is the largest bin number of Vi, J € V. By substituting (26) into (21), we obtain

Z;i(ki) =7~ Z Ay iCor i — Z (ti(ki) - tiave)/lD»icD”' JEV. G

iep; iep; iep;

Eq. (27) have two sets of indices, k, and v;. Here, v, the index in the random variable for the paths, is
dependent on that for the tasks, £, and the relationship between them cannot be expressed explicitly. In this

work, we eliminate k; from Eq. (27) by ignoring the improvement of dispersion as ¢, ; = 0,ielm.

. . ~ (ki ) . . v,
Under this assumption, we can express Z t;  only with the random variable for the paths T’ 2 as:

iep;

Z;j(ki) _ T(Vj) N ZAMJCMJ ,j cV. (28)

ie p; ie p;
Using Eq. (28), we rewrite Eq. (2) in a useful form. By substituting (28) into (23), we obtain

17



Pr[Process completion time <T|
. 29)
=Pr| 7" =Y 4, <L, jeV |.

i€p;

While (29) is important since it is another expression of the objective function (2), here we introduce some

definitions that help rewriting (2) using (29) in a useful form. Here we define a parameter h(vl I ) which

is the probability that the discrete time 7’ (v) is smaller than 7T’ (V‘f ) forall paths ] € V.
plr ) PT[T(V") <11, je V}, (0)

(vl',vz',---,vr')eM", (31)

where \j.' is the index for a given realization of the random variable 1’ (Vj ) . We show the conce t of (30) in
Figure 5, in which histograms of path durations are shown and the bins satisfying 7 ) <7V )p are colored
with gray. Here we define critical duration of path j that is equivalent to the target completion time I" after
allocating costs ¢,, ;,i € W as

T(V.icm) _ Z ﬂ’M,iCM,i =T. (32)

iep;
By substituting (32) into (30),

h(vlcrivacrit""’vrcrit) — PI’ T(Vj) S T(vjcrit)’j e V:l

i (33)
—Pr| T — ZEM,Z-CM,Z- <T,jeV|.
i€p;
By substituting (29) into (33), we can rewrite (2) by using h(vl,vz,...,v,) s
Pr[Process completion time < F]
(34)

_ h(vl crit » V2crit > "> Vrerit )

v)

Note that the parameter h(v"vz’m’ is calculated by summing the probability (10) as given in

h(vl,VZ,‘..’vr)

Supplementary Material B. This calculation to prepare the parameters should be executed before
solving optimization problems shown in POF in the next Section 5.2 and (D.4) in Supplementary Material D.

An example for this calculation is shown in case studies in Section 7.
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Figure 5. Concept of Equation (30) [1-column fitting image]
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5.2 Path-Oriented Formulation
From the discussion above, (2) - (4) can be reformulated into an even simpler form. Firstly we show the

overall reformulation and discuss the objective function and constraints later.

Path-Oriented Formulation (POF)

Maximize: Z Jlieve ) o) (35)
(vl,vz,u-,vr)eMr
sty 2o 36)
(vl,vz,---,v,.)eMr
T2 SN A ey ST eV D
i€ep;
Z cy,;<C (38)
ieWw
0<¢,, < Cg[’i, ieWw (39)
200 € 0,11, (v, vapesy, )M 40

where z\""27) ¢ {0,1} are binary variables that enumerate all possible realizations of the random

(V1>V2a"'v"r~)

variables. Decision variables are the binary variables Z and allocating costs of task 7as ¢, ;. The
correspondence between two formulations, the CPM without uncertainty and the POF is as follows: (2)—{(35),
(36), (37), (40)}, (3)—(38),and (H)—(39).

We consider a logic condition such that only one of the binary variables z("*2"") ¢ {O, 1} becomes

positive when the condition (32) is satisfied, and other binary variables become zero:

) L Lif 7)o gl) ey .

0 otherwize

(41)

(Vl Ve "Vr)
) h(vl crit > V2 erit > %> Vrerit )
s

(avsae, )

By multiplying / to Z and summing them for all combination of realization of indices

(v1 WYyttt V, can be expressed as

Z h(vl,vz,-~~,vr)Z(v1,v2,-~~,vr) — h(vlcrit’VZCl'it"“’vrcrit) (42)
(Vsvy oo, )M’
which is obtained from the logic condition (41). By substituting (42) into (34), it can be shown that Eq. (2) is

equivalent with (35) as follows:
20



Pr[Project completion time <T'] = Z L) v sw) (43)

(Vo )eM”
while satisfying the logic condition (41).
In POF, the logic condition (41) is satisfied in the optimal solution of the (POF). The proof is given in
Supplementary Material C.

6. Path-Oriented Formulation with Local Search Algorithm

In this section, we propose a local search method to the problem POF in order to further reduce decision
variables and constraints of POF. We denote the Path-Oriented Formulation with Local Search Algorithm
proposed in this section as (POF, Local Search). On the other hand, we call the original POF as (POF, Strict). A
comparison between (POFE Strict) and (POF Local Search) is illustrated in Figure 6. Note that the formulation
(POE Strict) finds certain indices of discrete random variables (vl*’vz*,... ,Vr*) that correspond to the
optimal solution of (POE Strict) that satisfies Z(V‘*’V;’m’v’*) =1. This method uses the full search from all

candidates of (Vl* vy e, ) , where the search range is (31). On the other hand, in (POF, Local Search),

we limit the search within a local region and consider a limited number of candidates for (Vl* Vv ),
which is around (V1 SRR ) that is a realization of some combination of the indices:

v, ref ref ref ref ref

sz{vj =By =Ly, v Ly +,B}, (44)

where [ isaparameter. Using (44), the narrowed candidates of index for discrete random variables 1s given
by:
(vl,v2,---,vr)e]\71><Z\7[2><---><]\7[r. (45)

After this local search, we search the neighboring regions until the algorithm terminates.
We note that the local search method does not guarantee to find the optimal solution of the original problem,

(POE Strict). Since the candidates of the binary variable Z(Vl i) are limited, the optimal solution of (POF,
Strict) may not be found by (POF, Local Search) if (45) does not contain (vl* vy v, ) . This disadvantage

2

must be weighed carefully against the advantage of the shorter computational time as demonstrated in our case

study. Further details on the proposed local search method are given in Supplementary Material D.
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Figure 6. Comparison between the (POF, Strict) and (POF, Local Search) [1-column fitting image]

7. Case studies
In this section, we present some examples to demonstrate the proposed methods. We compare the following
three approaches: the CPM without uncertainty, the proposed two formulations, 7OF and POF. In these

examples, we assume that the widths of all bins are constant. Thus, we have

t (ki) _ t'(ki_l)

l. S =a, ieW (46)

In the following case studies, we set @ =5 . We implemented these approaches on a desktop personal
computer with a core 17, 3.4GHz processor. The problem is solved by Numerical Optimizer from NTT DATA
Mathematical Systems Inc. (Tokyo, Japan). The algorithm in this solver is based on the branch-and-bound

method.
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7.1 Example 1

In this example, we consider a production process shown in Figure 7, which shows the structure as well as
the normalized distribution of each task. Table 1 shows the historical data for task duration N [ ¢ l.(k" )] and

given parameters. The sum of samples i[ ; ] are also shown for all tasks. Note that we introduced the
kied

historical data for task duration N [ tl.(k" )] in Section 3.1. For simplicity, we express N [ ¢ l.(k" )] as N i(k").

In this example, the maximum total cost and process completion time are given as follows: C =250 and
I' =100. Note that the shortest and longest possible makespan are 70 and 165, respectively in this example.

0.4 0.4
Task 1 Task 2
E\ 0.3 - ‘? 0.3
Y 2
g o 8 02
o <)
[ . } .
o 0.1 Qo1
0 > 0 a
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 55 60 65
Duration Duration
0.4 0.4
Task 3 — Task 4
.‘? 0.3 2 03
] 0.2 2 02
5 5
a o1 _‘ a 0.1
0 > 0 r

Duration Duration

Figure 7. Production process of Example 1 [1-column fitting image]
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Table 1 Historical operation data and given parameters for Example 1

Tki NO NG NG NG NO NO N O O i PN

i

1 2 10 20 30 26 18 4 - - - 110
2 6 16 29 20 2 3 15 31 21 7 150
3 15 17 18 18 18 18 16 - - - 120
4 7 36 23 15 9 5 3 2 - - 100
Task i tl.(l) /IM,i CM,iU /IDJ CDJU
1 15 0.24 40 0.020 30
2 15 0.15 125 0.015 40
3 45 0.20 125 0.010 40
4 25 0.090 100 0.020 30

Table 2 Results of Example 1

TOF
CPM without
uncertainty wi/o dispersion with dispersion
improvement improvement
# of decision variables 9 3924 3928
# of constraints 20 7849 7857
Task i CM N CM,i CM J cD,i
1 40.00 40.00 40.00 10.00
2 61.80 80.00 1.040 40.00
3 48.20 30.00 25.27 3.685
4 100.0 100.0 100.0 30.00
Probability finished by I 0.8652 0.9070 0.9444
Computational time <lIs 17s 1027s
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Table 2 shows the results for Example 1 by the classical approach, CPM without uncertainty and the proposed
approach, TOF'. In this example, we use the original formulation of the CPM without uncertainty shown in Eq.
(A.1), where task duration #,,i €W is fixed while in this example task durations are given as the historical
operation data in Table 1. In this study, we use the average duration ¢ defined in Eq. (9) in place of the
duration £ as ¢, =1¢"°,i € W . On the other hand, for the TOF’ the proposed formulation in Section 4.2, we
implemented two approaches in this example: without (w/o) dispersion improvement and with dispersion
improvement. In the former approach, we do not consider improvement of dispersions (C Di= 0,ie W) to
compare it against the conventional approach on the basis of the same degree of freedom. In the latter approach
of TOF, we consider both improvements, expected values and dispersions.

The CPM without uncertainty leads to a low value of the objective function, 0.8652, or 86.52%, compared
to the one calculated by the proposed methods, 0.9070. This value, 0.8652, was calculated by simply applying
to the optimal cost allocations obtained by the CPM without uncertainty to the original problem that includes the
uncertainty of task durations. This result indicates ignoring the problem uncertainty leads to poor cost allocation
when task durations are uncertain.

Here note that the objective value of TOF with dispersion improvement, 0.9444, is even higher than that of
(TOF) without dispersion improvement, 0.9070; this difference is the result of the higher degrees of freedom by
the improvement in the dispersion of task duration histograms.

The advantages in the objective values discussed above are obtained at a cost of significantly longer
computational time. In this example, the CPM without uncertainty needed only a short computational time (<
1s) because the problem size is very small. In contrast, TOF without dispersion improvement needed a
significantly longer computational time, 17 s, and that for TOF with dispersion improvement is even two orders
of magnitudes larger, 1027 s, because of the complexity of algorithm. From this result, we see that considering
two improvement approaches for task durations, dispersion in addition to expected value, makes the problem
much more difficult to solve. Note that in Supplementary Material E, we discuss why the computational time for
the TOF with dispersion improvement is much larger than that of TOF without dispersion improvement.

We also analyze the optimal solution of TOF' without uncertainty, and note that the allocation cost ¢, , ,
which is the improved dispersion of Task 2, is the highest among all allocation costs ¢/, ;,i € W . This is
because the dispersion of the task duration histogram in Task 2 is significantly larger than that of other tasks (see

Figure 7), and thus improving this wide profile of task duration is effective.
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7.2 Example 2
To further observe the influence of the problem size of the three proposed methods, 7OF, (POF, Strict) and

(POE Local Search), we apply these methods to another example that has a larger number of tasks and paths.
The production process of Example 2 is shown in Figure 8, and historical operation data and parameters are

given in Table 3. In this problem, we set the maximum total cost ¢ and the process completion time I as

follows: C =350 and T =180.

040 40
> Task1 Task 2
£'030 o £ 0.30
% 0.20 ] %
o | - 8 020
2010 e “
g o I g 010 —‘
0.00 1 0.00 >
40 45 50 55 60 65 70 75 30 35 40 45 50 55 60 65
Duration Duration
0.40 040 ,
Task 3 . Task 4
030 - £0.30
z Bow |
o 0.20 — | 3 0.20
s T o —
0.10 — a 0.10
S . A=
0.00 1, 0.00 >
35 40 45 50 55 60 65 70 75 80 35 40 45 50 55 60 65 70 75
Duration Duration
040 0.40 ,
Task 5 Task 6
2030 £030
3 ol
@ 0.20 © 0.20
g 8
A 010 g 010
0.00 > 0.00 i
60 65 70 75 80 85 90 95 100105110 30 35 40 45 50 55 60
Duration Duration
0.40
20_30 Task 7
S0.20
o]
0.10
o
0.00

25 30 35 40 45 50 55 60
Duration

Figure 8. Production process of Example 2 [1-column fitting image]
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Table 3 Historical operation data and parameters for Example 2

Task i Ni(l) M(Z)

N.(3) N.(4) N'(5) N.(6) N.(7) N'(g) N'(9) N.(lo)

1 1

1

1

1

1 1 1

1 7 27 54 81 72 49 10 - - - 300
2 38 42 45 45 45 45 40 - - - 300
3 12 42 32 6 9 56 82 48 13 - 300
4 116 69 44 28 19 11 8 5 - - 300
5 12 32 57 39 3 31 62 43 15 300
6 6 40 102 105 40 - - - - 300
7 32 41 53 58 50 42 24 - - - 300
Task i l‘i(l) ﬂ’M i CM,iU

1 40 0.15 75

2 30 0.15 125

3 35 0.20 100

4 35 0.25 150

5 60 0.15 175

6 30 0.15 75

7 25 0.10 50
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Table 4 Results of Example 2

TOF
) ) ] (POF, Local Search)
w/o dispersion (POF, Strict)
. Search range g =2
mprovement
# of decision variables 2469614 14307 132
# of constraints 7408815 429014 410
Task i Crri Cum.i Ci
1 - 75.00 75.00
2 - 0.000 0.000
3 - 75.74 100.0
4 - 20.59 15.00
5 - 67.65 76.67
6 - 75.00 33.33
7 - 36.03 50.00
Probability finished by T’ - 0.8635 0.8635
Calculation time for 5s
- 95s (Sum over two
JACRES V) iterations)
<6s
Total computational time >24h 134s (Sum over two
iterations)

Table 4 shows the solutions and computational statistics for Example 2. Note that TOF without dispersion
improvement in this table is the same method introduced in Example 1; (POF, Strict) in this table is the Path-
Oriented Formulation shown in Section 5; (POF, Local Search) is the Path-Oriented Formulation with Local
Search Algorithm shown in Section 6. It should be noted that (POF, Strict) and (POFE Local Search) can only
consider improvement of expected value, and thus we compare TOF without dispersion improvement, not with

Crovzeve) ot appears in (30)

dispersion improvement. In addition, we note that the complex calculation for /
and (D.3), which must be performed before solving the optimization problems for (POF, Strict) and (POF, Local
Search), requires a significant amount of computational time; the computational time for this parameter is shown

(Wovpeem,) (Vv

as “Calculation time for /1 ” in this table. Orders of computational time for calculating /

in (POF Strict) and (POF, Local Search) are discussed in Supplementary Material F.
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We compare the problem sizes and computational times in these three methods. It can be seen that 7OF has
the largest number of decision variables, 2469614, and constraints, 7408815. In contrast, (POF, Strict) has a
significantly smaller number of decision variables, 14307, and constraints, 42914. Furthermore, (POF, Local
Search) has an even smaller number of decision variables and constraints than other two methods. The numbers
of decision variables, 132, and constraints 410, are for the first iteration, out of the total of the two iterations. Due
to the large number of variables and constraints, 7OF cannot be solved in 24 hours. In contrast, (POF, Strict) and
(POE Local Search) can be solved much faster than 7OF 134 seconds and below 6 second, respectively. Note
that the computational time in (POF, Local Search) contains all steps of calculations shown in Supplementary
Material D.

It can be seen in Table 4 that while the objective values in (POE Strict) and (POF, Local Search) are the same,
0.8635, the optimal cost allocations found by these two methods are significantly different. This non-uniqueness
of the optimal solution is due to Eq. (32), where many different combinations of the allocating cost ¢;,i € W
exist that give a single value of T’ (Vi) .

We can also find a general rule for cost allocations about tasks that are in series without any branching or
merging: in this example, Task 2 and Task 3. In the optimal solution, the allocating cost on Task 2 is zero
(¢, =0) inboth (POE Strict) and (POF, Local Search), while for Task 3, which is the subsequent task to
Task 2, a large amount of cost is allocated. This is because the cost coefficient for Task 3, 4, , =0.20, is
higher than that for Task 2, A, , =0.15. Since improvement of either task has the same influence on the
process completion time, improving Task 3 should be pursued, which has the greater benefit for a given cost than
Task 2.

Finally we note the above problems are for illustrative purposes, and real problems in chemical industries can
be significantly larger. For such large problems, one of the proposed approaches, (POF, Local Search), would be

a promising technique. Further investigations into larger example problems remain as future work.
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8. Conclusion

In this paper, we advanced the classical CPM and proposed an optimization approach that maximizes the
process completion probability within a target completion time, and utilizes historical data from production
systems to handle uncertain task durations. Our method has mainly three advantages; handling the operation data
without approximation; considering time-cost trade off by two kinds of improvement of task duration; and
finding the optimal solution by formulating the problem as MILP. We proposed two formulations; 7ask-Oriented
Formulation (TOF), and Path-Oriented Formulation (POF). Furthermore, we proposed the Path-oriented
Formulation with Local Search, which applies a local search algorithm to POF’ and shortens the computational
time. In addition, we applied these three formulations to two examples and demonstrated effectiveness of our
approach.

Finally, we note further room for improvement in the proposed approaches. We modeled the improvement of
task durations using two parameters, expected value and dispersion, which should be validated carefully with
some realistic data. Furthermore, in the POF,, we needed to ignore the improvement in dispersion.  In addition,
the influence of the problem size to the computational time should be investigated. These remaining issues should
be resolved in future work, where we will extend the concept of the improvement of dispersion, which is

considered only in 7OF, to POF, as well as to the local search method.

Acknowledgement
This work was supported by JSPS KAKENHI Grant Number 16K06844.

References

Azaron, A., Perkgoz, C., Sakawa, M., 2005. A genetic algorithm approach for the time-cost trade-off in PERT
networks. Appl. Math. Comput. 168, 1317-1339. https://doi.org/10.1016/j.amc.2004.10.021

Bruni, M.E., Guerriero, F., Pinto, E., 2009. Evaluating project completion time in project networks with
discrete random activity durations. Comput. Oper. Res. 36, 2716-2722.
https://doi.org/10.1016/}.cor.2008.11.021

Chen, S.-P., Hsueh, Y .-J., 2008. A simple approach to fuzzy critical path analysis in project networks. Appl.
Math. Model. 32, 1289—1297. https://doi.org/10.1016/;.apm.2007.04.009

Golenko-Ginzburg, D., Gonik, A., 1997. Stochastic network project scheduling with non-consumable limited
resources. Int. J. Prod. Econ. 48, 29-37. https://doi.org/10.1016/S0925-5273(96)00019-9

Hajdu, M., Bokor, O., 2014. The Effects of Different Activity Distributions on Project Duration in PERT
Networks. Procedia - Soc. Behav. Sci. 119, 766-775. https://doi.org/10.1016/j.sbspro.2014.03.086

Hasuike, T., 2013. . https://doi.org/https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/194808, (This
paper is in Japanese, from Repository of Kyoto University)

Herroelen, W., Leus, R., 2004. The construction of stable project baseline schedules. Eur. J. Oper. Res. 156,

30



550-565. https://doi.org/10.1016/S0377-2217(03)00130-9

Huang, W., Ding, L., 2011. Project-scheduling problem with random time-dependent activity duration times.
IEEE Trans. Eng. Manag. 58, 377-387. https://doi.org/10.1109/TEM.2010.2063707

Kamburowski, J., 1992. Bounding the distribution of project duration in PERT networks. Oper. Res. Lett. 12,
17-22. https://doi.org/10.1016/0167-6377(92)90017-W

Kaur, P., Kumar, A., 2014. Linear programming approach for solving fuzzy critical path problems with fuzzy
parameters. Appl. Soft Comput. J. 21, 309-319. https://doi.org/10.1016/.as0c.2014.03.017

Ke, H., Liu, B., 2005. Project scheduling problem with stochastic activity duration times. Appl. Math. Comput.
168, 342-353. https://doi.org/10.1016/j.amc.2004.09.002

Kelley, J.E., Walker, M.R., 1959. Critical-path planning and scheduling. Pap. Present. December 1-3, 1959,
East. Jt. IRE-AIEE-ACM Comput. Conf. - IRE-AIEE-ACM ’59 160-173.
https://doi.org/10.1145/1460299.1460318

Kopanos, G.M., Kyriakidis, T.S., Georgiadis, M.C., 2014. New continuous-time and discrete-time
mathematical formulation for resource-constrained project scheduling problems. Comput. Chem. Eng.
68, 96-106. https://doi.org/10.1016/j.compchemeng.2014.05.009

Kyriakidis, T.S., Kopanos, G.M., Georgiadis, M.C., 2012. MILP formulations for single- and multi-mode
resource-constrained project scheduling problems. Comput. Chem. Eng. 36, 369-385.
https://doi.org/10.1016/j.compchemeng.2011.06.007

Li, H., Womer, N.K., 2015. Solving stochastic resource-constrained project scheduling problems by closed-
loop approximate dynamic programming. Eur. J. Oper. Res. 246, 20-33.
https://doi.org/10.1016/j.ejor.2015.04.015

Malcolm, D.G., Roseboom, J.H., Clark, C.E., Fazar, W., 1959. Application of a technique for research and
development program evaluation. Oper. Res. 7, 646—6609.

Sadjadi, S.J., Pourmoayed, R., Aryanezhad, M.B., 2012. A robust critical path in an environment with hybrid
uncertainty. Appl. Soft Comput. J. 12, 1087—1100. https://doi.org/10.1016/j.as0c.2011.11.015

Tao, S., Wu, C., Sheng, Z., Wang, X., 2017. Stochastic Project Scheduling with Hierarchical Alternatives.
Appl. Math. Model. 0, 1-22. https://doi.org/10.1016/j.apm.2017.09.015

Walton, H., 1964. Experience of the Application of the Critical Path Method to Plant Construction. J. Oper.
Res. Soc. 15, 9-16. https://doi.org/10.1057/jors.1964.3

Xu, J., Zheng, H., Zeng, Z., Wu, S., Shen, M., 2012. Discrete time-cost-environment trade-off problem for
large-scale construction systems with multiple modes under fuzzy uncertainty and its application to
Jinping-II Hydroelectric Project. Int. J. Proj. Manag. 30, 950-966.
https://doi.org/10.1016/j.ijproman.2012.01.019

31



Supplementary Material A : The general formulation of the classical CPM

Here we show another formulation of the classical CPM that is more commonly used than (1), which is

given as the following Linear Programming (LP) problem.
Minimize: y,
S.t. zCi <C
ieW
0<c <c’, ieW

1

Y, +(t = Ae,) < Vadrs (i,adj) e E A
y,=0
c,=0

.20, ieWu{e}
where adj 1s the index of a task next to task i; £ is a set of arcs in process network. These sets and parameters
above are assumed to be known. On the other hand, decision variables are C; that is allocating cost of task
ieW ,and ), thatisthestartingtimeoftask 7 € W . Wedefine y, as the starting time of sink node e, which

is equivalent to the process completion time of the production system.
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Supplementary Material B : Evaluation of parameters in (30) with (10)

’ ’ ’
VIoV2ss Ve

We show that the parameter /2 defined in (30) can be expressed with the probability (10),

’ ’ ’
VIsV2s sV

which is also given as a parameter. From the definition of 1~ ) in (25), h defined in (30) is

the probability that the following condition is satisfied:

T("j) — Z ti(ki) < T(Vj'),j cV. (B.1)

iep;

r r r
VoV2 sV

Here we define a set H , which includes all (kl,kz,- % ,kn) that satisfy the condition (B.1) as

follows:

) {(kl,kz,- ok )ed | S < T(V"'),j € V}a

iep; (B2)
[ ] [ 7
(v1 Vs 5tttV )eM )

’ ’ ’
sV2 sV

Using the set defined in (B.2), /

h(vlr,vz/,m,v,,/) _ Z Pr|:ti(k‘.) :fi(ki'),l. c Wi| (B3)

(ky ey ook, )eH("""’Z/""“”/)

can be rewritten from (30) as

Finally, by substituting (10) into (B.3), we obtain

i) 3 o e B4)

(ki oKy, )EH(VI’,VQ',.._%/)

n
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Supplementary Material C : Proof that Eq. (41) is satisfied at the optimal
solution of (POF)

We show that the logic condition (41) is satisfied at the optimal solution of (POF). Firstly, we show a

(Vlavza"'v"r)

condition that the binary variables Z satisfies. Here note that from the (30), which is the definition

of AU ,itis obvious that the B2 ncreases monotonically as the index j of random variables

v,,j €V increases:
h(v“vz’m’v"’m’v’) < h(Vl’vz"..’V"Jrl’."’v"),j el. (C.1)

Therefore, to maximize the objective function (35) under the constraint (36), the following condition must be

satisfied:
TR Y (RS Rl
’ <z ’ ,jeV. (C2)
Secondly, from Eq. (32), we have:
. >Cifv, >v, 4
TV = ey a=Tifv, =v ., jeV. (C3)
iep; .
<Lifv, <v, 4

Finally, from Eq. (C.2), Eq. (C.3) and the constraint (36), the following condition is satisfied under the
constraints (37):

0ifv,>v, .

. LJEV. (C4)

. /
VsV sV,

= lifvj:v.

jeri
0 ifv, <v,

It can be seen that Eq. (C.4) is equivalent with (41). From the discussions above, it is proved that Eq. (41) is
satisfied at the optimal solution of (POF).
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Supplementary Material D. Algorithm of the local search method

The local search method discussed above can be implemented as an algorithm described below. Additionally,
a flow chart of this algorithm is given in Figure D.1. Note that if the search range (45) contains the indices for
the random variables (Vl* vy e, ) , we can find the optimal solution to POF'. In Steps 1 and 2, an initial
guess to set the search range (45) is obtained. Step 3 is to prepare parameters to be used in Step 4, which is the
step to solve POF where the search range is narrowed down. In Step 5, the optimality is checked by comparing

the value of the objective function.

C  Stat )

A 4

Step 1

Execute the CPM without uncertainty (1) and obtain
a realization of allocating costs (cy 1™, -+, cpr ™).

Step 2

A 4

Set the reference realization (v, -, v, ).

Step 3 <

A 4

Calculate h(1v2-r) within a narrowed search
range M; X --- X M,..

Step 4

Renew

v (vlref vrref).
Solve POF in which the search range is narrowed
down to M; X --- X M,.

Step 5

Objective value
increased?

No

(C End )

Figure D.1. Flow chart of the algorithm of local search method [1-column fitting image]

Yes
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[Step 1]

In this step, we find one realization of allocating costs ref ref .. ref as a reference
? Sy Cua > sCor

solution to find an initial guess to set the search range. Here we attempt to use the solution of the CPM without

uncertainty shown in (A.1) as the realization of allocating costs (CM S ey, ey, ) . In this study,

we assume that the fixed task duration # in (A.1) is calculated by ¢, =¢,"°.

[Step 2]

In this step, we decide the reference realization of the indices as (Vlref v,y ref) for
r

r

v ref v ref Vrref
(Tl( 1 ) ) Tz( ’ ) RN ( ) j . Using this reference realization, the search range can be determined as shown

in (44). To find the optimal solution, the candidates for search (45) must contain (V1 v, e, ) . Therefore,

the realization(v1 ey, ey e ) , which is at the center of the search range, needs to be sufficiently close

b

%

to (Vl*,vz*"" ’Vr*)_However, (Vl*,Vz*a"' v, ) cannot be found without executing POF and find optimal

*

cost allocation (CM R,

* f f f
Cor ) Here, we attempt to use (CMJ“ e ey ) and set

(vlref’vzref’... ,Vrfef) to satisfy a similar condition to (32) as

.1 _arg Z M i M] =0 . (Dl)

Vi iep;
[Step 3] o ’

In this step, the problem POF is prepared by calculating the probability / (VI B ) defined in (30) where
the search range is narrowed down. Firstly we construct the local search range around the reference indices
(V1 el Ly ety e ) as given in (44), where the candidates of discrete random variables is given by (45).

Similarly with (B.2), here we define a set of (k1 Y ARTEN ) that satisfies the condition (B.1) for the indices

(45) where the search range is narrowed down:

A ) kb ) e 41 T <7 jer
iep; (D.2)
(Vl,a‘}z'v'":vr,)ej\zlXMZX'”XM'

Finally, we calculate the probability h(vl )

h(vll’vzr’m’v’,) = Z a1(k1)0!2(k2) 21 (k"). (D.3)

by using (B.4) where the search range is narrowed down:

n
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[Step 4]
We solve the following problem, which is a modification to POF"

Maximize: Z h("lavz»“"vr) . Z(vl,vz,w,vr)
(Vl’Vz,'~',V,<)€M1XM2><~~-><Mr

5.tz ¢ {0,1},(vi,vy, v, ) €M x M, x---x M

7

TJ'(VJ') .Z(vl’vz’m’vr) - ZﬂvM,icM,i <L, jeV
iep‘,- (D4)

Z Z(vl,vz,m,vr) :1

(vl,vz,u-,vr)eMlxM2><~~~><M,.

ZcM,i <C

ieW
0<¢,,; < C;,n ieW
where in contrast to POF, the range of possible index of random variables (31) is replaced by the narrowed
range (45). Note that the optimal solution of (D.4) may be different from the optimal solution of POF;, only if
the search range (45) contains (y,",v,",--,v,") Weobtain Ptz V) s e objective value. Even
if (D.4) cannot find the optimal solution of POF’, by executing (D.4) we can find equivalent or better candidate

. . . . vref’v ref’.__’vy f
where the objective value is higher compared to the reference value h( b ) .

[Step 5]
This step is to decide whether the search in Step 3 is sufficient by comparing the objective function. If the

binary variables Z (rv2.m)

is the same as those in the previous execution of Step 4, we terminate the
algorithm. If the solution is changed, return to Step 3 after replacing the reference indices

(vlref’vzref’... ,Vrfef) by that in the solution of Step 4.
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Supplementary Material E. Consideration about computational time in Example
1

Here we discuss why the computational time for the Task-Oriented Formulation (TOF) with dispersion
improvement is much larger than that of TOF w/o dispersion improvement in Example 1. To consider this issue,

we fix the cost coeficient for the dispersion, ¢, for some tasks. The following constraint is implemented:

cp; =0, ieW, i+i (E.1)

where 7' is the index for the task where improvement of dispersion is allowed. We change i'one by one,
and compare the optimal solution and computational time for each i'.

In Table 5, we show results of the TOF where i is varied from 1 to 4 along with the results that already
appeared in Table 2 (without dispersion improvement and with dispersion improvement). To analyze the
complexity of the problem, the numbers of partial problems (linear programming problems with relaxation) in
the solution algorithm for the mixed integer programming problem, branch-and-bound method, are also shown
there. In this algorithm, linear programming problems where the integer variables are relaxed or fixed are
sequentially solved, and unattractive combinations of the integer variables where the objective value exceeds the
upper bound are eliminated as the algorithm proceeds.

It can be seen in Table 5 that the number of partial problems increases significantly when the dispersion
improvement is allowd, and as a result the computational time increases; the computational time without
dispersion improvement is only 17 seconds, but that for allowing dispersion improvement in only one task
(i'=4)increases it to 321 seconds. This is because nearly equally attractive options cannot be eliminated early
in the branch-and-bound search, and thus a larger number of partial problems must be solved. Comparing the
results for i’ =1,2,3, and 4 in Table 5, the number of partial problems and computational time for I’ = 2,4
are much larger than those for 1 = 1,3 . From these results, it is estimated that in cases I = 2.4, improving

dispersion of the task durations is nealy as attractive as the improvement of the expected value of task durations.
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Table 5 Results of the TOF under different conditions

w/o with
dispersion i'=1 i'=2 i'=3 i'=4 dispersion
improvement improvement
# of decision
. 3924 3925 3925 3925 3925 3928
variables
# of partial
8481 12323 139284 6837 155635 241547
problems
Computational
. 17 31 257 16 321 1027
time (s)
Probability
finished by 0.9070 0.9070 0.9072 0.9070 0.9138 0.9444
r
Task i Cumi Cvi  Spi Cmi  Cpi CSmi Spi Cmi Spi Cmi  Cpi
1 40 40 1262 40 - 40 - 40 - 40 10
2 80 78.73 - 5476 25 76 - 62.67 - 62.67 40
3 30 30 - 30 - 3083 3.173 20 - 20 3.685
4 100 100 - 100 - 100 - 100 25 100 30
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Supplementary Material F. Calculation order of the parameter A

)

Since the amount of calculation for the parameters h(vl e is significant, here we note the calculation
orders of A7) defined in (30) used in the Path-Oriented Formulation (POE, Stricf) in Section 5 and
Path-Oriented Formulation with Local Search Algorithm (POF, Local Search) in Section 6.

Firstly, we show the calculation order of h(vl Y2 gy (POE, Strict) is O(l "xm" ) .From Eq. (26) and
(31), the number of Rl Furthermore, from (B.3), the each one of the AU ) s qum
of the probabilities al(kl/)az(kZ/) oo an(k",) in (10) where the total number of combinations for
al(kly)az(kzy) e an(k"’) is m"asshownin (5) and (11).

Similarly, the calculation order of ple) (POE, Local Search) is O((2 B+ l)r xm' ) , since the

range of (vl,vz,---,vr) is reduced from /to (2ﬂ+1) asin (44).
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