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Abstract 

Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding 

brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by 

high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly 

identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disor-

ders accurately from the acquired neuroimaging data. This article critically examines and compares performances of 

the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, 

Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and 

structural MRI. The comparative performance analysis of various DL architectures across different disorders and imag-

ing modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological 

disorders. Towards the end, a number of current research challenges are indicated and some possible future research 

directions are provided.
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1 Introduction
Alzheimer’s disease (AD), Parkinson’s disease (PD) and 

schizophrenia (SZ) are three most common neurologi-

cal disorders (NLD) which are characterized by the dis-

ruption of regular operations of brain functions [1–3]. 

A patient with either of these three NLD puts a heavy 

burden on the family as well as the health system. It is 

therefore imperative to detect these disorders at the earli-

est stage possible so that their progression can be slowed 

down, if not fully stopped [4, 5]. Towards this aim, a 

number of different neuroimaging techniques (such as 

magnetic resonance imaging (MRI), computed tomogra-

phy (CT) and positron emission tomography (PET)) and 

deep learning (DL)-based analysis methods have been 

developed to classify these disorders for early detection 

[3, 6–8], and to devise appropriate treatment strategies 

[9–11].

Over the last decade machine learning (ML) has been 

successfully applied to biological data mining [12, 13], 

image analysis [14], financial forecasting [15], anomaly 

detection [16, 17], disease detection [18, 19], natural lan-

guage processing [20, 21] and strategic game playing [22]. 

In particular, the success of DL algorithms in computer 

vision, researchers of neuroimaging have also strived to 
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use DL-based approaches for the detection of these NLD 

from MRI scans [3, 23–25]. Also, it is noteworthy that 

multimodal approaches including data fusion has also 

been used in diverse fields including diagnosis of neuro-

logical disorders [26] as well as providing personalized 

services [27]. As shown in Fig. 1, the number of research 

findings reported in peer-reviewed avenues have been 

increasing every year. Out of the large number of DL 

architectures, researchers have been mainly relying on 

Convolutional Neural Network (CNN)-based approaches 

for detecting these NLD from MRI data in comparison 

to other architectures such as Recurrent Neural Network 

(RNN) and Long–Short Term Memory (LSTM), Deep 

Neural Network (DNN), and Autoencoder (AE) (see 

Fig.  1a). Additionally, the detection of AD has attracted 

much more attention in comparison to PD or SZ in the 

published literature over the years from 2015 to 2019 (see 

Fig. 1b).

Due to the increasing interest in this field and the surg-

ing number of reported approaches to analyze the MRI 

scans, it is a timely demand to summarize the existing 

literature to facilitate the selection of an appropriate 

technique for a given task and dataset. �ere exist some 

reviews summarizing the advances from different per-

spectives. One among them aims to synthesize the appli-

cations of ML and big data to study mental health [6]. 

Various ML-based tasks have been explored on connec-

tome data from MRI which aims to better diagnose neu-

rological disorders [28]. In [29] authors have investigated 

the application of DL to better understand and diagnose 

PD. A detailed survey on DL applied to the analysis of 

various medical image such as neuro, pulmonary, pathol-

ogy, etc., has been conducted in [30]. However, the pre-

processing and data selection are not discussed clearly 

in any of the available reviews. To mitigate this gap, the 

objective of this work is to put forth an overview of the 

DL’s application in detecting NLD (i.e., AD, PD and SZ) 

from MRI scans along with popular open-access datasets 

and pre-processing methods. �erefore, the main contri-

butions of this work are:

• A succinct introduction with appropriate sign-post-

ing to different DL architectures and pre-processing 

techniques used in detecting abnormalities from the 

MRI scans. �is will set the scene for a new entrant 

to the field and serve as a future reference.

• A detailed account on the existing studies which 

reported the application of DL on MRI scans for the 

detection and classification of AD, PD and SZ. To 

the best of our knowledge, this is the first attempt in 

reviewing the DL-based classification approaches of 

these three NLD variants from MRI.

• A full report of the popular open-access datasets 

along with their sources and detailed information 

about the participants (e.g., number of subjects, age, 

gender, etc.), and MRI scan modality. �is will facili-

tate the validation and comparison of a new method’s 

performance using open-access benchmark datasets.

• A focused discussion on the current research chal-

lenges and some future research directions to guide 

the new entrants towards impactful development.

�e subsequent sections of the paper are organized as: 

Sect. 2 succinctly describes various DL architectures used 

in analyzing MRI scans to detect AD, PD and SZ. Sec-

tion  3 discusses the popular pre-processing techniques 

while sect. 4 provides the detailed account on the detec-

tion of AD, PD, and SZ. Section  5 presents the existing 
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Fig. 1 Peer-reviewed research results published during the last 5 years reporting the usage of DL in detecting NLD from MRI data. The Scopus 

database (https ://www.scopu s.com/) was searched with search-strings containing keywords “Deep learning” and “MRI” in conjunction with each of 

the NLD (“Alzheimer’s”, “Parkinson’s”, and “schizophrenia”) and the obtained results were categorized basing on the DL architectures (a) and diseases 

(b). A. In the literature the CNN has been reported much more frequently in comparison to the RNN, LSTM, DNN, and AE. B. The main effort appears 

to cluster around AD in comparison to PD and SZ

https://www.scopus.com/
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open-access datasets available for exploration. Section 6 

includes performance analysis of the reviewed methods 

and sect. 7 offers challenges and future perspective with 

sect. 8 concludes the work.

2  Overview of deep learning techniques
DL is a sub-field of ML that can be used to build models 

which learn high-dimensional features from data. It has 

attracted huge attention in the last few years especially 

in image analysis. A number of DL architectures such as 

CNN, DNN, RNN, AE, Deep Belief Network (DBN), and 

Probabilistic Neural Network (PNN) have been reported 

in the literature. �ese structures possess the capability 

to classify various NLD with very high accuracy [12, 13]. 

Figure 2 shows an overview of the pipeline employed the 

acquisition and analysis of the MRI scans. 

2.1  Convolutional neural network (CNN)

A CNN or also known as ConvNet (used alternatively in 

the text) (Fig.  3a) usually takes an input image, assigns 

learnable weights with biases to different aspects in the 

image subsequently differentiating one picture from the 

other. CNN uses convolution operation in place of simple 

matrix multiplication in at least one of their layers. It is 

mainly used in an unstructured dataset (e.g., image and 

video). 2D-convolutional kernels are used by 2D-CNN 

Fig. 2 Overview of DL-based prediction and classification pipeline of neurodegenerative disease from different variants of MRI

Fig. 3 DL Architecture
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for the prediction of segmentation maps of a single slice. 

2D-CNN can leverage features from only spatial dimen-

sions (height and width). Since 2D-CNN takes only a sin-

gle slice as input, they intrinsically fail to extract context 

information from adjacent slices. From practical perspec-

tive, voxel information from adjoining slices might con-

tain enough information for the classification tasks. On 

the other hand, 3D-CNN can preserve temporal dimen-

sions by predicting the volumetric patch of neuroimag-

ing data [31]. Although 3D-CNN possesses the ability to 

anchorage interslice context information which leads to 

improved performance, but comes with a computational 

cost resulting in the increased number of parameters to 

be used by the 3D-CNNs. �e various architecture of 

CNN are available (e.g., LeNet, AlexNet, VGGNet, Goog-

LeNet, ResNet, ZFNet, etc.) and can be used to build 

models for MRI analysis.

2.2  Deep belief network (DBN)

DBN (Fig.  3b) is a mode of deep neural network (NN) 

which consists of a combined layer of a graphical model 

holding both directed and undirected edges. It consists 

of multiple layers of hidden units, in which each layer 

is linked with each other except the input units. DBN 

is mainly constituted of a stack of restricted Boltzmann 

machines (RBM) where each RBM layer needs to com-

municate with both the foregoing and successive layers. 

�e nodes of any single layer do not communicate with 

each other distally. DBN are used to identify, group, and 

originate images, video clips, and motion-capture data. 

Its real-life application is Electroencephalography: An 

electrophysiological scanning method to document the 

electrical venture of the brain [32].

2.3  Autoencoder (AE)

�e AE (Fig.  3c) NN learns to facsimile its input to its 

output in an unsupervised manner. It has an internal 

(hidden) layer which is used to describe code to con-

stitute the input. An AE consists of two main parts: 

an encoder which maps the input to the code, and a 

decoder which in turn maps the code to the remodeling 

of the original input. An AE has three common vari-

ants named as sparse AE, denoising AE, and contractive 

AE. �e sparse AE architecture includes more hidden 

units than inputs yet only a limited number of the hid-

den units should be enabled to be active at any point of 

time forcing the model to retort to the unique statistical 

traits of the input data used for training. On the other 

hand, denoising AE takes a partially distorted input and 

is trained to reconstruct the original genuine input. And 

contractive AE gets to add an explicit regularizer in its 

objective function which gets to force the model to mas-

ter a function that is resilient to a slight disparity of input 

values. An adaption of AE incorporating DL architecture 

is stacked AE (SAE) where multiple AE layers are stacked 

[33] to provide updated functionality by using a much 

detailed version of raw data with likely looking features 

to train a classifier with specified different contexts, sub-

sequently finding better accuracy than training with raw 

data.

2.4  Recurrent neural network (RNN)

RNN (Fig.  3d) is known as memory network which 

remembers the past and the decision it takes is influ-

enced by what it has learned from the past. �us an RNN 

can be considered as an architecture that consists of mul-

tiple copies of the same network where every other is 

passing a message to a successor. �e principal and most 

important characteristic of RNN is its Hidden state. �e 

function of the hidden state is to remember certain infor-

mation about a sequence. �e same parameters are used 

by every input as it has to perform the same task on all 

the inputs (hidden layers) for producing the output. �is 

results in the reduction of the complexity parameters, 

unlike the other NNs. Application of RNN comprises 

in speech recognition, language modeling, translation, 

image captioning, etc.[34].

Long–Short Term Memory (LSTM) represents a vari-

ant of RNN. �e main function of LSTM is to help to pre-

serve the error which can be back-propagated through 

different time and layers. In LSTM information is stored 

outside the natural flow of the RNN in a gated cell. Like 

a computer’s memory, the cell is used for storing, writing 

to, and reading information. �e cell itself decides about 

what to store, and when to allow read and update of the 

information via gates that tend to open and close when 

required.

2.5  Deep neural network (DNN)

A NN having more than one hidden layer is generally 

referred to as DNN (Fig.  3e). In DNN every layer per-

forms certain types of tasks embedding, collocating and 

ordering in a process. In deep feed-forward NN are also 

known as multi-layered perceptron (MLP) of neurons, 

information can travel only one-way (forward) with no 

feedback in the network. MLPs are capable of handling 

the complex non-linearly separable relations between 

input and output. In contrast, feedback NN has some 

kind of internal recurrence and hence feedback to a 

neuron or layer that has already received and processed 

that signal [35]. A substantial amount of annotated data 

is required for training a DNN. DNN can separate and 

extract internal features of millions of labeled images if 

trained with proper training algorithm.
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2.6  Probabilistic neural network (PNN)

PNN (Fig. 3f ) is used for classification and pattern recog-

nition tasks. In PNN the probability distribution function 

(PDF) is estimated using a Parzen window comprising 

a negative function. �en the probability of a new input 

data is computed using the PDF function. And finally, 

Bayes rule is applied to assign the new input data with 

the class that has the highest posterior probability. �is 

method contributes to minimizing the misclassification 

of data [8].

3  Data pre-processing techniques
�e pre-processing step is important to enhance the 

quality of experimental data and preparing them for fur-

ther statistical analysis. Different modalities of MRI scans 

acquired from several sources are susceptible to a broad 

range of noise including motion, average signal intensity, 

and spatial distortions which need to be removed from 

data to ensure correct analysis. �ere are a number of 

pre-processing techniques which have been applied on 

MRI and listed in Table 1.

3.1  Scaling

Scaling is important to correct several issues in MRI 

scans including image resizing (IRE), image registration, 

resolution enhancement, correction, and so on.

Image registration (IR)  Image registration is widely 

used in medical image analysis to align multiple images 

to verify the spatial correlation of anatomy across dif-

ferent images. Two types of registration algorithms are 

available: linear and non-linear. Linear registration (LRg) 

either exploits six-parametric rigid transformation (rota-

tion and translation on x, y, and z axes) or 12-paramet-

ric affine transformation (rotation, translation, scaling, 

and shearing on x, y, and z axes) and global; whereas, 

non-linear registration can achieve a higher degree of 

elasticity which can model local deformation [8, 34, 61]. 

A toolbox “A Fast Diffeomorphic Registration Algorithm 

(DARTEL)” has also been reported to be useful in image 

registration [37].

Intensity nonuniformity correction (INUC) �e smooth 

intensity variation in MRI scans caused by several factors 

such as non-uniform reception of coil sensitivity, radio 

frequency (RF) excitation field inhomogeneity, eddy cur-

rents driven by field gradients and electrodynamic inter-

actions as in RF penetration, and standing wave effects 

as in intensity non-uniformity. In modern MRI scanners, 

these variations are tenuous enough that makes it diffi-

cult to detect. A solution to this approach comprises the 

usage of the convex accretion with an insistent method 

to enhance B1 uniformity in an anatomic region of inter-

est (ROI) by differing the enormity and phase of every 

RF channel element separately [40–42]. A correction for 

nonlinearities in the gradients are applied by the scan-

ner, called gradwarp. �is correction tends to make the 

images spatially more accurate [41]. Large variance in 

the human brain’s response to substantial field inhomo-

geneity results in image distortion. Because the inhomo-

geneity field is slowly differing, it is a common practice 

to assume a smooth histogram. �e N3 bias correction 

method is mostly used for that which is an iterative 

method that seeks the smooth multiplicative field maxi-

mizing the high-frequency content of the distribution of 

tissue intensity [41].

Distortion correction (DC) Functional MRI (fMRI) 

sequences generally pick up gradient echoes resulting in 

sensitivity to magnetic inhomogeneity (T2*) effects. Sig-

nal dropout near the skull base and spatial distortions 

are caused by this affecting anterior temporal and fron-

tal lobes. �ese distortions can be reduced by applying 

available methods such as field mapping, unwarping, and 

phantom-based distortion correction [42].

Bias correction and bias regularization (BC, BR)  A 

low-frequency but smooth bias field signal corrupts MRI 

images, specifically those which are produced by old MRI 

machines, for which several bias correction techniques 

might be applied as well [43–45].

Contrast enhancement (CE) A contrast enhancement 

method can be used to stop the clustering in histogram 

with the purpose of correcting the distribution. In [46], a 

CE method named CLAHE was used.

3.2  Correction

Slice timing correction and motion correction are 

very important pre-processing steps applied to correct 

the slice-dependent delays of image slices and subject 

motion, respectively.

Slice timing correction (STC) Most fMRI studies do not 

acquire every slice in a volume at the same time. It signi-

fies that the signal recorded from one slice might be off-

set in time by up to various seconds when compared to 

the other [48]. �us, the time differences among the slices 

need to be accounted for. �ere have been two basic 

strategies for slice timing correction. �e most com-

monly used method is data shifting where the recorded 

points are moved to contemplate their proper offset 

from the time of incitement. Interpolation of points is 

required for the method to fit the fixed, which is a TR-

based timing grid using Hanning-windowed Sinc inter-

polation that produces some obscure and atrophy of the 

data as followed in [31]. Another strategy is model shift-

ing, where the anticipated location of the hemodynamic 

response function (HRF) is differing [62]. Slice timing 

correction can also be executed by using FEAT module 

of FSL library [47]. Moreover, Least squares approach 
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with 6 parameter spatial transformation is also used as a 

method for slice timing correction in [51].

Motion correction (MC) �e largest source of error in 

fMRI studies is head motion which needs to be corrected 

during the acquisition of functional data. Trivial head 

movements also introduce unwanted variance in voxels 

and reduces the quality of data. Motion correction mini-

mizes the impact of movement on image data by orient-

ing the data to a reference time volume, application of 

which is found in [48, 54, 63]. Motion correction can also 

be performed by MCFLIRT module of FSL library [31, 

47].

3.3  Stripping/trimming

�e skull stripping/brain extraction is a preliminary step 

in MRI analysis. A pre-processing step of trim edges (TE) 

has also been reported in the same context [36].

Table 1 Data pre-processing techniques applied to MRI and fMRI images

FWHM-GK Full-width half-maximum (FWHM) Gaussian kernel, SPM statistical parametric mapping, SD standardization, ALT a�ne linear transformation, JWF Jacobian 

of wrap �eld, GSF Gaussian smoothing �lter, FST Free Surfer Tool, ANTs advanced normalization tools, GW Gradwarp, B1-NU B1-non-uniformity, PB phantom based, 

FSL-BET FMRIB Software Library-Brain Extraction Tool, FSL-MCFLIRT motion correction using FMRIB’s linear image registration tool, FSL-FLIRT FMRIB’s linear image 

registration tool, FEAT FMRI expert analysis tool, CLAHE contrast limited adaptive histogram equalization, LLL local label learning, DARTEL di�eomorphic anatomical 

registration through exponentiated Lie algebra, LR linear registration, LSA least square approach, 6-PST 6 parameter spatial transformation, EPI echo planar imaging, 

NRBAC nonparametric region-based active contour, MICO multiplicative intrinsic component optimization

1 MRI

2 fMRI

Type Ref. Technique (applied methods)

Scaling [36] Image resize

[8, 34, 37–39] Image registration ( AR2 , DARTEL1 , LRg)

[40–42] Intensity non-uniformity correction (GW1 , B1-NU1 , N31)

[42] Distortion correction (PB1)

[43–45] Bias correction/regularization (MICO1)

[46] Contrast enhancement (CLAHE1)

Correction [31, 47–52] Slice timing correction (HSI2 , FEAT2 , LSA2 , 6-PST2)

[31, 34, 40, 47–51, 53–55] Motion correction (FSL-MCFLIRT2 , LSA2 , 6-PST2)

Stripping and trimming [39, 40, 44, 46, 53, 56, 57] Skull stripping (NRBAC1)

[47] Brain extraction (FSL-BET1 2)

[36] Trim edges

Normalization [33, 34, 37, 39, 42, 47, 49, 51, 56, 58, 59] Normalization (SPM 1,2 , SD1 , ANTs1 , EPI2)

[36, 40] Intensity normalization

[31, 43, 45, 47, 50, 52, 54, 55] Spatial normalization (ALT1 2 , FSL-FLIRT2 , DARTEL2)

[32] Z-score normalization

[39] Numerical normalization

Filtering [46, 50, 51] Basic filtering (GSF1)

[34] Spatial filtering

[34, 48, 49, 51] Temporal filtering

[8] Weiner filtering

[31, 47, 48, 53] High-pass filtering

Smoothing [45, 50, 58] Basic smoothing (FWHM-GK2)

[31, 47–49, 51, 52, 54, 59] Spatial smoothing (FWHM-GK2)

Distinct techniques [32] Linear regression

[49] Linear detrend

[31, 37, 43] Modulation (JWF1)

[38, 44, 59] Segmentation (LLL1)

[60] Voxel-based morphometric

[36] Cortical reconstruction

[34, 48] Denoising (tCompCor2)

[46, 57] Data augmentation
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Skull stripping (SST, BE) Skull stripping/brain extrac-

tion is one of the most important pre-processing 

steps for eliminating non-brain tissues from brain MR 

images. It is important for many clinical applications 

and data analysis. To improve analysis speed and exper-

imental accuracy of data, automated skull stripping is 

one of the helpful strategies. Brain extraction tool of 

FMRIB Software Library (FSL) has been used exten-

sively for this purpose [47, 53]. Multiplicative intrinsic 

component optimization is applied for skull stripping 

in [44].

3.4  Normalization (NM)

Normalization is a process of aligning and enclos-

ing MRI data to a comprehensive anatomic template. 

Because of the difference in every person’s brain in 

terms of size and shape, normalization needs to be 

done to facilitate the comparison of one brain MRI 

to another in order to interpret them onto a common 

shape and size. Normalization tends to map the data 

acquired from discrete subject-space to a reference-

space containing a template and a source image [64]. 

Usage of tools like Statistical Parametric Mapping 

(SPM) and Advanced Normalization Tools (ANTs) have 

been widely used in this context [33, 42]. Standardiza-

tion has also been used simultaneously [33].

Intensity normalization (IN)  Intensity normalization 

is used to reduce the intensity variation caused due to 

usage of different scanners or parameters for scanning 

different subjects or the same subject at disparate time 

[36, 40].

Spatial normalization (SN) spatial normalization warps 

the MRI scans to a similar stereotomical space, such that 

one MRI scan’s particular location matches other MRI 

scans from another subject [31, 43, 45, 52, 54, 55]. A 

common technique is affine linear transformation (ALT) 

[31, 37]. �e FMRIB’s Linear Image Registration Tool or 

FLIRT module is also used for this purpose [47]. Moreo-

ver, diffeomorphic anatomical registration through expo-

nentiated Lie algebra (DARTEL) procedure is used for 

spatial normalization in [50].

Z-score normalization (ZN) It is a strategy of normaliz-

ing data to avoid outlier issues by defining the divergence 

of sample data with respect to the mean of a distribution 

[32].

Numerical normalization (NNM) Numerical nor-

malization is also found in the study which refers to the 

process of converting numerical values into a new range 

using a mathematical function. It contributes to make 

different experimental data values in different scales 

comparable resulting in their relationship to clearly stand 

out [64].

3.5  Filtering (F)

It refers to the process of modifying or enhancing an 

image by emphasizing certain features or removing other 

features [50, 51]. Growing skull fracture or GSF has been 

reported in this study for reducing sharp pixel transitions 

between pixels [46, 58].

Spatial filtering (SF) Spatial filtering is that image 

enhancement technique which is used directly on pixels 

of an image where, value of the processed current pixel 

depends on both itself and adjacent pixels [34].

Temporal filtering (TF) Temporal filtering removes 

frequencies that are not of interest within the raw signal 

which substantially improves the signal-to-noise ratio 

(SNR) [34, 48, 49].

Weiner filtering (WF) One of the most prevalent signal-

dependent noises in MRI scan is Rician noise which can 

be minimized using a popular filtering technique known 

as Weiner filter [8].

High-pass filtering (HPF) fMRI data tend to manifest 

low-frequency drifts at times, which is characterized 

by physiological noise and by physical (scanner-related) 

noise. �ese signal drifts might affect substantially statis-

tical data analysis, if not removed. High-pass filters func-

tion comes into this context by cutting off frequencies 

below an acknowledged threshold which should be below 

the lowest frequency of interest [31, 47, 48, 53, 65].

3.6  Smoothing (SM)

Smoothing refers to the process of reducing noise within 

an image which subsequently produces a less pixelated 

image [45, 58].

Spatial smoothing (SS) Spatial smoothing refers to the 

averaging of signals from adjoining voxels. It enhances the 

SNR but reduces spatial resolution, obscures the image, 

and smudges initiated areas into adjoining voxels. Since 

neighboring voxels are coordinated in their function and 

blood supply, the process can be difficult to perform. 

Within this context, the objective of spatial smoothing 

copes with functional anatomical variability which has 

not been compensated by spatial normalization (“warp-

ing”) thus, improving the SNR. Spatial smoothing is con-

ducted with a spatially stationary Gaussian filter in which 

the user must ordain the kernel width in mm “full width 

half max” [31, 47, 48, 52–54]. �is Gaussian kernel is a 

kernel which possesses the shape of a normal distribution 

curve [66].

3.7  Distinct techniques

Apart from the techniques described above, some other 

pre-processing techniques have been reported in the 

study of the neurological disorders.
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Linear regression (LR)  Application of linear regres-

sion has been found in [32] to model the relationship 

between morphometric features and confounders.

Linear detrend (LD)  Linear detrend is applied in 

those spectral estimation methods which are sensitive 

to the existence of linear trends being erratic for low 

frequencies [49].

Modulation (MD) A compensation or modulation 

is applied due to the contraction/enlargement of data 

of interest caused by the non-linear transformation. 

These data of interest comprise voxel of each regis-

tered grey matter image and is multiplied by the Jaco-

bian of the warp field [31, 38].

Segmentation (SG) The process of segmentation is 

characterized by which the brain is partitioned into 

neurological sections following a specified template. It 

can be rather generalized for segmenting the brain into 

white matter, gray matter and cerebrospinal fluid. Seg-

mentation is used for different purposes. In structural 

MRI (sMRI), this facilitates the normalization process. 

It also aids further analysis by the use of a specific 

segmentation as a mask and also can be used as the 

definition of a specific ROI [67]. However, local label 

learning has been used in [38].

Voxel-based morphometric (VBM) Voxel-based mor-

phometric which actually uses statistics for identifying 

deviations in brain anatomy between groups of sub-

jects has been used in [60].

Cortical reconstruction (CR) Cortical reconstruction 

is required for quantitative analysis of human brain 

structure [36].

Denoising (DN) MRI acquired from different sources 

are affected by noises. It results in loss of information 

associated with the image that might affect the quality 

of disease diagnosis or treatment. CompCor is a physi-

ological noise correction method that exploits the 

noise ROI (e.g., white matter, ventricles, large vessels, 

and so on) to accurately predict the physiological fluc-

tuations in gray matter regions. Noise ROI is defined 

using anatomical data to detect voxels that consist of 

either white matter or cerebrospinal fluid (CSF). A 

principal component analysis (PCA) is used to explain 

the variance in the time-series data derived from the 

noise ROI. Significant principal components (PCs) are 

fed as covariates in a general linear model (GLM) as an 

estimate of the physiological noise signal space. Voxels 

with largest temporal standard-deviation are known 

as tCompCor and have also been used in a number of 

studies [34, 68].

Data augmentation (DA) Data augmentation tech-

niques are applied when the number of images for dif-

ferent classes become unbalanced [46, 57].

4  Identi�cation of neurological disorders
4.1  Alzheimer’s disease

AD is characterized by escalating mental degradation 

that generally occurs in older age, due to deterioration 

of specific brain regions. However, a lot of research have 

been conducted to correctly discover the cause of this 

degeneration and automated ways to detect the patterns 

of degeneration from neuroimages.

�e authors in [33] have reported a DNN-based 

approach which consists of sparse AE and CNN by apply-

ing 3D convolutions on the whole MR images from sub-

jects who are over 75 years of age. In this work, authors 

have obtained satisfactory classification results by using 

a 3-way classifier among healthy control (HC), AD, and 

mild cognitive impairment (MCI), i.e., HC vs. AD vs. 

MCI with an accuracy of 89.47%; and three binary clas-

sifiers (AD vs. HC, AD vs. MCI and MCI vs. HC). �e 

approach captured local 3D patterns using the 3D-CNN 

which yielded better performance than 2D convolutions. 

Although in this experiment the convolutional layer has 

been pre-trained with an AE, it has not been fine-tuned 

to improve the classification performance.

�e authors in [31] have differentiated HC and AD in 

older adults by extracting scale and shift-invariant low 

to high-level features using CNN. In this work, they pro-

posed two pipelines of a workflow consisting of struc-

tural fMRI data with a classification accuracy of 99.9% 

and structural MRI data with a classification accuracy 

of 98.84%. In the first block of the pipelines, substantial 

pre-processing was performed to remove potential noise 

and distortion from the data. Next, a convolutional layer 

of CNN architecture which consisted of a set of learn-

able filters, serving as a shift and scale-invariant opera-

tor, extracted low- to mid-level features (also considered 

high-level features in GoogleNet). In the fMRI pipeline, 

both LeNet and GoogleNet had been implemented which 

were trained and tested by a massive number of images 

created from the 4D fMRI time series. �e proposed 

model has been a highly accurate and reproducible. �ey 

have also contributed to characterizing multimodal MRI 

biomarkers. As for the limitation, this work has con-

ducted experimentation concerning a fixed age-group 

limiting the possibilities to explore the patterns of differ-

ent age groups.

Similarly, authors in [53] applied CNN (precisely, 

LeNet) to detect AD from HC. �e pipeline consists of 

shift and scale-invariant features extraction by CNN fol-

lowed by the LeNet model based on CNN model pro-

vided by Caffe DIGITS 0.2 from Nvidia to perform binary 

image classification. �e classification accuracy obtained 

from this study was 96.86%.

Authors in [74] reported another framework by using 

hyperparameters from a very deep image classifier 
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based on CNN to diagnose AD’s different stages. Here, 

the proposed model eliminates the necessity for the 

generation of a hand-crafted feature that transforms 

input to output by building a feature hierarchy from 

simple low-level features to complex high-level fea-

tures. �e proposed framework has utilized hyper-

parameters from a very deep classifier, helping feature 

learning from small medical image datasets. �is work 

is also the first one for detecting AD and classification 

utilizing DL methods on the OASIS dataset with an age 

group of 18–96 years. Classification accuracy achieved 

was 73.75% during a fivefold cross-validation. However, 

the authors have not validated the performance metric 

comparing with previous traditional methods.

Farooq et al. also used CNN for multiclass classifica-

tion among AD, prodromal stages of AD, and HC [43]. 

�ey have proposed a CNN-based model where pre-

processing of MRI images is first conducted to obtain 

grey matter images which are later passed to the CNN. 

In it, GoogLeNet and ResNet models have been used 

to train and test the CNN. �e authors reported a 4% 

increase in classification accuracy compared to other 

methods selected from the literature. A very high 4-way 

(AD/MCI/LMCI/NC) accuracy of 98.8% and sensitiv-

ity of 97.9% for three classes (AD/MCI/NC). �ey have 

also contributed by not incorporating pre-trained fea-

tures still enabling the network to predict the classes 

accurately.

Furthermore, Spasov et al. presented a parameter effi-

cient 3D-CNN model to predict MCI to AD conversion 

along with the classification of AD and HC [39]. �e 

model is based on 3D separable and grouped convolu-

tions to extricate detailed descriptive features from sMRI. 

In this work, the authors have contributed in early iden-

tification of the MCI patients with a high risk of conver-

sion to AD within 3 years. With a classification accuracy 

of 86% they also achieved sensitivity 87.5% and specificity 

85.7% exploiting tenfold cross-validation. As the model 

contained parameter efficient layers, it restricted overfit-

ting in exploiting the AD and HC data.

In another study, Böhle et  al. classified AD and HC 

using layer-wise relevance propagation (LRP) of CNN 

on MRI data [42]. �e authors compared LRP to guided 

backpropagation (GB), a gradient-based method, which 

revealed that LRP heatmaps can contribute to more 

accurate detection. It has also been reported that the LRP 

method is useful in a clinical context for a case-by-case 

analysis. As for the limitations, the heatmaps have no 

ground truth as they are only an approximation to what 

dominates the classifier in its decisions. Also, heatmaps 

just highlight voxels contributing to a certain decision 

of a classifier which does not allow making an assertion 

about the underlying causes. �e study reported a class 

score of more than 75% for AD classification by applying 

fivefold cross-validation.

Basaia et al. also used CNN to distinguish among AD, 

MCI conversion to AD, and stable MCI based on a single 

cross-sectional brain MRI scan [37]. �is study reported 

a successful overcome of the limitation of generalizing 

the findings across different centers, scanners, and neuro-

imaging protocols to attain both reproducibility and reli-

ability of results. Certain drawbacks comprise that they 

could not exclude the presence of future conversion MCI 

among stable MCI patients. Also in order to improve the 

prediction capability of the model, it needs to be tested 

with cognitive, clinical, PET, and genetics biomarkers.

Ullah et al. came up with a CNN model to detect AD 

and Dementia from 3D MR image [73]. �is model can 

be extended to generalize other disease detection as well. 

However, the accuracy of this experimentation could be 

enhanced with more training. �ey achieved an accuracy 

of 80.25% by applying cross-validation.

Amoroso et al. proposed a pure ML approach exploit-

ing Random Forest for feature selection and a DNN for 

classification to early detection of AD [69]. �is work 

was ranked third in the “International challenge for auto-

mated prediction of MCI from MRI data” which was 

hosted by the Kaggle platform and the work achieved 

an overall accuracy of 34.8 % by applying tenfold cross-

validation over other participating teams. Although the 

classification results obtained by the authors with DNN 

got them to attain one of the most precise predictions in 

participant’s roaster, the multiclass classification accu-

racy is far from getting to competent results for clinical 

applicability.

A long–short term memory (LSTM)-based AE has 

been reported in [71] which consists of RNNs to learn 

compact and informative representation from longitudi-

nal cognitive measures characterizes and facilitates the 

early prediction of MCI progression to AD. �is work 

has achieved notable performance for predicting MCI 

subjects’ progression to AD using data within 1-year fol-

low-up. Also, the proposed model built on data of later 

time points showed better performance than those which 

were built on data of earlier time points. On ADNI-1 

they achieved a C-index value of 0.901 and 0.889 on 

ADNIGO-2.

Luo et  al. provided an automatic AD detection algo-

rithm using CNN on 3D brain MRI in which the 3D 

topology of the whole brain is considered [41]. �e CNN 

architecture consists of three consecutive groups of pro-

cessing layers, two fully connected layers, and a classifi-

cation layer. In this work, the 3D topology of the brain 

has been considered as a whole in AD recognition which 

has resulted in an accurate recognition with a sensitivity 

value of 1 and specificity of 0.93.
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Dolph et  al. reported a model consisting of stacked 

AE (SAE) and DNN for multiclass classification that 

can learn complex non-linear atrophy patterns for clas-

sification of AD, MCI, and NC using both in-house and 

public-domain standardized CADDementia framework 

[40]. �e authors produced two model specifications 

using blind datasets. Along with accuracy measurement, 

the authors also measured true positive fraction (TPF) to 

be 62.1% for AD, 54.5% for CN and 39.5% for MCI for 

the first model. �en for the second model, the authors 

achieved TPF of 64.1% for AD, 55.8% for CN and 51.6% 

for MCI. �ey have also contributed to include novel 

fractal-based texture fractal dimension co-occurrence 

matrix (FDCM) combining with well-known volumetric, 

cortical thickness, and surface area features for multiclass 

AD classification.

Bäckström et  al. proposed a 3D-CNN for automatic 

learning of features and detecting AD on a pre-processed 

and fine-tuned large size MRI dataset using 3D-CNN 

[36]. �is study has contributed to find the impact of 

hyper-parameter assortment on the performance of the 

proposed AD classifier with the impact of pre-process-

ing, data partitioning, and dataset size. �is work could 

be extended through subject-separated data partitioning 

tests.

A statistical feature gray-level co-occurrence  matrix 

(GLCM)-based model exploiting PCA and finally PNN 

for training and classification has been proposed by 

Mathew et al. to classify AD, MCI, and NC [8]. �is work 

achieved sensitivity measurement 86% of with specificity 

83% and accuracy 85%. Proposed network architecture 

provides a better result than SVMs and KNN in terms of 

accuracy.

In [38], a DL model has been proposed using hip-

pocampal magnetic resonance imaging data of 2146 

subjects to predict MCI subjects’ progression to AD 

dementia in a time-to-event analysis setup. �e proposed 

model is not sensitive to hippocampus segmentation 

requiring only a bounding box containing the hippocam-

pus. �is work went on to achieve a C-index of 0.762 

for 6 to 78 months duration and C-index of 0.781 with 

18 to 54 months duration. �is model can be used in a 

cloud computing platform as well if containerized using 

Docker. �is study focused on the hippocampus region, 

it is expected to obtain better performance if the DL 

method would have been applied to the whole-brain MRI 

data. Also, data at baseline were exploited in this study, 

whereas performance could be improved if longitudinal 

data were infused into the model.

Now, the authors of [56] have proposed a 3D-CNN 

architecture emphasizing to achieve better performance 

without incorporating feature extraction steps. Here 

two different approaches have been compared for MRI 

classification: the plain CNN and the residual NN. �e 

proposed model’s performance was checked for the task 

of classifying MRI scans of subjects with AD, EMCI and 

LMCI, and NC. From the dataset, they tend to choose 

only the first image taken for every subject in order to 

eradicate possible information “leaks”. �ey have not 

provided the age group of the subjects. In terms of per-

formance metric area under the curve (AUC), receiver 

operating characteristics (ROC) curves and accuracy 

have been evaluated using VoxCNN and ResNet. Of all 

the classifications presented in this paper, AD vs NC 

achieved the best result with AUC 0.88 ± 0.08 and acc 

0.79 ± 0.08 using VoxCNN and AUC 0.87 ±0.07 with acc 

0.80 ± 0.07 using ResNet In this study, there has been 

approached binary one-versus-one classification which 

showed better performance, an approach towards multi-

class classification has not been tried.

In [72], the authors proposed a CNN-based architec-

ture combined with transfer learning to separate AD 

patients from the HC group. Two architectures VGG16 

and InceptionV4 have been exploited to carry out this 

task. �e main emphasis has been put into building the 

architecture using a small training set through image 

entropy. Fivefold cross-validation was applied to achieve 

accuracy. Default hyperparameter values chosen for the 

models provide better results, whereas the hyperparam-

eter search method could result in further improvement.

�e authors in [70] have proposed a deep variational 

SAE-based approach which tends to learn latent feature 

(i.e., spectral feature) representation from the low-level 

features finally training an MLP for classification pur-

poses consisting of six binary classification problems: AD 

vs. NC, NC vs. EMCI, NC vs. LMCI, AD vs. EMCI, AD 

vs. LMCI, and EMCI vs. LMCI. A softmax classifier has 

been applied to conduct the classification.

Furthermore, in [60] another approach based on DBN 

architecture has been proposed. Voxel-based morpho-

metric (VBM) approach has been used for feature extrac-

tion here. Overall DBN has been depicted as a superior 

architecture in high-dimensional data classification. 

For mean-squared displacement or MSD feature vector 

sensitivity, specificity and accuracy found were 0.7122, 

0.7601, and 0.7360. Also for VV-based feature vector, it 

provided better performance for sensitivity, specificity, 

and accuracy with 0.9059, 0.9296, and 0.9176.

However, a recent attempt of multiclass classification 

of 6 AD stages have been found in  [47]. In this work, 

CNN-based Resnet-18 architecture with transfer learn-

ing has been used on rs-fMRI for training and evaluation 

purposes incorporating a good amount of pre-process-

ing; whereas according to the literature presented in this 

work, the previous works on rs-fMRI were mainly based 

on LetNet, GoogleNet and Alexnet architectures. Several 
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performance metrics have been used as well to evalu-

ate their proposed model which are precision, recall, 

f1-measure, AUC, and ROC curves. Improved results in 

terms of accuracy have been found for 6 AD stages clas-

sification depicted in Table 2.

Consecutively another CNN-based model has been 

proposed in recent times in [46]. T1-weighted volumet-

ric MR images have been used to diagnose AD and MCI. 

Two datasets were used for this work, where the OASIS 

dataset has been used for training purpose replicating the 

MIRIAD dataset for testing purposes. In this work, the 

authors have contributed by not applying particular age 

limitation in AD samples annotation which subsequently 

resulted in a stimulating prediction problem owing to 

a vast range of age distribution. By incorporating SST 

in pre-processing and using CNN-based features of the 

input images this proposed model attained accuracy val-

ues around 0.8 for diagnosis of both AD and MCI.

Table  2 presents a summary of mentioned DL appli-

cations for AD including the type of MRI, brain region 

and network involved, type of feature used with feature 

count, pre-processing technique used, dataset and num-

ber of participants from the dataset, validation scheme 

and performance accuracy found for all reviewed papers.

4.2  Parkinson’s disease

Parkinson’s disease or PD is a neurodegenerative disorder 

that affects voluntary movements. As identification of PD 

as well as its underlying causes is very crucial to devise 

treatment strategy, DL has also been applied to detect 

it from neuroimages. A number of studies have been 

reported to serve that purpose. Table 3 presents a sum-

mary of these studies which employed DL applications 

for PD including the type of MRI, brain region and net-

work involved, type of feature used with feature count, 

pre-processing technique used, dataset and number of 

participants from the dataset, validation scheme and per-

formance accuracy found for all reviewed papers. Kol-

lias et  al. proposed a DNN architecture including CNN 

deriving rich internal depiction from input data and 

bidirectional-LSTM/gated recurrent units (GRU RNNs)-

based RNN to analyze time progression of the inputs for 

delivering the final predictions [75]. A combined super-

vised and unsupervised learning methodology has been 

developed here exploiting ResNet and ReLU architec-

tures. �ey have contributed to the creation of a new 

database that has been used for training, evaluating, and 

validating the proposed systems. Shinde et  al. proposed 

to differentiate PD from HC by employing a fully auto-

mated CNN with discriminative localization architec-

ture for creating prognostic and diagnostic biomarkers 

of PD from Neuro-melanin sensitive MRI or NMS-MRI 

[76]. For this work, data have been collected from the 

Department of Neurology, National Institute of Mental 

Health and Neuro sciences (NIMHANS) which consist 

of MR imaging, demographic and clinical details such as 

gender, age at presentation, age at onset of motor symp-

toms, disease duration, etc., data of PD patients, atypical 

parkinsonian syndromes (APS) patients, multiple system 

atrophy (MSA) patients and progressive supranuclear 

palsy along with some HC as well [76]. �e authors were 

able to capture the subtle changes in PD in the substantia 

nigra pars compacta (SNc) using selected features from 

the NMS-MRI. Although the proposed method shows 

satisfactory performance exploiting a small sample size, 

larger sample size is required for improved efficacy of the 

method. On the other hand, Kollia et al. proposed a con-

volutional-RNN architecture for PD prediction through 

the extraction of latent variable information from 

trained DNN using both MRI data [77]. In this work, the 

authors presented a DNN retraining procedure, which 

allowed retaining the knowledge provided by previously 

extracted, annotated, and clustered latent variables. Later 

on, the information provided by those clustered latent 

variables were used to develop a domain adaptation 

approach. It tends to improve the performance of the 

DNN architecture even if presented with less input.

Using sMRI, dopamine transporter (DAT) scan data, 

age, and gender information, Pereira et  al. [45] pro-

posed a novel model to detect PD patients via CNN. �e 

authors observed that pattern changes in the basal gan-

glia and the mesencephalon can be considered as a domi-

nating feature for the detection of PD from HC and scans 

without evidence for dopaminergic deficit (SWEDD).

Esmaeilzadeh et  al. used a 3D-CNN incorporating 

a voxel-based approach for brain image segmentation 

extracting data augmentation techniques to expand the 

training set size to classify PD and HC [57].

Moreover, Sivaranjini et  al. contributed in analyzing 

T2-weighted MRI scans to classify between HC and PD 

by applying deep CNN architecture AlexNet [58]. In this 

study, sensitivity and specificity with values of 89.30% 

and 88.40% were also evaluated with a classification accu-

racy of 88.90%.

4.3  Schizophrenia

Schizophrenia or SZ is a major psychiatric disorder 

related to structural and functional brain anomalies that 

gradually ended up with impairments in cognition, emo-

tion, and behavior. In recent years, many researchers have 

contributed to develop automated tools and techniques 

for the initial diagnosis of SZ using DL and MRI data. 

Table 4 provides a summary of DL techniques applied in 

prediction and classification of SZ.

Qureshi et al. have proposed 3D-CNN-based DL classi-

fication to distinguish patients with SZ and HC [48]. �e 
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Table 2 Summary of DL-based studies for prediction and classi�cation of AD from MRI

Ref reference, Reg region, DL Arch deep learning architecture, Pre-Proc pre-processing technique used in the study, WB whole brain, BL-brain lobes HPC–hippocampus, 

CSA cortical surface area, MCS middle cross section, SCS single cross section, SSIF shift and scale-invariant features; Vol.-volume; CorTh-cortical thickness; SAF-surface 

area features; HPCV-hippocampal volumes; CFV-cerebrospinal �uid volume; LVV-lateral ventricle volume; ECT-entorhinal cortex thickness; MMSE-baseline scores of 

Mini-Mental State examination; nα-n-fold cross-validation, 4DF 4D features, CF clinical features, GLCM gray-level co-occurrence matrix, SED Sobel edge detector, MSD-

maximal self-dissimilarity, VV voxel values

Ref. Reg. DL Arch. Pre-Proc. Features Dataset Size Accuracy

[33] WB SAE-3D, CNN NM CBF ADNI 755 (AD, MCI, HC) 3-way 89.47%, AD vs. 
HC 95.39%, AD vs. 
MCI 86.84%, HC vs. 
MCI 92.11%

[31] CNN MC, STC, SS, HPF, SN, 
WMS, MD

SSIF ADNI 52 AD3 , 92 HC3 , 211 
AD1 , 91 HC1

99.9%3 , 5α , 98.84%1 , 5α

[53] CNN MC, SST, HPF SSIF ADNI 28 AD, 15 NC 96.86%5α

[43] CNN SN, BC, MD CBF ADNI 33 AD, 22 LMCI, 49 
MCI, 45 HC

98.88%

[42] CNN INUC, DC, NM ADNI 193 AD, 151 HC Class Score 95%5α

[69] DNN HPCV, CFV, LVV, ECT, 
MMSE

ADNI 60 AD, 60 HC, 60 cMCI 
60 MCI

34.8%10α

[36] 3D-CNN CR, TE, IRE, IN 3D CBF ADNI 199 AD, 141 NC; 3D 
MRI AD 600 NC 598

98.74%

[56] 3D-CNN SST, NM CBF ADNI 50 AD, 43 LMCI, 77 
EMCI, 61 NC

[8] PNN IR, WF GLCM, SED ADNI 85%

[70] VAE, MLP SG Shape feature ADNI 150 NC, 90 AD, 160 
EMCI, 160 LMCI

NC-AD 84%, NC-EMCI 
56%, NC-LMCI 59%. 
AD-EMCI 81%, AD-
LMCI 57%, EMCI-LMCI 
63%

[60] DBN VBM VV 3611, MSD 24 OASIS 49 AD, 49 HC MSD 0.736010α , VV 
0.917610α

[47] CNN BE, MC, STC, IM, SS, 
THPF, NM, SN

CBF ADNI 25 CN, 25 SMC, 25 
EMCI, 25 LMCI, 13 
MCI, 25 AD

CN 100%, SMC 96.85%, 
EMCI 97.38%, LMCI 
97.43%, MCI 97.40%, 
AD 98.01%

[39] BL 3D-CNN NNM, BE, IR 4D features, clinical 
features

ADNI 192 AD, 184 HC, 181 
pMCI, 228 sMCI

86%5α

[38] HPC CNN IR, SG HPC shape, texture, 
CBF

ADNI-1, ADNI- GO&2, 
AIBL

ADNI: 1711, AIBL: 435

[71] LSTM-RNN LSTM-based features ADNI-1, ADNI-GO&2 822 MCI

[40] CSA SAE-DNN MC, NUC, IN, SST, VL 310 Vol., CorTh, SAF, 
5000 FDCM

ADNI, CAD- Dementia 171 CN, 232 MCI, 101 
AD

Model-1 ADNI 56.6%10α , 
CAD-Dementia 
51.4%10α Model-2 
ADNI 58%10α , CAD-
Dementia 56.8%10α

[41] MCS CNN INUC CBF ADNI 47 AD 34 NC

[72] SCS CNN CBF OASIS 100 AD, 100 HC VGG16: 92.3%5α , Incep-
tion-V4: 96.25%5α

[37] CNN NM, IR, MD CBF ADNI, Milan ADNI: 294 PAD, 763 
MCI, 352 HC Milan: 
124 PAD, 50 MCI, 
55 HC

ADNI: 99%10α , MILAN: 
98%10α

[73] CNN CBF, 64 OASIS 416 80.25%

[46] VB CNN SST, DA, CE, F CBF OASIS, MIRIAD OASIS: 30 AD, 70 MCI, 
316 HC MIRIAD: 46 
MCI, 23 HC

0.8
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rs-FMRI data collected from the Center for Biomedical 

Research Excellence (COBRE) dataset was first preproc-

essed using FMRIB Software Library (FSL) version 6.0. 

Afterward, the group independent component analysis 

(ICA)-based connectivity measures (maximum 30 inde-

pendent components) were acquired using the enhanced 

version of FSL. �e features are further normalized and 

thresholded to semi-automatically separate the noise 

and artifacts. Finally, 3D-CNN classification was applied 

and 98.09±1.01% tenfold cross-validated classification 

accuracy was achieved. But, the specific feature was not 

selected from ICA and hence contribution-based ranking 

of features was missing in this study. Moreover, a quite 

similar approach was found in [54] but the authors have 

applied 2D-CNN instead of 3D-CNN as a classifier and 

functionally informative slices are selected and labeled 

before classification. Data are preprocessed through 

motion correction and spatial normalization. �e study 

has classified both slice level and subject level. For slice-

level classification, the proposed method demonstrated 

an average accuracy of 72.65% in the default mode net-

work (DMN) and 78.34% in the auditory cortex (AUD). 

�e study also shows better specificity in the DMN 

(80.75%) and higher sensitivity (79.11%) and specificity 

(77.25%) in the AUD. In short, according to the proposed 

Table 3 Summary of DL-based studies for prediction and classi�cation of PD from [s]-MRI

 Pre-Proc. pre-processing, Synd syndrome, nα – n fold cross-validation, AC alignment correction, SWEDD scans without evidence for dopaminergic de�cit, CBF CNN-

based features

Ref. Regions DL Tech. Pre-Proc. Feature Dataset Size Accuracy

[75] Axial CNN-RNN – CBFd NTUA 55 PD, 23 PD Synd 98%

[57] Sagittal, coronal, axial planes 3D-CNN SST, DA CNN based, age, sex PPMI 452 PD, 204 HC 100%

[76] Mild brain CNN CBF NIMHANS 45 PD, 20 APS, 35 HC 80%5α

[77] Lentiform nucleus CNN-RNN CNN based NTUA 66176 98%

[58] Whole brain CNN NM, F, SM CBF PPMI 100 PD, 82 HC 88.9%

[45] Basal ganglia, mesencephalon CNN AC, BR, SN, SM CNN based PPMI Control vs PD 94.5-
96%, PD vs SWEDD 
88.7%

Table 4 Summery of DL-based studies for prediction and classi�cation of SZ from MRI

WB whole brain, Cor. cortical, Str. striatal, Cere cerebellar, Vent. ventricle, MRN mild research network, VFN visual frontal network, AUD auditory cortex, CN cerebellar 

network, DMN default mode network, nα =n-fold cross-validation, SPF spatial feature, NMF neuro-morphometric features, VTS voxel time series, SV segmented 

ventricle, Self self-generated dataset

Ref. Regions DL Pre-Proc. Feature (count) Dataset Size Accuracy

[48] VFN, CN, DMN 3D-CNN MC, DN, STC, SS, TF, HPF 3D-ICA (15) COBRE 72 SZs,74 HCs 98.09%10α

[54] AUD, DMN 2D-CNN MC, SN, SS ICA(13) Self 42 SZs,40 HCs slice-level DMN-72.65%5α , 
AUD-78.34%5α , subject-level 
DMN-91.32%5α , AUD-
98.75%5α

[78] WB DNN ICA FNC, SBM (10) MRN 69 SZs, 75 HCs 94.4%

[79] WB DNN ROI (116) OpenfMRI 50 SZs, 49 BD, 122 HCs 76.6%α

[34] WB RNN MC, DN, SF, TF, NM, LRg SPF FBIRN phase-II 87 SZs, 85 HCs 64%10α

[52] WB DNN STC, SN, SS FNC (116) COBRE 72 SZs,74 HCs 95.4%5α

[35] WB DNN FNC,SBM (410) MLSP

[32] WB DBN LR, ZN NMF Multisite 143 SZs,83 HCs 73.6%3α

[50] WB SAE STC, MC,SN, SM, F VTS COBRE 72 SZs,74 HCs 92%10α

[51] Atlas FFBPNN STC, MC, TF, NM, SS FNC (20) Hospital 39 SZs,31 HCs 79.3%10α

[55] WB DNN, LRP MC, SN FNC, ICA (1225) Multisite 558 SZs, 542 HCs 84.75%10α

[49] Cor., Str., Cere. DNN MC, NM, STC, SS, LD, TF FNC (116) Multisite 474 SZs,607 HCs ≈83%10α

[44] Vent. DBN SST, BC, SG SV, ROI COBRE 72 SZs,76 HCs ROI-83.3%3α , SV-90%3α

[80] WB MLP ICA, RV FBIRN 135 SZs,169 HCs AUC- 0.858α , SD-0.05

[59] WB MLP NM, SG, SS Multisite 198 SZs,191 HCs AUC-0.7510α , SD-0.04
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work, 2D-CNN improved the accuracy of classification 

by reducing training parameters compared to 3D CNN.

A large portion of the reported approaches have 

applied DNN-based classification technique to diagnose 

SZ [35, 55, 78, 79]. Srinivasagopalan et  al. claim that 

DL can be a paradigm shift for SZ diagnosis [78]. �eir 

main finding was the ranking of features according to sig-

nificance is important in detecting SZ in patients. Data 

were preprocessed using the ICA to achieve independent 

components and spatio-temporal regression to mitigate 

low bias or high variance. Recursive feature elimination 

and random forests were used to determine the impor-

tance of different features and to decide threshold cut-

off for feature elimination. For classification, the authors 

implemented a simple three-layer DNN architecture and 

achieved a classification accuracy of nearly 94%. How-

ever, the training dataset used in this model was very 

small compared to the test dataset that may negatively 

affect the performance of the classifier. Matsubara et al. 

[79] proposed a deep neural generative model (DGM) 

implementing DNN for diagnosing psychiatric disorders 

from rs-fMRI data. �e dataset used was already pre-

processed with time-slice adjustment, rigid body rotation 

to correct for displacement, and spatial normalization. 

DGM evaluates the contribution weight of different brain 

regions to the diagnosis using Bayes’ rule. �e proposed 

DGM implemented a ROI-wise feature and showed an 

acceptable performance (accuracy 76.6%, sensitivity 

84.9%, and specificity 58.5%). But, the method is only 

applicable to rs-fMRI data and not robust to correlated 

regions. Moreover, DNN and LRP was used in improving 

the classification accuracy of SZ patients [55]. Data were 

collected from seven different sites and preprocessed 

through motion correction, spatial normalization using 

the SPM8 software1. �e preprocessed data were then 

slightly subsampled to voxels and afterward decomposed 

via PCA. DNN classifier was trained with 1/2 norm regu-

larization (dropout and batch normalization) by using 

resting-state functional network connectivity (FNC) pat-

terns as input. LRP serves as an explanatory layer that 

provides relevant details to identify mostly informative 

features. �e study found that some functional connec-

tivity between the frontal network and sub-cortical net-

work exhibits the highest discriminating power in SZ 

detection. �e cross-site prediction accuracy was 82% 

with sensitivity 86.68% and specificity 82.79%. Also, 

DNN-based multi-view models comprising deep canoni-

cal correlation analysis (DCCA), deep canonically corre-

lated auto-encoders (DCCAE), and SVM with Gaussian 

kernel was used to determine SZ in [35]. It is noted that 

multimodal features (FNC, SBM) and ICA were mainly 

considered as parameters for DNN-based classification.

An MLP model was also applied to analyze normal and 

SZ subjects from multisite sMRI data in [59]. �e sites 

were: the Johns Hopkins University, USA; the Maryland 

Psychiatric Research Center, USA; the Institute of Psychi-

atry, UK; and the Western Psychiatric Research Institute 

and Clinic at the University of Pittsburgh, USA. �e work 

was based on the hypothesis that the NNs trained on syn-

thetic data may provide better performance than trained 

on real data. To verify the hypothesis, the sMRI images 

were first normalized to Montreal Neurologic Institute 

(MNI) standard space followed by segmentation into 

gray matter, white matter, and cerebrospinal fluid maps. 

Finally, the resulting gray matter images were smoothed 

with an isotropic 8 mm full-width at half-maximum 

Gaussian filter and used as input for the data-driven 

simulator. ICA and random variable (RV) sampling 

method were used to reduce dimensionality and to gen-

erate synthetic samples, respectively. �rough simula-

tion, the best performance was achieved by the MLP 

classifier on synthetic sMRI with an average AUC 0.75. 

However, the range of the data size that can be fed to a 

simulator is not defined and the important brain region 

for classification is not identified for the study. Han et al. 

started their research for resolving whether resting-state 

functional connectivity can be used as a biomarker of 

clinical diagnosis of SZ [51]. A total of 70 subjects (39 

early-stage SZs and 31 HCs) were recruited. rs-fMRI 

images were acquired and pre-processed using a least-

squares approach to correct slice acquisition and head 

motion. Later on, the corrected images were normalized 

and filtered to get the functional connectivity features for 

feed-forward back propagation NN (FFBPN). �e study 

found that rs-fMRI functional connectivity shows good 

potential classification capacity (accuracy: 79.3% , sen-

sitivity: 87.4% specificity: 82.2%) and could be used as a 

biomarker of clinical diagnosis.

An attempt has been made to explore the perfor-

mance of DBN in case of discriminating the normal 

and SZ subjects by taking ROI and morphometry data 

into consideration in [44] and [32], respectively. Latha 

et al. have pre-processed the COBRE dataset using skull 

stripping to remove the nonbrain tissue. Afterward 

ventricle region was segmented from the images using 

a multiplicative intrinsic component optimization 

method. �e considered region was trained using DBN 

with learning method: stochastic gradient descent, 

adaptive gradient, and root-mean-square propagation 

[44]. �e study achieved a high AUC value (0.899) for 

the segmented ventricle image with accuracy: 90%, 

sensitivity: 87.5% and specificity: 92.86%. On the other 

hand, multivariate analysis was done for visualizing the 
1 https ://www.fil.ion.ucl.ac.uk/spm/softw are/spm8/

https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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most affected brain regions in [32] with an error rate 

of 56.3% for classifying the first-episode SZ patients. 

Moreover, some current studies have employed autoen-

coder for functional connectivity feature extraction [49, 

50, 52]. �ereafter, these trained features are applied 

to SVM classifier [50] or DNN classifier for automatic 

diagnosis of individuals with SZ [49, 52]. Apart from 

that Dakka et  al. have successfully demonstrated the 

feasibility of R-CNN involving a 3D-CNN with LSTM 

units [34].

5  Open-access datasets
5.1  ADNI

Alzheimer’s disease neuroimaging initiative (ADNI) data-

set includes demographic information, raw neuroimaging 

scan data, APOE genotype, CSF measurements, neu-

ropsychological test scores, and diagnostic information 

[81]. ADNI is composed of ADNI-1 (it tends to develop 

biomarkers as denouement step for clinical trials), ADNI-

GO (in this section biomarkers are examined in earlier 

stages of disease), ADNI-2 (biomarkers are developed as 

predictors of cognitive decline and as denouement also) 

and ADNI-3 (the usage of tau PET and functional imag-

ing strategies are studied for clinical trials in this section). 

�ese subsections are again composed of the following 

type of data:

• ADNI-1 is composed of CN (cognitive normal), MCI 

(mild cognitive impairment), and AD (Alzheimer’s 

disease) data.

• ADNI-2 is composed of EMCI (early mild cognitive 

impairment) data.

• ADNI-GO is composed of CN, EMCI, AD, and 

LMCI (late mild cognitive impairment) data.

• Finally, ADNI-3 is composed of CN, MCI and AD 

data.

5.2  OASIS

Open access series of imaging studies (OASIS) dataset 

includes longitudinal neuroimaging, clinical, cognitive, 

and biomarker data for normal aging and Alzheimer’s 

disease [82]. Currently, two sets of data are included in 

OASIS. One is cross-sectional which includes 416 sub-

jects aged from 18 to 96, of whom 100 of them were clini-

cally diagnosed with AD. �e other one is a longitudinal 

section which comprises 150 subjects aged 60 to 96. In 

this section, the subjects were diagnosed with AD at cer-

tain points during their course of participation [83]. Kag-

gle dataset contains mild-to-moderate dementia dataset 

which is 72 subsets data taken from OASIS dataset.

5.3  MIRIAD

Minimal Interval Resonance Imaging in Alzheimer’s 

Disease (MIRIAD) dataset consists of a series of lon-

gitudinal volumetric T1 MRI scans of 46 mild–mod-

erate Alzheimer’s subjects and 23 controls. �ere is a 

total of 708 scans in this database which had been col-

lected at intervals from 2 weeks to 2 years conducted by 

the same radiographer using the same scanner. It also 

accompanied information on gender, age and MMSE 

scores [46, 84].

5.4  COBRE

�e Center for Biomedical Research Excellence (COBRE) 

dataset is found to be prevalent in research regarding SZ. 

�e dataset includes raw anatomical and functional MRI 

data from 147 subjects (72 SZ and 75 HC) of age range: 

18 to 65. Phenotypic data (e.g., gender, age, handedness, 

and diagnostic information) of every participant are also 

available [85]. Many studies have utilized the OpenfMRI 

database which is a repository of neuroimaging data col-

lected using a different form of MRI and EEG techniques 

since 2010. �e dataset contains information about sub-

ject-level variables (e.g., gender, age, handedness, etc.), 

longitudinal and multi-session studies, structural, ana-

tomical imaging data (e.g., T1, T2-weighted, MPRAGE, 

etc.), resting-state and task-based fMRI data, diffusion-

weighted imaging data, physiological (e.g., pulse, res-

piration, etc.) monitoring output acquired during MRI 

experiments, behavioral data collected without MRI, 

and standardized metadata to describe the conditions 

and parameters of the experiment data [86]. It is a huge 

repository of 95 MRI datasets including 3372 subjects 

from different sources.

5.5  FBIRN

�e Function Biomedical Informatics Research Net-

work (FBIRN) is an another SZ dataset which develops 

methods and tools for fMRI studies to assess the major 

sources of variation among the studies and to provide a 

distributed datasets for a clinical study. Multi-scanner 

brain imaging datasets are shared through the BIRN Data 

Repository (BDR). Moreover, the FBIRN Phase 1 data-

set consists of 5 traveling healthy subjects (age: 20 to 29 

years) with no history of psychiatric or neurological ill-

ness, each scanned with sMRI and fMRI on 10 different 

1.5 to 4 T scanners. �e FBIRN Phase 2 (87 SZ and 85 

HC, age: 18 to 70 years) and Phase 3 datasets (186 HC, 

176 SZ, age: 18-62) consist of subjects with SZ disorder 

along with healthy comparison subjects scanned at mul-

tiple sites [87]. Moreover, several studies have been found 

while reviewing that have collected data from multiple 
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sites or different hospitals to validate their proposed 

model.

5.6  Other datasets

AIBL Australian Imaging Biomarkers and Lifestyle Study 

of Ageing (AIBL) dataset contains MRI, PiB PET images, 

and clinical data of more than thousand participants hav-

ing minimum age of 60 years [88]. �ese datasets can be 

used for detection of AD and MCI [83].

NTUA  NTUA Parkinson dataset which consists of 

MRI, DaT Scans, and clinical data of 55 patients with PD 

and 23 subjects with PD-related syndromes. A total of 

over 42000 images are available for academic use [89].

PPMI Parkinson’s Progression Markers Initiative 

(PPMI) public domain database to detect bio markers 

of PD progression. �e PPMI study dataset includes raw 

and processed MRI and single-photon emission comput-

erized tomography (SPECT) images [90].

Open fMRI Open functional MRI (fMRI) database 

includes recorded MRI and EEG data while subjects were 

asked to perform tasks [86].

FITBIR Federal Interagency Traumatic Brain Injury 

Research (FITBIR) dataset includes MRI imaging data-

sets which can be employed for understanding the rela-

tion between traumatic brain and Alzheimer’s disease 

[91].

Table  5 contains a list of all the open-source datasets 

found during the study. �e includes 95 MRI datasets 

taken from 9972 subjects [86].

6  Performance analysis
All the referred studies included in this paper incorpo-

rate several aspects of work from AD prediction, MCI 

to AD conversion, multiclass AD classification, etc. Per-

formance metrics have been evaluated in terms of find-

ing accuracy, specificity, sensitivity, class score, ROC and 

AUC values, concordance index, etc.

First of all, accuracy is a metric that is used for evalu-

ating classification models. �us, classification accuracy 

provides the percentage of correct predictions. �en, 

scoring is also termed as a prediction. It is the process in 

which values are generated based on a trained ML model 

on the basis of giving some new input data. �e created 

scores can represent predictions of future values.

In order to visualize the performance of the multi-

class classification problem, AUC, ROC, etc., curves are 

used widely. Here, ROC is the probability curve on the 

other side, AUC is used to represent the degree or meas-

ure of separability. It reveals the capability of the model 

for distinguishing different classes. �e higher is the 

value of AUC, the better the model is at predicting cor-

rectly. For referred studies here, the higher is the value 

of AUC, the better the model performs in distinguishing 

between patients having a disease and no disease [97]. 

Defining terms used in AUC and ROC are sensitivity and 

specificity.

Sensitivity is measured as the proportion of actual 

positive cases that have been predicted as positive (or 

true positive (TP)). Sensitivity is also termed as recall. 

�en there will also be found those proportion of actual 

Table 5 Open source datasets containing data of neurodegenerative disorders

Ref. Dataset Description

[81] ADNI Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains MRI data for detecting and tracking AD

[85] COBRE The Center for Biomedical Research Excellence (COBRE) dataset includes MR data of 147 subject where 72 patients are suffering from 
schizophrenia

[92] fastMRI It gives 1.5/3T MR data from 6,970 fully sampled brain data of axial T1/T2 and FLAIR images

[87] FBIRN Function Biomedical Informatics Research Network (FBIRN) Phase 1 consists of 5 traveling healthy subjects (age: 20–29 years) each 
scanned with sMRI and fMRI on 10 different 1.5 to 4 T scanners, FBIRN Phase 2 (87 SZ and 85 HC, age: 18–70) and Phase 3 datasets 
(186 HC, 176 SZ, age: 18–62) consist of subjects with SZ or schizoaffective disorder along with HC scanned at multiple sites

[91] FITBIR Along with the other Imaging datasets, the Federal Interagency Traumatic Brain Injury Research (FITBIR) includes the open source 
datasets for AD

[93] Kaggle It contains mild-to-moderate dementia dataset which is 72 subsets data taken from Open Access Series of Imaging Studies (OASIS) 
dataset

[94] NAMIC National Alliance for Medical Image Computing (NAMIC) provides Brain Mutlimodality datasets

[89] NTUA It consists of MRI and DAT scan of those who are suffering from PD and also some NC

[82] OASIS OASIS-3, OASIS-2 and OASIS-1 contain 373 MRI data of 150 subjects, 434 MRI data of 416 subjects and 2168 MRI data of 1098 sub-
jects, respectively

[95] MIRIAD The MIRIAD dataset contains volumetric MRI brain-scans of AD sufferers and HC elderly people. This database consists of 46 mild–
moderate Alzheimer’s subjects and 23 controls

[86] Open fMRI It contains 95 MRI datasets of 3372 subjects and can be used detect AD and PD

[96] PPMI Parkinson’s Progression Markers Initiative (PPMI) database accommodates raw and processed MRI of parkinson’s progression data
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positive cases, which would be predicted incorrectly as 

negative (can also be termed as False Negative (FN)). 

For higher value of sensitivity rate of TP will be higher 

contrasting lower value of FN. Similarly, for lower value 

of sensitivity rate of TP will be lower contrasting higher 

value of FN. For the referred studies, models with high 

sensitivity show better performance [98, 99].

Specificity is measured as the proportion of actual 

negative cases that has been predicted as the negative 

(or true negative (TN)). Similarly, there will be another 

proportion of actual negative cases that has been pre-

dicted as positive (or false positive (FP)). For higher value 

of specificity rate of TN will be higher contrasting lower 

value of FP. Similarly, for lower value of specificity rate of 

TN will be lower contrasting higher value of FP [99].

�en, the concordance index or c-index is a metric that 

is most commonly used to evaluate the predictions made 

by an algorithm specifically for survival models. Actual 

survival prediction is important in the scenario of neu-

rodegenerative disease analysis. Survival analysis is con-

ducted from the perspective that since, both the training 

data and the test data are subject to censoring, it was 

not possible to observe the exact time taken for an event 

regardless of how the data was split. �e c-index is used 

to evaluate the accuracy of the ordering in the predicted 

time. It is interpreted as 0.5 for random predictions, 1.0 

for perfect concordance, and 0.0 for perfect anti-con-

cordance. Generally, the concordance index for fitted 

models ranged between 0.55 and 0.7 owing to the pres-

ence of noise in data [100].

Authors in [31] achieved the highest rs-fMRI classifica-

tion accuracy of about 99.9% using CNN. But accuracy of 

38.8% has been achieved which featured a scientific chal-

lenge placing third over 19 participating teams to classify 

AD which is comparatively lower than all other [69].

Highest accuracy 98.09% of schizophrenia detec-

tion has been observed in [48], which have employed 

3D-CNN-based classification. Above 90% accuracy is 

shown in [78] and [44]. �e other studies perceived the 

accuracy ranges from 70%-80%.

By using 3D-CNN [57] achieved 100% accuracy on the 

validation and test sets for PD diagnosis. At the same 

time, the study in [76] discriminated PD from typical par-

kinsonian syndromes having 85.7% test accuracy.

Pereira et al. [45] found an accuracy of 96% using age as 

additional feature and CNN classifier for differentiating 

HC and PD, while the accuracy has dropped to 88.7% in 

classifying PD and SWEDD.

After analyzing the literature on AD, PD and SZ 

using DL some observations can be made based on the 

reported studies. �e application of CNN is the most 

prevalent one in AD and PD detection. At the same time, 

ADNI has been the most used and balanced database 

covered in the study for AD, while NUTA and PPMI 

have been the most popular for PD. But, in the case of 

SZ detection, the prevalence of DNN has been more 

prominent compared to other DL techniques. And, the 

most frequently used database found is COBRE for the 

works covered in this study. A summary of the observa-

tions achieved from this study in terms of DL methods 

and datasets is shown in Table 6.

Performance analysis of application of various DL 

methods in detecting neurological disorders from MRI 

datasets are shown in Fig. 4.

7  Challenges and future perspective
DL-based frameworks for the prediction of NLD has 

become desirable with the massive improvement in the 

computing capabilities and better development of DL 

tools. Further research may be conducted for tuning the 

DL algorithms in improving inferences (i.e., similar train-

ing and test environment). Some of the challenges with 

corresponding future perspectives are outlined below:

• �e supervised architecture is limited due to huge 

effort for creating label data, low scalability, and 

selection of appropriate bias levels. Unsupervised 

learning is not a usual option to be considered for 

image analysis. However, unsupervised architecture 

not only learns features from the dataset but also 

design a data-driven decision support system from 

these data. �us unsupervised deep architecture can 

be used to solve medical imaging-related problems.

• Predicting NLD from imaging data in real-time is 

still an open challenge. However, stream processing 

has been introduced for processing high-volume data 

using a parallel computing algorithm.

• Designing a bias-free neuroimaging dataset is chal-

lenging as it is a patrimony of learning system which 

may create a computational artifact. �e problem can 

be reduced by including a large dataset in the model 

and studying the relationship between extracted fea-

tures and tune the parameters of the model.

• Adversarial noise can add with the neuroimages and 

may reduce the classification accuracy. �us, the can-

cellation of adversarial errors is a challenge.

• DL algorithms present impact and accurate solutions 

for large datasets. However, the high-dimensional 

CNN such as 2D-CNN and 3D-CNN will provide 

high accuracy for the large and multimodal neuroim-

ages. On the other hand, Generative Adversarial Net-

works (GAN) can generate synthetic neuroimages 

which may also be used along with CNN.

• �e basis of achieving better results using DL 

techniques largely depends upon using large train-

ing datasets; unavailability of which is one of the 
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biggest barriers in the application process DL in 

neuroimaging which also comes in as a result of 

preserving the privacy of patients. At the same 

time annotating those data is a big issue as well as 

requires expert intervention. Consequently, the 

dataset found for rare diseases are mostly unbal-

anced. A collaboration of the health industry, medi-

cal professionals, and data scientists are required 

to overcome this problem of dataset creation and 

annotation. At the same time, data augmentation 

techniques can be applied to overcome the problem 

of unbalanced data by modifying data volume and 

quality.

• Non-standardized acquisition of images causes dif-

ference in images pertaining to different datasets. 

�is poses a big challenge in processing the neuro-

images using DL. Application of transfer learning is 

recommended here to overcome this problem.

• A deep learning model is a black box that learns from 

data and can be used to simulate the process from 

where data was collected. �ese models are inter-

pretable rather than explainable. �e black-box, how-

ever, works badly when the model is used to predict 

with data which do not belong to the database. Rudin 

clarified that the method used to forecast a process 

in the explainable DL is too complex, highly recursive 

and difficult to understand [101]. Explanation there-

fore often does not provide adequate information to 

understand the DL mechanism. �ere is therefore 

often a debut between explainable DL and interpret-

able DL.

8  Conclusion
Advancement in high-speed computing techniques and 

an unprecedented improvement in the development of 

novel DL-based techniques and models opens up unique 

opportunity to predict and manage a number of neuro-

logical disorders including Alzheimer’s disease, Parkin-

son’s disease and schizophrenia. In this paper, the most 

popular DL techniques have been explored in detecting 

those three leading neurological disorders from the MRI 

scan data. DL methods for the classification of neurologi-

cal disorders found in the literature have been outlined. 

�e pros, cons, and performance of these DL techniques 
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Fig. 4 Performance comparison of application of various DLs in detecting neurological disorders from MRI datasets. The normalized performance 

for a Alzheimer’s disease, b schizophrenia and c Parkinson’s disease detection shows which method works well on which type of disease. The height 

of the bars denote the range of performance values reported in the literature

Table 6 Summery of  various DL methods and  datasets 

used in detecting NLD

NLD DL methods Datasets

AD CNN ADNI, OASIS

PD CNN NTUA, PPMI

SZ DNN, CNN COBRE, FBIRN
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for the neuroimaging data have been summarized. In the 

end, the open challenges and future trends have been 

discussed. Prime observation of this study included the 

maximum usage of CNN in the detection of Alzheimer’s 

disease and Parkinson’s disease. On the other hand, DNN 

has been used in greater prevalence for schizophrenia 

detection. At the same time, ADNI, COBRE, and PPMI 

datasets have been explored mostly for AD, PD and SZ, 

respectively.
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