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Abstract—This paper proposes a methodology for demand 

profiling, namely load decomposition, of aggregated residential 

load based on smart meter (SM) data. The methodology is 

applicable to both active and reactive load, following an 

assumption that SMs can monitor real-time active power 

consumption of individual appliances. Only a number of 

households in the aggregation are equipped with SMs in this 

study. The non-monitored users’ load is decomposed using 
artificial neural network (ANN) trained with the available SM 

data. Information about load composition, in terms of load 

categories or load controllability, can be highly beneficial for 

various demand response (DR) applications. Different levels of 

SM coverage are considered in the study to illustrate the effect of 

the level of SM coverage on the accuracy of total aggregated load 

decomposition. The results show that the consumption of some 

load categories can be estimated with high confidence, even at 

lower levels of SM coverage. 

Index Terms-- Demand-side management, distribution network, 

smart meter, neural networks 

I. INTRODUCTION   

Following the roll-out of smart meters (SMs) in residential 
districts around the world, the end-users will gain better 
observability of their consumption, as well as higher potential 
to participate in the power network daily operation. Higher 
granularity of low-level consumption data in the future 
distribution grid will bring benefits to both consumers and the 
distribution system operator (DSO). On the one hand, smart 
metering will facilitate awareness of consumers about their 
daily consumption and enable them to make savings by 
reacting to price signals or various types of incentives triggered 
by their electricity supplier. On the other, SM data will provide 
information to the DSO about individual load profiles, 
enabling more advanced profiling of consumers in different 
areas and at different levels of aggregation.  

Load profiling has shown crucial role in the studies of 
direct load control (DLC), demand response (DR) programs, 
design of tariffs and involvement of local generation [1]. An 
important part of load profiling is flexibility profiling, i.e. 
assessment of the size of controllable (shiftable) load within 

the total load. The assessment can be performed in two 
dimensions:  

 Time: observing the change in the size of controllable 
load within the total load over a day or a season; 

 Space: observing the size of controllable load over a 
distribution network. In this case, different network 
buses will have different flexibility potential, 
depending on their load mix (namely residential, 
industrial or commercial users). 

Furthermore, load can be disaggregated (decomposed) into 
load categories, such as resistive loads, induction motors, 
lighting, etc., in order to obtain a more detailed insight into the 
types of load utilized on a daily or seasonal basis. Following 
the DLC scenario, where certain load categories are equipped 
with smart controllers, load disaggregation would provide 
information on the amount and profile (category) of the 
disposable controllable load. Also, for any kind of incentive-
based DR, estimation/prediction of load composition at 
aggregation point could show if the DR potential (flexibility) 
of the aggregated consumption is big enough for the needs of 
the program, or some additional measures are necessary.  

This paper introduces load profiling methodology relying 
on minute-based consumption data coming from SMs. The 
main assumption is that SMs measure consumption of 
individual domestic appliances, which enables detailed time-
based analysis of DR potential of the residential end-users. 
This approach is motivated by the existence of small trial sites 
performing load measurements on appliance level, mainly in 
residential sector [2-4]. Assuming this kind of smart metering 
system, a bottom-up approach can be used to assess load 
flexibility using SM data. For the non-monitored load, i.e. the 
end-users without an SM, artificial neural network (ANN) 
based approach is taken for load decomposition, as described 
in the following chapters. 

II. DEMAND PROFILING OF RESIDENTIAL LOAD 

Demand profiling in this paper refers to load decomposition 

(disaggregation), which results in time-varying load 

composition, i.e. contribution (in per unit or percentage) of 

different load categories to the total active or reactive load. 
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Following methodology discussed in [5], load categories are 

defined as groups of appliances with similar voltage-dependent 

steady-state and dynamic load characteristics. Furthermore, 

load categories are divided into controllable and uncontrollable 

based on their potential to be shifted in time. According to the 

most commonly used appliances in residential sector in the 

UK, seven categories are recognized in this analysis and 

presented in Table I as: single-phase constant torque induction 

motors (CTIM1), three-phase constant torque induction motors 

(CTIM3), single-phase quadratic torque induction motors 

(QTIM1), controllable resistive loads (RC), uncontrollable 

resistive loads (RUC), switch-mode power supply (SMPS) loads 

and Lighting.  

The full list of appliances was adopted from the residential 
load model given in [3]. Due to the lack of larger datasets 
coming from the existing pilot sites, this model was adopted to 
generate synthetic SM data for the case studies in this paper. 

TABLE I.  LOAD CATEGORIES AND CORRESPONDING TYPES OF 

APPLIANCES 

Load 

controllability 

Load 

categories 
Residential appliances 

Controllable 

CTIM1 
Dish washer, tumble dryer, washing 

machine, washer-dryer, vacuum cleaner 

CTIM3 Electrical space heating 

QTIM1 
Chest freezer, fridge-freezer, fridge, 

upright freezer 

RC 
Water heater, electrical shower, storage 

heater 

Uncontrollable 

RUC Iron, hob, oven 

SMPS 

Answer machine, CD player, Clock, 

telephone, high fidelity (HiFi) 

appliances, Fax machine, PC, printer, 

TV, VCR-DVD, receiver, microwave 

Lighting Lighting 

 

III. SMART METERING  

In the two-way communication between electricity 
suppliers and end-users provided by the SMs, the end-users 
may receive daily and seasonal change in electricity price as a 
signal to change their load patterns and make savings for both 
themselves and suppliers [6]. The users will be provided with 
close to real-time information about their energy consumption, 
as well as the cost of the kWh and the amount of CO2 emission 
[7, 8]. In the UK, customers will also choose whether they 
want their measurement data to be sent every 30 minutes, daily 
or monthly. 

Next to the benefits provided to the end-users, there are 
several advantages SMs could bring to the DSO, including: 

 More accurate load forecasting and distribution system 
state estimation, at different aggregation levels 

 Improved fault detection and faster fault restoration 

 Monitoring of distributed generation, and thus 
avoiding appearance of hidden load in the network 

At this point, the transmission system operator (TSO) in the 
UK uses DR only from large industrial users and estimates it in 
advance, so that the balancing between generation and load can 
be done 2-60 minutes in advance of real time (the data is 
received every 30 minutes from generation units and large 
loads) [9]. On the other hand, higher level of load aggregation 
in residential districts can also have a significant potential for 
DR – only in UK residential sector forms around 30% of the 
overall consumption. A potential hurdle for practical 
implementation might be the discrepancy between the time 
steps at which data is collected from SMs and time granularity 
of system operation activities. 

Aggregation of SM data is proposed as a way of enhancing 
the DR potential of end-users, and protecting privacy of the 
users. Although an aggregator might include customers which 
are not necessarily supplied from the same distribution 
substation, it is assumed that the consumption data from all the 
households in this study are aggregated at the common 
substation (bulk) point. This type of communication 
architecture also enables more efficient data handling, i.e., 
reduction of the size of data sent to the upstream network [9]. 

IV. METHODOLOGY 

The diagram in Fig. 1 presents methodology for load 

decomposition in case of a smart metering system with partial 

coverage (i.e. only some consumers in the aggregation area 

have an SM). Two assumptions are made in this respect: 

1) SMs can measure consumption (real and reactive power) 

of individual appliances (block {1}); if not measured, 

reactive load can be derived probabilistically, using a 

range of possible values of power factor for each 

appliance; this approach was taken in this paper 

2) Measurement of total consumption (real and reactive 

power) at the substation point (block {5}) is available 

every minute. 

Following the first assumption, part of the consumption 
which is monitored with SMs can be decomposed into 
categories or controllable/uncontrollable load by simply 
summing consumption of appliances belonging to the same 
category (block {2}) according to the classification in Table I. 
Load composition is given as time-changing participation (in 
per unit - p.u.) of each of the seven categories within the total 
load. Since there are non-monitored households, ANN based 
approach is adopted to estimate the demand composition of the 
total aggregated load based on the available SM data. A two-
layer feed-forward ANN with Bayesian Regulation 
Backpropagation is used, following its good performance 
reported in [10]. In this case, available SM data is used for 
training the ANN, using total (aggregated from SMs) active 
and reactive power as input data and participation of the seven 
categories (in p.u.) as the target data (block {3}). 
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Figure 1.  Flowchart of load decomposition  

The training process is performed over 7 days data, which 

includes minute-based real power (𝑃) and reactive power (𝑄)  

measurements, so there are 7*1440 samples for each of the 

variables, presented in a matrix form as follows: 𝐼𝑛𝑝𝑢𝑡 =  [𝑃1      …    𝑃𝑖     … 𝑃7∗1440𝑄1    …     𝑄𝑖   … 𝑄7∗1440] .               (1) 

 

Target data, defined as 𝑊, presents the participation of 

each load category in p.u. If in a time step 𝑖, active load of 

category 𝑗 equals 𝑃𝑗𝑖 , then the participation 𝑤𝑗𝑖𝑃 of that 

category is given as: 𝑤𝑗𝑖𝑃 = 𝑃𝑗𝑖𝑃𝑖  ,                                     (2) 

where 𝑃𝑖  is the total active load in a time step 𝑖. Target data 

can then be presented in matrix form as follows: 

𝑇𝑎𝑟𝑔𝑒𝑡 = [   
 𝑤1,1𝑃   ⋯ 𝑤1,7∗1440𝑃𝑤2,1𝑃   ⋯ 𝑤2,7∗1440𝑃⋮        … ⋮𝑤7,1𝑃    ⋯ 𝑤7,7∗1440𝑃 ]   

 
 .                          (3) 

In case of reactive power, the participation of each category 

is  given as: 𝑤𝑗𝑖𝑄 = 𝑄𝑗𝑖𝑄𝑖 = 𝑃𝑗𝑖tan (𝜑𝑗𝑖)𝑃𝑖tan (𝜑𝑖) = 𝑤𝑗𝑖𝑃 tan (𝜑𝑗𝑖)tan (𝜑𝑖)  ,                   (4) 

where 𝜑𝑗𝑖 and 𝜑𝑖 are phase angles of category 𝑗 and total load 

in time step 𝑖, respectively.  

Once trained, the ANN (block {4}) uses measurements of 

total active and reactive load at the substation point as the 

input, giving its load composition as the output (block {6}). It 

is worth mentioning that in case of smart metering system 

with full coverage (base case), the load decomposition process 

would consist only of parts described by blocks {1} and {2} 

and it would be trivial. Load composition of the base case is 

given in Fig. 2 and used as a reference for the calculation of 

accuracy in the case studies. 

V. CASE STUDIES 

In order to prevent high influence of individual load 

profiles on the total load shape and to reflect a relatively large 

number of households supplied by the same distribution 

substation, aggregation of 1000 houses is analyzed in this 

paper. Following this, residential occupancy statistics for the 

UK is adopted from [11], where it is stated that 29% of houses 

in the residential district accommodate single resident, 35% 

accommodate two, 16% have three residents and 20% have 

four. 

As suggested in [3], in order to prevent under-estimation of 

electrical consumption and provide sufficient data for detailed 

modelling of distribution networks, one minute-based load 

profile is chosen as the reference. Considering that balancing 

between generation and demand is performed every minute,   

the available flexibility should be reported to the network 

operator at this rate as well [9]. It was reported in [12] that the 

active and reactive consumption could be measured by SMs 

over periods from 1 to 60 minutes. Assuming the freedom of 

end-users to choose how often their consumption data will be 

sent, the SM data streams are taken to be with one, 10, 30 or 

60 minutes rate, randomly. According to [13], up to 20% of 

active load measurements at substation points are inaccurate. 

Therefore, 20% of the overall data coning from SMs is 

assumed to be missing (“NaN” values). The case studies 

shown here analyze data after it has been processed, restored 

and aggregated, though the data preprocessing and restoration 

is out of the scope of this paper.  

Objective of the examples described in the case studies is 

to illustrate the effect of smart metering system coverage on 

the accuracy of demand decomposition in an aggregation of 

1000 households. Therefore, three cases will be investigated: 

Case I: 20% coverage, i.e. 200 households out of 1000 have 

smart meters; Case II: 50% coverage; Case III: 80% coverage. 

 

Figure 2.  Load composition of 1000 households with 100% SM coverage 

(base case)  
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VI. RESULTS 

The accuracy of the load decomposition is assessed using 

the load share error (WFE), calculated for each time step 

(minute) as follows: 𝑊𝐹𝐸𝑐𝑎𝑡 = 𝑊𝐹𝑐𝑎𝑡, 𝐴𝑁𝑁 − 𝑊𝐹𝑐𝑎𝑡, 𝑟𝑒𝑎𝑙  ,               (5) 

where 𝑊𝐹𝑐𝑎𝑡, 𝐴𝑁𝑁 is the share (contribution) of the load 

category obtained as the result of the ANN, and 𝑊𝐹𝑐𝑎𝑡, 𝑟𝑒𝑎𝑙  is 

the actual share of the category (from the base case), both 

given in p.u. based on the monthly peak load. Fig. 3 presents 

the way errors are accounted for on the example of two load 

categories, namely controllable and uncontrollable load. 

Shares of controllable and uncontrollable load are obtained by 

summing up the shares of corresponding load categories, 

following Table I.  

 

Figure 3.  Presentation of the confidence level on the example of 

controllable/uncontrollable load over one day (24 hours)  

If the total load at time 𝑡 equals 0.7 p.u. (where 1 p.u. refers 

to the maximum monthly load at the aggregation point), and 

the estimated load shares of controllable and uncontrollable 

load are 0.3 p.u. and 0.4 p.u., respectively, then the real values 

of the shares are within the following ranges: 𝑃𝐶 = 0.3 𝑝. 𝑢. ± 𝐴𝑊𝐹𝐸,                          (6) 𝑃𝑈𝐶 = 0.4 𝑝. 𝑢. ± 𝐴𝑊𝐹𝐸.                         (7) 

Here, 𝐴𝑊𝐹𝐸 refers to the absolute value of the 𝑊𝐹𝐸. In 

each time step, the 𝑊𝐹𝐸 for controllable load has the same 

absolute value as the uncontrollable load, but with the 

opposite sign, as the sum of these two shares always gives the 

same total load for that time step. 

Figures 4-10 present the probability density function (PDF) 

of the WFE and cumulative distribution function (CDF) of the 

AWFE for individual load categories. Figures compare the 

distribution of errors based on the SM coverage level, 

including the base case (100% SM coverage). The 90
th

 

percentile of the errors (read from the CDF plot) is chosen for 

comparison, as it shows the maximum error in 90% of the 

observed time steps (here, 1440 time steps over a 24h period). 

As seen in Fig. 4, shares of the CTIM1 category are 

estimated with high accuracy at 80% SM coverage level, with 

90
th

 percentile of AWFE around 0.06 p.u. At the same time, 

the accuracy at 50% and 20% coverage is almost the same, 

with 90
th

 percentile AWFE around 0.11 p.u. Looking at the 

PDF plot, it can be seen that the most probable WFE for 80% 

and 50% coverage is zero, same as the base case. At 20% 

coverage level, the WFE distribution is bimodal, having peaks 

around 0 and -0.08 p.u. 

 

Figure 4.  WFE and AWFE of the estimated share of the CTIM1category 

(e.g. dish washer, washing machine, clothes dryer, etc.)  

Estimation of CTIM3 shares shows very high accuracy, as 

seen in Fig. 5. The 90
th

 percentile of AWFE is smaller than 

0.05 p.u. for all the SM coverage levels. The most probable 

WFE is different from zero only for 20% SM coverage, still 

being very small, around -0.02 p.u.  

 

Figure 5.  WFE and AWFE of the estimated share of the CTIM3 category 

(e.g. electrical space heating)  

Cold appliances’ shares in the overall load can also be very 
accurately estimated even at 20% SM coverage, where the 90

th
 

percentile of AWFE is around 0.06 p.u. (Fig. 6). The most 
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probable WFE in all cases is between 0 and -0.01 p.u. 

 

Figure 6.  WFE and AWFE of the estimated share of the QTIM1 category 

(e.g. cold appliances)  

Controllable resistive loads are estimated with visibly 

lower accuracy at SM coverage levels under 80%. As seen in 

Fig. 7, the 90th percentile of AWFE is around 0.25 p.u. at 

50% SM coverage, and 0.65 p.u. at 20% SM coverage. Thus 

this category needs higher SM coverage for confident 

estimation/prediction of its shares during the day. 

Uncontrollable resistive loads’ contribution to the total load 

can be estimated with higher accuracy, having 90
th

 percentile 

of the AWFE less than 0.05 p.u. at 80% coverage and around 

0.1 p.u. at 50 and 20% coverage, as seen in Fig. 8. 

Electronic devices’ shares can be assessed with relatively 
high accuracy at 80% and 50% SM coverage, while at 20% 

coverage the 90
th

 percentile of the error is over 0.15 p.u. 

(Fig. 9). Regarding the Lighting category (Fig. 10), its share 

can be estimated with 90
th

 percentile of error up to 0.1 p.u. for 

SM coverage of 50% and higher. At 20% coverage, majority 

of errors is up to 0.27 p.u.  

 

Figure 7.  WFE and AWFE of the estimated share of the RC category (e.g. 

water heater, storage heater, etc.)  

 

Figure 8.  WFE and AWFE of the estimated share of the RUC category (e.g. 

hob, oven, iron, etc.)  

 

Figure 9.  WFE and AWFE of the estimated share of the SMPS category 

(e.g. electronic devices)  

Finally, looking at the distribution of errors for controllable 

load in Fig. 11, the 90
th

 percentile of AWFE is around 

0.05 p.u. at 80% SM coverage, and around 0.15 p.u. at 50% 

coverage. The majority of errors is over 0.5 p.u. at 20% 

coverage, presenting very low accuracy. 

Table II presents the 90
th

 percentile of the confidence level 

for AWFE for different load categories and controllable load, 

over a range of SM coverage levels. Highlighted cells are 

those presenting AWFE not higher than 0.1 p.u., reflecting 

high accuracy. As seen from the accuracy analysis, there are 

load categories whose share can be estimated with high 

confidence even with lower levels of SM coverage (e.g. 20%) 

– these are CTIM3, QTIM1 and RUC. At the same time, SMPS 

and Lighting require 50% coverage for confident share 

estimation, while CTIM1 and RC need 80% coverage.  
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Figure 10.  WFE and AWFE of the estimated share of the Lighting category  

 
Figure 11.  WFE and AWFE of the estimated share of the controllable load  

It can be concluded that for the DR programs relying on 

cold appliances (QTIM1 category) or induction motor-based 

space heating appliances (CTIM3), even lower SM coverage 

(20%) allows very accurate estimation of their share and 

flexibility potential using this methodology. Load flexibility 

estimation for DR programs based on washing/drying 

machines and similar appliances (CTIM1) can also be fairly 

accurate with 20% and 50% SM coverage levels. As for the 

voltage-based DR, relying on resistive loads (water heaters, 

for example), 80% SM coverage is required for RC, which is 

why in this case there are more SMs needed to be installed for 

more confident prediction/estimation of the DR potential. 

VII. CONCLUSION 

This paper presented methodology for load decomposition 

based on SM data and ANN. Results showed that the level of 

SM coverage influences the accuracy of load decomposition 

only with respect to some load categories. The methodology 

proposed in this paper can be straightforwardly extended to 

network buses with mixed load sectors, i.e. residential, 

commercial and industrial. Also, obtaining the optimal 

aggregation level and data granularity, as means of saving 

expenditures for expanding data servers and communication 

line capacity, will be one of the objectives of future research. 

Further studies should also reveal what is the required 

accuracy of load decomposition for different types of system 

studies. 
TABLE II.  AWFE WITH 90TH PERCENTILE CONFIDENCE LEVEL  

Load category 
SM coverage level 

100% 80% 50% 20% 

CTIM1 0.04 0.06 0.12 0.11 

CTIM3 0.02 0.01 0.02 0.04 

QTIM1 0.01 0.01 0.02 0.06 

RC 0.04 0.05 0.25 0.64 

RUC 0.04 0.04 0.10 0.10 

SMPS 0.03 0.04 0.09 0.16 

Lighting 0.03 0.06 0.10 0.27 

Controllable 0.04 0.07 0.13 0.52 
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