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Abstract—This paper introduces the reasons for big data 

analytics in distribution network studies and potential benefits it 

could give. Summary of the most common data mining methods 

used in power system studies is also given, followed by a 

comparative analysis. A use case is shown at the end in order to 

present some examples of extraction of useful information from 

raw data stored in a real distribution utility’s database. This was 

done by using some of the basic data mining methods applied to 

different types of attributes describing distribution system 

feeders in 11 kV and 6.6 kV network. The initial results showed 

that the usefulness of information depends on the level of data 

aggregation, as well as the choice of data analytics method. 

Index Terms—Databases, data mining, power distribution.  

I. INTRODUCTION 

Following the low carbon generation technologies (LCT) 
introduction to power systems, distribution networks are 
becoming more active in balancing generated and consumed 
electrical energy. This is done through participation of the end-
users through demand side management (DSM). In order to 
maintain secure response of the end-users during DSM actions, 
it is necessary to provide high reliability of the distribution 
network (voltage levels not higher than 132 kV, in case of the 
UK).  

One of the conditions for the network reliability is optimal 
maintenance of its main assets. Data about the condition of the 
assets is mainly stored in distribution system utilities’ 
databases. These data can be static, i.e. data about the previous 
electrical measurements or replacement of an old asset with a 
new one. This type of data is usually stored in the form of 
reports, containing both numeric and text data, often given in 
tables. Databases also collect dynamic, mainly numeric data 
coming in data streams, such as on-line monitoring data for 
power transformers or load demand at a substation point. This 
type of data can be collected at various time steps, depending 
on the application. Distribution system utilities’ servers are 
keeping large amount of static data and also constantly 
receiving and storing large number of real-time data, keeping 
enormous memory space busy with numbers and text. It has 
not been analysed yet, though, how thoroughly these data are 

being processed, i.e. how much knowledge has been retrieved 
from the existing collection of data.  

With the increased involvement of information 
technologies (IT) and significant reliance on monitoring 
systems and processing of large number of data streams, a need 
for utilization of data mining techniques has been raised in 
distribution network analysis. Therefore, methodologies of big 
data analytics should be developed and applied on huge 
available data streams, as well as on static data, to investigate 
potential correlations between condition of the network and 
some other factors, such as equipment type, geographical 
position, weather conditions, socio-demographic profile of an 
area, etc. In this way, it would be possible to manipulate some 
of the critical factors in order to provide secure and stable 
operation of the distribution network. 

This paper introduces reasons for big data analytics in 
distribution network and presents a case study showing results 
of the data analysis applied to a real distribution utility’s 
database.  

II. REASONS FOR BIG DATA ANALYTICS IN 

DISTRIBUTION SYSTEM ANALYSIS 

A.  Distribution Network Observability 

An important source of uncertainty in distribution grid 
analysis is the actual observability of the distribution system, 
i.e. the ability to perceive the real state of the network 
reliability or quality of service (QoS) based on the data coming 
from monitoring devices. Distribution system operator (DSO) 
controls a much larger number of power lines and substations 
than a transmission system operator (TSO), which is why it is 
hardly feasible to monitor all these assets. LV network in the 
UK, for example, involves 230,000 HV/LV substations, 
including 580,000 transformers and 376,000 km of overhead 
lines and underground cables [1]. 

A lot of effort has been put to maintain the optimal control of 

the distribution system despite the reduced observability. 

Hence the use of data mining methods is taking the lead as a 

cost-effective means of gaining additional and useful 

information from raw data. For example, [2] proposes making 
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correlations between monitoring data and characteristics of 
feeders as a solution to the problem of estimating number of 
customers connected to a feeder and mixture (percentages) of 
customers’ types. This way it would be feasible to assess more 
accurattely the current state of feeders and customer types 
connected to them by using monitoring data only. 

B. Future Distribution Power Network and Big Data 

One of the most important features of the future power grid 
operation will be the increased use of communication and 
information tecnologies. Hence, with the complexity of 
modern distribution power systems grows the size of their 
monitoring systems and databases accommodating variety of 
data coming from numerous monitors and sensors. Databases 
are increasing in two dimensions: in the number of objects 
(instances) and in the number of fields for attributes describing 
those objects. The most common types of attributes typical 
data mining methods are dealing with are numerical and 
nominal ones. 

Power distribution utilities’ databases are, as many other 
types of databases, characterised by several common features 
[3]: 

 large size  

 noisiness  

 incompleteness or absence of records 

 semi-random survey design (redundancy of records of 
one attribute but a lack of records of another) 

 high heterogeneity of response variables (attributes) 
and large number of predicting variables. 

Different departments in distribution utilities use different 
styles of record keeping, conventions, different time periods, 
levels of data aggregation, different primary keys (identifiers), 
and different types of errors. These are all aggravating factors 
when there is a need for merging different databases into one 
central system. Therefore data have to be assembled, 
integrated, and cleaned up, taking into account the importance 
of the right type and level of aggregation [2, 4]. 

C. Potential Benefits of Big Data Analytics 

One of the aims of big data analytics is to reduce the size of 
big data. The need for information is ever growing, but the 
actual capacity of communication network and data processors 
is not. That is why the inclusion of new data sources, especially 
those sending streams of data in real-time, requires investments 
for enhancement of the communication network capacity. For 
instance, capital cost of the communication infrastructure 
needed for sending smart meter data in the UK is estimated to 
be around £1.15 billion [5]. In that sence, using data analytics 
in order to distinguish the types of data with higher importance 
for information retrieval might save significant expenditures 
predicted for upgrading servers and communication lines. 
Another way to make savings in investments is to analyse 
sampling time of data versus accuracy of extracted 

information, because results might show that acceptable 
accuracy of information can be obtained with lower sampling 
steps, which reduces data traffic. 

Data analysis of static data stored in databases could also 
reveal some unexpected correlations between certain features 
and support actions such as asset management. An example 
could be high correlation between feeders of certain type and 
number of faults per feeder, which could support decision 
making regarding the investments in distribution network.  

III. METHODOLOGIES OF BIG DATA ANALYTICS 

Data mining techniques have already been widely used in 
power system security assessment, fault detection, power 
system control, power generation risk management and load 
and price forecasting [6]. The two basic outputs of data mining 
methods are prediction, based on observations on already 
existing instances with known response variables, and 
knowledge discovery in big databases. Number of these 
methods and their modifications depending on the application 
has been increasing constantly, but nonetheless they are all 
based on either correlation, regression or classification 
methods [6]. First part of any data mining process is pre-
processing of raw data, which consists of several stages: 
extraction of useful data; removing data noise; statistical 
analysis for generating new useful variables; formatting data 
for the desired data mining method. 

A. Correlation 

Correlation is a widely used statistical tool for retrieving 
relationships between data. In the case of linear correlation, it 
gives the strength and direction (positive or negative) of 
relationship between random numerical variables. Also, as a 
means of data selection, it can be very useful for rejecting 
uncorrelated data, i.e. reducing data size. The typical measure 
of correlation is given with Pearson’s coefficient 𝑟 [6], 
calculated as follows: 

𝑟𝑋,𝑌 =
∑ (𝑥𝑖−𝑋̅)(𝑦𝑖−𝑌̅)𝑛

𝑖=1

√[∑ (𝑥𝑖−𝑋̅)2𝑛
𝑖=1 ][∑ (𝑦𝑖−𝑌̅)2𝑛

𝑖=1 ]
    − 1 ≤ 𝑟𝑋,𝑌 ≤ 1 ,         (1) 

where 𝑋 ̅and 𝑌̅ are mean values of variables X and Y. 

B. Regression 

Linear regression is a well-known technique for numeric 
prediction- therefore it is often used in forecasting applications. 
The response (𝑦) is presented as a linear combination of 
predictors (𝑥1, 𝑥2, … , 𝑥𝑛) and weights (𝑤0, 𝑤1, … , 𝑤𝑛) given in 
the following form [7]: 

𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛                 (2)             

Weights are calculated based on training data, i.e. given set of 
examples of response values and corresponding predictors’ 
values. These numerical weights can be used as predictors of 
the unknown response if the predictor attributes are known. In 
cases of data with nonlinear dependency, where linear 
regression gives only a rough estimation of the prediction 
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function, more accurate estimation is made using non-linear 
regression model given in the following form [8]: 

𝑦𝑖 = 𝑓(𝑥𝑖 , 𝜃) + 𝜀𝑖 ,                              (3) 

where 𝑦𝑖  and 𝑥𝑖  are vectors of response and predictor attributes 
in the i-th instance, respectively, 𝜃 is the vector of parameters, 
while 𝜀𝑖 is a random error. The parameter vector that is 
unknown can be estimated from training set using least squares 
method, i.e. minimization of the expression: 

∑ (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜃))2𝑛
𝑖=1  .                           (4) 

C. Classification 

Classification is a general term for all data mining methods 
that form groups (classes) of data based on some categorical 
rules [7]. It is a two-step process: first, in the training step, a 
model, i.e. a number of classes with defined attributes is 
formed based on available observations (patterns, data items or 
feature vectors). Second step is to classify unseen examples 
based on their attributes. In supervised classification methods, 
given set of labelled patterns (training data) is used to learn 
description of each class (group). Some of the classification 
methods are: 

1) Decision trees  

Decision trees are one of the widely used classification 
methods. They have been applied in power system stability 
studies using data from phasor measurement units (PMUs) [9]. 
This data mining method is based on generating 
comprehensive rules for dealing with both continuous and 
discrete data. The tree structure consists of if-then rules, i.e. 
tests on attributes given in nodes of the tree. Branches 
represent results of these tests and leaves contain class labels 
[10]. Class labels can be nominal, in case of classification 
trees, or numerical, in case of regression trees [11]. 

2) Clustering 

Clustering is a common name for the group of 
unsupervised data mining methods, which can also be seen as a 
subgroup of classification methods. Classification of 
measurements is based on either (i) goodness-of-fit to a 
postulated model, or (ii) natural groupings (clusters) revealed 
through analysis. While classification models assign new data 
to previously-defined classes which are specified as a target, 
clustering models do not use a target. Among numerous types 
of clustering methods, k-means and artificial neural networks 
(ANN) have been most frequently used in big data analytics.  

k-means is a classical clustering method [4], where initial 
centres of k clusters are randomly chosen from the data set. All 
other data objects (instances) are assigned to their closest 
cluster centre according to the ordinary Euclidean distance 

metric (‖𝑥𝑗 − 𝑥𝑘‖, in case of two vectors or patterns 𝑥𝑗  and 

𝑥𝑘). Next the centroid, or mean, of the instances in each cluster 
is calculated [12]. These centroids are taken to be new centre 
values for their respective clusters. The whole process is 

iteratively repeated with the new cluster centres, until the same 
points are assigned to each cluster in consecutive rounds, at 
which stage the cluster centres have stabilized and do not 
change any more. One of the applications of k-means 
clustering is in studies of electricity customers’ daily load 
profiles, where profiles from the same cluster get tariffed the 
same way. 

Artificial neural networks (ANN) present an upgrade of 
logistic (nonlinear) regression [4]. In power system analysis, 
they are mostly used for load forecasting, stability and security 
analysis, power system control, fault diagnosis, reactive power 
planning and control and for state estimation [13-15]. 
Disadvanatages of ANN are the empirical design of network 
structures and parameters and the need for numerous training 
instances [16]. As stated in [15], ANN are useful in cases 
where: 

 no direct algorithmic solutions exist, but examples of 
predictive and response variables are available, 

 problems change over time, i.e. the solution has to be 
adapted to the change 

 only complicated algorithms can be derived. 

In order to further analyse performance of data mining 
methods applied specifically to big data systems, comparison 
of the observed methods is given in Fig.1, in a form of a 
“radar” diagram. Good performance of the method is marked 
as 3 and bad performance is marked as 1, based on the 
comparative analysis given in Table I. Mark 2 was given if 
quality of performance wasn’t strictly defined.  

TABLE I.  COMPARISON OF METHODS IN BIG DATA MINING 

Method Advantages Disadvantages 

k-means 

clustering 

Deals with large data sets; 

Low computational complexity  

Sensitive to initial 

cluster centres; 

Deals only with 

numerical data; 

Sensitive to outliers 

ANN 

Deals with large data sets; 

Estimates non-linear relationships; 

Adaptable to changes (new data) in 

dataset 

Requires numerous 

samples 

Decision 

trees 

Deal with heterogenous data; 

Deal with multidimensional data 

Sensitive to outliers; 

Computational 

complexity  

Linear 

regression 

Deals with large data sets; 

Simple to interpret 

Discovers only linear 

relation between 

numerical variables; 

Sensitive to outliers 
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As seen from the Fig. 1, decision trees and ANN have the 
best performance in handling big and heterogeneous data, 
while k-means and linear regression handle big data sets, but 
only the numerical ones. K-means also showed the highest 
computational speed, which justifies its frequent use. 

 

Figure 1.  Performance comparison of different data mining methods 

IV. CASE STUDY: DATA ANYLITICS METHODS 

APPLIED TO A DISTRIBUTION UTILITY’S DATABASE 

As a presentation of information retrieval from databases, a 
real distribution utility’s SQL database was given with static 
data about faults on feeders in HV (6.6 kV and 11 kV) 
network. The database consisted of numerous tables showing 
feeders characteristics, i.e. types of feeders, districts, exact 
locations of primary substations (33 kV/11 kV and 
33 kV/6.6 kV), number of connected customers, etc. Also, 
given were exact dates and times of faults followed by the 
number of interruptions and cumulative duration of customer 
interruptions per fault. Number of customer interruptions (CI) 
and customer minutes lost per customer (CML), as key 
indicators of QoS of the distribution network, could then be 
calculated as follows [17]: 

𝐶𝐼 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
∙ 100 %               (6)            

𝐶𝑀𝐿 =
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
                (7) 

SQL database data was presented over a five-year period, 
each instance referring to a fault causing interruption of supply 
longer than 3 minutes. Datasets were further analyzed using 
Matlab and Weka tool. The analysis presented in this paper 
was performed over HV (6.6 kV and 11 kV) feeders’ data. 
Data was aggregated to feeder class level (according to 
classification of HV feeders’ types) and district level (in order 
to compare network performance among geographical 
districts). Following the results of the analysis given in Table I 
and the fact that the considered database is not big enough to 
justify the use of ANN or k-means clustering, a linear 
regression and decision trees were applied in this case study. 
Feeder Class Analysis 

All HV feeders were classified into 11 classes based on the 
percentage of the overhead line (OHL) part in respect to the 

total length (in km) of a feeder, as well as the number of 
customers supplied by the feeder (Table II). 

TABLE II.   CHARACTERISATION OF FEEDER CLASSES 

 

Fig. 2 shows some QoS indicators performance over a five-
year period, together with cost of compensation for energy not 
supplied (ENS) to domestic users, correlated to feeder classes. 
Calculation of the cost of compensation was done as follows: 

1) Number of CML was calculated for every fault and 

multiplied by number of interrupted (affected) customers; 

2) Value calculated in 1) was then multiplied by the 

average domestic consumption, standing for 1.1 kW [18], 

giving the energy not supplied (ENS) per fault. This value was 

summarised for all the faults happening on each of the feeder 

classes; 

3) The cumulative ENS was multiplied by the value of 

lost load (VoLL) for domestic sector (16.94 £/kWh [19]), 

giving the compensation cost for each feeder class during the 

given period. 

All calculated values were normalized to maximum 
calculated values given in Table III.  

TABLE III.  BASE VALUES FOR NORMALIZATION IN FIG. 2 

Measures Base values 

Average CML per feeder 18,860 min 

Cumulative ENS/Cost of compensation 720 MWh/£ 12.2 million 

Domestic share 100 % 

Average number of interruptions per fault 1,445 

Number of faults per feeder class 2297 

As it can be seen from the radar diagram in Fig. 2, the 
highest cumulative amount of ENS was calculated across HV 
feeders of class MC2 – feeders with high share of domestic 
users and also a high share of overhead lines. Following this, 
MC2 showed the highest compensation cost rate for domestic 
users during the period (around 1.8 % of the network DSO’s 
five-year profit). Feeder class UG1A (underground cable) 
showed the highest rate in average number of CML per feeder, 
probably due to the reduced accessibility for fault removal. 
This is also the most common type of feeder used in the 
observed HV distribution network, with a contribution of 
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around 27 %. Feeder class UG2B showed the highest number 
of interruptions per fault, which is justified by the fact that this 
feeder class supplies more than 2,000 customers on average. 

 

 

Figure 2.  QoS performance with normalized values per feeder class 

QoS indicators were then correlated to feeder 
characteristics (number of customers supplied by the feeder, 
length (km) of the overhead-line part and underground part and 
total length (km) of the feeder). Linear regression analysis 
showed that correlation coefficients for the same indicators 
were higher for higher aggregation level. When accumulated to 
primary substation level, QoS indicators showed high 
correlation with feeder parameters, mainly with total length of 
the feeders and number of customers supplied from the 
substation. Correlation coefficients for no aggregation and 
different levels of aggregation are given in Table IV.  

TABLE IV.  CORRELATION COEFFICIENTS 

QoS indicator 

Correlation coefficient (r) to feeder characteristics 

No 
aggregation 

Aggregation 
per feeder level 

Aggregation per 
primary 

substation level 

Number of faults / 0.78 0.84 

Cumulative number 
of interruptions 

during faults 
0.36 0.60 0.74 

Cumulative duration 
of interruptions (in 

minutes) during 
faults 

0.26 0.60 0.72 

In order to justify this, a presentation of learning based on 
data is given with a regression tree, i.e. an M5 pruned (M5P) 
model tree chosen in Weka tool, where number of faults 
accumulated per primary substation is assessed based on 
underground (UG), over-head line (OHL) and total (Tot) 
length of HV feeders, and number of connected customers 
(Num Cust). The first number in each bracket in Fig. 3. 
presents the number of instances reaching the leaf and the 
second number presents the percentage of misclassified 
instances. Correlation between feeder characteristics and 

number of faults is quite high in this case, too (r=0.86). Since 
the classifier showed low correlation with the number of 
customers, this attribute did not participate in the tree 
formation.

 

Figure 3.  Regression tree result 

B. District Analysis 

QoS was analysed in seven geographical districts, all 
operated by the same DSO, in order to investigate possible 
connection between network perfomance and some specific 
characteristics of individual districts. Shares of domestic and 
non-domestic users per district (upper part of Fig. 3) were 
compared to estimated ENS in the domestic sector for all the 
observed districts during the five-year period (lower part of 
Fig. 3). 

  

 
Figure 4.  District analysis of estimated revenues for energy not supplied in 

the domestic sector 

The highest estimated expenditures for the compensation 
for the ENS to the domestic customers were made  in area 2 by 
supply interruptions and calculated to be around 3 % of the 
DSO’s five-year profit. This area, with domestic share of more 
than 60 %, also showed the highest rate of ENS in domestic 
district, with around one million kWh of energy not supplied. 
Network in this area mainly consists of MA2 and MB2 feeders, 
which belong to medium length feeders with less than 50 % of 
overhead line part and with ageing deterioration as the main 
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cause of fault occurence. Distribution network in areas 3, 6 and 
7, with total compensation costs almost two times higher than 
those in area 2 alone, consists of OH and MC2 feeders, which 
showed the highest fault tendency, especially since weather 
(wind and gale) was stated as one of the main causes of faults 
in these areas.  

When the ENS values over the most critical districts (2, 3, 
6 and 7) get disaggregated down to a year level, as in Fig. 4, it 
can be seen that excessive ENS in district 2 acumulated in only 
one year. Therefore further analysis should be made to 
investigate possible reasons for this.  

 

Figure 5.  Amount of energy not supplied during five-year period in some 
districts 

V. CONCLUSION 

This paper discussed  some of the most commonly used 
data mining methods in power system studies. Among the 
observed data mining methods, ANN, decision trees and k-
means have until now showed good performance in big data 
applications. The database considered  in this paper  is not 
particularly large, therefore only some of the described 
methods were applied, namely linear regression and decision 
trees.  

Results of the corelation analysis presented in this paper 
have shown that QoS parameters very much depend on feeder 
characteristics. Therefore, prediction methods, such as decision 
trees or linear regression, could be used to form a model for 
QoS indicators estimation based on some asset characteristics. 
At this point, this kind of a model would show significant 
errors due to a relatively small number of instances in the 
training data set. That means that prediction models bring more 
usefulness in case of effectively larger sample size, in this case 
larger number of feeders observed. 
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