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In this paper, we proposed an approach to detect oilseed rape pests based on deep learning, which improves the mean average
precision (mAP) to 77.14%; the result increased by 9.7% with the original model. We adopt this model to mobile platform to let
every farmer able to use this program, which will diagnose pests in real time and provide suggestions on pest controlling. We
designed an oilseed rape pest imaging database with 12 typical oilseed rape pests and compared the performance of five models,
SSD w/Inception is chosen as the optimal model. Moreover, for the purpose of the high mAP, we have used data augmentation
(DA) and added a dropout layer. *e experiments are performed on the Android application we developed, and the result
shows that our approach surpasses the original model obviously and is helpful for integrated pest management. *is ap-
plication has improved environmental adaptability, response speed, and accuracy by contrast with the past works and has the
advantage of low cost and simple operation, which are suitable for the pest monitoring mission of drones and Internet of
*ings (IoT).

1. Introduction

Oilseed rape is one of China’s four major oilseed crops
(soybean, oilseed rape, peanut, and sunflower), and its oil
production efficiency is extremely high, which accounts for
18.9% of the total annual oil production of oil crops in the
world and 55% of the total oil production of oil crops in
China [1]. It plays a significant role in the market as edible
vegetable oil. People have tried many pest control measures
to protect oilseed rape from pests. However, the pesticides
are used excessively or misused, which will cause huge
economic losses and serious environmental contamination
[2, 3]. *e Food and Agriculture Organization of the
United Nations (FAO) estimates that, despite the appli-
cation of about 2 million tons of pesticides, annual global
crop production losses due to diseases and pests are about
20–40% [4]. *erefore, accurate and timely diagnosis of
oilseed rape pests is essential for the oilseed rape

production. For a long time, pest identification mainly
depends on crop technicians and experienced farmers by
the morphology. However, the artificial identification is
subjective, inefficient, and delayed. *erefore, it is neces-
sary to find an objective, efficient and rapid method for
detecting pests.

Because pest images can be expanded for further pro-
cessing after acquisition, images are often used as data, and
object recognition is one of the most challenging tasks in the
area of computer vision (CV) [5]. CV refers to the automatic
extraction, analysis, and understanding of useful in-
formation from a single image or a sequence of images [6].
*e tasks of CV include classification, localization, object
detection, segmentation [7], etc. Object detection is the
process of finding real-world instance objects in images or
videos [8]; it produces bounding boxes and class labels to
locate and identify multiple targets. Generally, there are
three steps in the object detection, which include extracting

Hindawi
Mobile Information Systems
Volume 2019, Article ID 4570808, 14 pages
https://doi.org/10.1155/2019/4570808

mailto:yhe@zju.edu.cn
https://orcid.org/0000-0001-6752-1757
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4570808


features from the input image, selecting detection window,
and designing a classifier [9]. *e traditional detection al-
gorithm is built on handcraft features and shallow trainable
architectures, which lacks robustness and sensitivity to di-
versity changes. In addition, the region selection strategy
based on sliding window is computationally expensive and
time-consuming and usually produces redundant windows
[10]. For most CV tasks, the detection algorithm based on
deep learning performs better than traditional detection
techniques [11]. Deep learning can understand high-di-
mensional data very efficiently and has achieved certain
results in the fields of classification, speech recognition,
natural language processing, recommendation system, and
automatic driving [12, 13]. Deep neural networks do not
require designing features manually, which makes them
more reliable and adaptable for different types of variations
in the image data [14].

In recent years, with the rapid development of deep
learning in object detection, a great deal of deep detection
models has been proposed. Typical detectors include Faster
R-CNN [15], R-FCN [16], YOLO (you only look once) [17],
SSD (single-shot multibox detector) [18], etc. *e common
evaluation of these two-stage detectors are that they are in
the detection precision but need a big computational cost.
One-stage detectors, such as YOLO and SSD, have lower
accuracy but faster speed, whichmeans they are fit to be used
on mobile devices. After comparing the mAP values, de-
tection time, and model size, this paper chose SSD as the
detection framework.

Recently, the growing interest in sustainable agricul-
ture has extended its application to diagnose the crop
diseases and pests [19]. Some research studies have been
performed to develop pest detection models based on deep
learning, whose results showed that they are promising in
pest detection tasks compared to traditional detection
algorithms and can better adapt to the complex field en-
vironments. But for this study, there are three main
challenges: first, there is lack of available public pest
dataset, and most of current researches use insect images
collected in ideal laboratory environments [20]. Second,
the field environment is complex, so the existing pest
models could not be directly used for pest detection which
needs further training and adjustment to achieve the best
performance. *ird, the equipment of the pest detection
system used first is expensive and bulky and of poor
practicability.

In this paper, a variety of oilseed rape detection models
based on deep convolutional neural networks have be
evaluated and tested on oilseed rape pest dataset to construct
a detection system for pests of oilseed rape in complex
environments. Furthermore, we have developed the first
Android application of pest detection based on deep
learning in China.*is paper is organized as follows. Related
works are discussed in Section 2. In Section 3, we present the
oilseed rape pest dataset and methodologies. In Section 4, we
compare the performance of the six models and propose two
methods to improve the mAP. In Section 5, we designed and
evaluated a pest detection system of oilseed rape based on
Android. We offered the conclusion in Section 6.

2. Related Works

In this section, we will introduce some major object de-
tection methods briefly. In general, advanced object de-
tection methods can be categorized into two categories,
including one-stage and two-stage detectors. All of these
proposed improvements of detection performance are
based on standard datasets such as MS COCO [21],
PASCAL VOC [22], and ILSVRC [23]. *e two-stage de-
tectors have a box proposal network and a classification
network, such as R-CNN, R-FCN, and FPN [24]. *e
method extracts features and generates region of interests
(RoIs), which could be used for the subsequent object
classification and bounding box regression. *e first
breakthrough in the object detection is the proposal of
R-CNN. After then, massive improved models have been
suggested with multiple convolution layers, which requires
huge calculation capacity. *en, Faster R-CNN solves the
speed bottleneck of fast R-CNN and R-CNN, as it proposed
a region proposal network (RPN) to generate region
proposal. Hereafter, R-FCN is proposed to further improve
the performance.

Nowadays, the challenges in the object detection are the
requirements for the faster speed and high efficiency, which
is obvious that in the one-stage detectors like YOLO and
SSD, these algorithms are usually faster but reach a lower
mAP than the two-stage detectors. *e one-stage detectors
combine region proposals and classification into one
network. For the input image, the bounding boxes and
classification are simultaneously predicted at multiple
positions of the image without the region proposals. YOLO
runs real-time by processing the image on CNN once. SSD
can detect multiple scales by a multiscale feature map.
Although these models can be used for object detection, it is
difficult to find a model that achieves a balance between
accuracy and speed.

Object detection has been dominated by a sliding
window. For instance, Ding and Taylor [25] have collected
the images of the codling moth in the field and designed an
automatic moth detection system based on sliding window
to realize pest detection and counting. *e experimental
results showed that the optimal model accuracy is 93.4%,
and the log-average miss rate is 9.16%. However, the ap-
proach is not only computationally expensive but also only
suitable for specific task. When it is in a nonlaboratory
environment, experiment cannot reach good detection
performance. Recently, more object detection methods
based on deep learning have been used in agriculture, mainly
for the disease and pest detection. Great changes have taken
place in the field of object detection, and the original sliding
window approaches were replaced by the region proposals
[26]. In order to achieve efficient detection of main organs of
tomato, Zhou et al. [27] built a classification network model
based on VGGNet, designed TD-Net with Fast R-CNN, and
completed a tomato organ detector. *e average precision
(AP) of the detector for fruit, flower, and stem were 81.64%,
84.48%, and 53.94%, respectively, whose performance and
speed have been improved compared to R-CNN and fast
R-CNN. Fu et al. [28] have reported on a kiwifruit
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recognition system based on the LeNet network and studied
the overlap and occlusion of multicluster kiwifruit. *e
overall recognition rate achieved 89.29%, and the average
time of recognizing one fruit is 0.27 s, which is a strong
support for the harvesting robot. In the classification task,
there are many applications for developing a prediction
model based on spectral characteristics and image data and
have achieved good results [29–32].

3. Materials and Methods

3.1. Dataset

3.1.1. Data Collection. Due to the lack of publicly available
oilseed rape pest dataset, we established a new oilseed rape
pest dataset by two ways. *e first means is downloading
pictures through the Internet. But the resolution and
brightness of the picture from the Internet are different,
and the target pests in the image are moderately sized and
in various postures. *e second means is capturing in both
laboratory and field to enrich the dataset. In the field
condition, mobile phone (iPhone 6S, Apple Inc.) and
digital camera (Canon 5D Mark III, Canon) are used to
collect live pests images in multiple places and different
poses. *e acquired images contain much background
clutter making them in poor quality [33], so the target pests
are small and fuzzy. At the same time, the pests were
captured in the field and photographed in the laboratory
using a digital camera with good lighting condition to
ensure high quality. An image acquisition device was
constructed with reference to an image acquisition system
designed by Yao et al. [34], as shown in Figure 1. *is
system includes a digital camera, 2 light sources, a glass
plate placed on a table, tripods used to hold the camera and
light sources; a desktop computer to control the camera;
and a mobile phone with Wi-Fi to get images from the
camera directly. *e oilseed rape pests must be spread on
the glass plate evenly, and it will make the following image
segmentation and identification easier. Two light sources
light all images from bilateral symmetry above to eliminate
shadows.

*e size of the pests is too small, and the shooting
equipment is limited, so the images obtained in the field and
lab are small and need to be further cropped. A total of 3,022
oilseed rape pest images were obtained under multiangle
shooting by three ways. We unified the images format into
JPEG and named them in consecutive numbers [35].
According to the species of pests, they were divided
them into 12 categories. Some images are shown in
Figures 2(a)–2(c).

3.1.2. Dataset Arrangement. Before the annotation, the
dataset needs to be refined manually to avoid the image type
annotation errors and the images duplication caused by pest
interspecies similarity. *en, the image annotation tool
LabelImg (v1.3.0) was used to mark the categories and
rectangular bounding boxes of the pest images. Table 1
shows the number of images and the number of targets

for each sample. It contains 12 typical oilseed rape pests,
listed by the first letter of the name.

From Table 1, it is clear that there is an uneven class
balance in the dataset and the number of various data varies
greatly. *ere are 610 images of Pieris rapae but only 30
images of Entomoscelis suturalis. Lipaphis erysimi has 1,474
annotated objects while Entomoscelis suturalis only has 36
objects. When the number of images in the dataset is in-
sufficient, it is necessary to increase the data so that the
maximum number of images is kept at a certain ratio with
the minimum number of images.

3.1.3. Data Augmentation (DA). DA refers to keeping the
labels unchanged and transforming the training data to
increase the amount of the training data, which is a
common strategy for increasing the quantity of training
data and has been applied to specific tasks [36, 37]. By
making data more diverse and increasing the interference
artificially, the problem of inadequate data and imbalanced
label distribution could be overcome [38], and the gen-
eralization of the model could be improved. DA can be
divided into two categories, one is common DA and the
other is complex DA. Complex DA is a scheme that
artificially expands the dataset by using domain specific
synthesis to generate more training data but is computa-
tionally expensive and time-consuming to implement.
Common DA calculation is low cost and easy to implement
[39]. *us, for the small datasets and experimental envi-
ronments given in this paper, Common DA is a more
appropriate method.

Generally, the process of object detection will be affected
by the interference such as viewpoint, pose, illumination
variation, and occlusion. Common DA used in the deep
learning include cropping, rotation, color jittering, and
adding noise to create more images, and each of them can
simulate a type in real-world. *e specific examples are
presented in Figures 3(a)–3(h). We performed some DA
processing on the original image, such as brightness, con-
trast, saturation, image flipping, rotation, cropping, trans-
lation, etc.

3.2. Methodologies. In this paper, we focused on the three
major meta-architectures for object detection: Faster
R-CNN, R-FCN, and SSD (single-shot detector) and used
the dropout method to avoid overfitting.

3.2.1. Dropout. In neural networks, overfitting is the major
weakness which makes training large neural networks ex-
tremely hard. It is impossible to performmodel combination
in a short time and avoid overfitting. *us, we adopt the
“dropout” method, which will drop out units to overcome
this problem in neural networks. By removing units, we got
new thinned networks, and it is easy to train smaller sub-
models and achieved better performance. *e dropout is
random at each unit. For example, each unit that has the
fixed probability p will not work independently.
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Figure 1: An oilseed rape pests imaging system.

(a)

(b)

(c)

Figure 2: A representation of insect pests of oilseed rape. Images (a) downloaded from the Internet; (b) taken in the field; (c) taken in a
laboratory.
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3.2.2. Faster R-CNN. Specifically, the innovation of Faster
R-CNN lies in replacing the previous slow selective search
algorithm with region proposal network (RPN), which runs
much faster than before. Faster R-CNN methods include
four steps: region proposal generation, feature extraction,
classification, and location optimization. For inputting
images of any size, the RPN uses CNN to directly generate a
batch of region proposals and then fine-tunes candidate
frames and classifications. Faster R-CNN output will predict
every anchor being object or background. It resulted in a 10x
increase in inference speed and better accuracy.

3.2.3. R-FCN. R-FCN is a region-based fully convolutional
network which proposes position-sensitive score maps to
avoid too much computation.*is model increases the speed
by sharing calculation on the entire image. And the con-
volution layer is added to generate the position-sensitive
score maps. R-FCN can solve the contradiction between the
image classification translation-invariance and the object
detection translation-variance. Some studies have shown that

R-FCN can achieve comparable accuracy to Faster R-CNN
with shorter running times [16, 40, 41], which means it
achieves a good balance between speed and accuracy.

3.2.4. SSD. As R-FCN and SSD run faster than Faster
R-CNN, but the working mode is significantly different from
R-FCN. For the input image, the bounding boxes of the
different aspect ratio and classification are simultaneously
predicted at multiple positions of the image. *e features are
extracted in different convolutional layers which will de-
crease the size and support the multiple scales. Prediction is
running at each location using the suitable kernel and
produces accuracy of every box. It is worth noting that SSD
works well in low-resolution image which means the model
will achieve a better score because the pest shape is often in
small size.

We chose SSD (single-shot detector) as the meta-ar-
chitecture of optimal detection model because of the mul-
tiscale and the fastest high-accuracy feature. *e specific
implementation process of the network is shown in Figure 4.

Table 1: Details of oilseed rape pest dataset.

Species Number of images Number of objects

Athalia rosae japanensis 352 375
Creatonotus transiens 175 182
Entomoscelis adonidis 87 134
Entomoscelis suturalis 30 36
Hellula undalis 320 322
Lipaphis erysimi 150 1474
Mamestra brassicae 334 343
Meligethes aeneus 164 566
Phyllotreta striolata 220 272
Pieris rapae 610 690
Plutella xylostella 475 484
Psylliodes punctifrons 105 138
Total 3022 5016

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Examples of data augmentation. (a) Origin image. (b) Brightness adjusted. (c) Contrast adjusted. (d) Saturation adjusted.
(e) Flipped horizontally. (f ) Flipped diagonally. (g) Rotated 45 degrees. (h) Random cropping.
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During training, we input the image first. �e feature maps
will be generated by the shared convolution layer of In-
ception. And, the location and label information of each
object can be obtained finally.

3.3. Evaluation Indicators. A significant nonuniform dis-
tribution of dataset results in a simple accuracy-based
metric cannot properly quantify the model performance.
�us, to evaluate the generalization ability of the model,
the standard metric for this paper is based on PASCAL
VOC2007 [19]. �e notation used for evaluation is shown
in Table 2 [42].

Precision and recall are commonly used in the literature
to measure how well the detected objects correspond to the
reference objects. Recall is defined as the proportion of items
that are correctly detected among all the items that should
have been detected. Precision is the proportion of all ex-
amples above that rank which are from the positive class.
Precision is the proportion of detected items that are correct
[43].

�e precision and recall are computed as

precision �
TP

TP + FP
,

recall �
TP

TP + FN
.

(1)

Average precision (AP) is a measure of the performance
of a given class. It is a common performance indicator for
object detection and is used to evaluate the performance of
the dataset on this model. AP summarizes the shape of the
precision/recall curve and defines its score as the mean
precision of a set of equally spaced recalls values (0, 0.1, 0.2,
. . ., 1):

AP �
1

11
∑

r∈ 0,0.1,...,1{ }

Pinterp(r). (2)

�e Pinterp(r̃) is defined as

Pinterp(r) � max
r̃:̃r≥r

P(r̃), (3)

where p(r̃) is the measured precision at recall (r̃).
In multiclass detection, themean of all AP values is mean

average precision (mAP). To evaluate the performance of the
dataset on each model, AP and mAP are selected as the
metrics of the models.

Intersection over union (IoU) is an evaluation metric for
position accuracy. It measures how good are the real object
boundary on an image and the pest boundary generated by

the algorithm. When IoU is 1, it means that the two are
completely coincident. When IoU is 0, it means that the
predicted bounding box and the true bounding box do not
overlap at all. In this paper, IoU was 0.6.�e formula for
calculating IoU is as follows:

IoU �
area true bounding box ∩ predicted bounding box( )
area true bounding box ∪ predicted bounding box( )

> 0.5.
(4)

3.4. Experiment. �e training and test were run on a
computer equipped with an Intel Core i7 7800X, 32GB of
RAM and two NVIDIA GTX 1080Ti GPU for parallel
computing (Table 3).

In our experiments, in order to solve the problem of
insufficient dataset, we trained the detection model based on
a pretrained model which has been trained in the COCO
dataset. Faster R-CNN and R-FCN models were trained
using stochastic gradient descent (SGD) with momentum of
0.9, initial learning rate of 0.0001, and batch size of 1.�e
initialization of the weight affects the convergence rate of the
network.�e normal distribution with the mean of 0 and the
standard deviation of 0.01 is used to randomly initialize the
weights of all layers of the network. �e hyperparameters in
SSD are the same as above except that the batch size was 24
and standard deviation of the normal distribution was 0.03.
�e initial learning rate was 0.001, and decaying every epoch
was an exponential rate of 0.95.

4. Results

�is section can be divided by subheadings. It provides a
concise and precise description of the experimental results.

4.1. Object Detection Models. For a given set of data, the
proportion of data division has a significant effect on the
model performance. Firstly, data were divided into three
subsets: training set, validation set, and test set in a ratio of
0.7 : 0.2 : 0.1. �e data were trained on the training set and

Feature extractorInput

300

VGG16
300

Detection generator Output

Box
regeneration

Multiway
classification

Figure 4: A diagram of the SSD-based detection network.

Table 2: Confusion matrix.

Actual positive Actual negative

Predicted positive True positives (TP) False positives (FP)
Predicted negative False negatives (FN) True negatives (TN)

TP: examples correctly labeled as positives. FP: negative examples in-
correctly labeled as positive. FN: positive examples incorrectly labeled as
negative. TN: correspond to negatives correctly labeled as negative.
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evaluated in a validation set to select model parameters, and
finally, the test set was used to evaluate model performance.
Considering the cost of training time and calculations, the
experiment used a public model that has been pretrained on
the COCO dataset. Transfer learning was employed in this
study which used the same oilseed rape pest dataset to train
different models. *e meta-architectures (Faster R-CNN,
R-FCN, and SSD) were combined with feature extractors
(ResNet, Inception, and MobileNet) to find the optimal
model by considering the mAP, running speed, memory
usage, and loss. Table 4 and Figure 5 are the statistical results
and training loss curves on different models, respectively,
which can be used as the basis for model selection.

According to Table 4, the mAP of Faster R-CNN w/
ResNet101, SSD w/Inception, and R-FCN w/ResNet101 are
all higher than 0.65, which have achieved good detection
results. *e running times of SSD are nearly three times
faster than other architectures. Observing the training loss of
each model, all curves converged rapidly and no longer
fluctuated strongly after 80,000 iterations.*e loss values are
stable within a smaller range finally. As the model will be
applied to portable and mobile devices, the memory foot-
print should not be too large. In summary, by analyzing the
data, it is apparent that SSD w/Inception has better per-
formance. We can develop mobile application based on this
model to realize real-time and high-precision detection of
oilseed rape pests.

4.2.DataAugmentationProcessing. Asmentioned before, the
insect oilseed rape pest dataset in this experiment is small and
may lead to overfitting of the model but collecting many
images is an expensive process. Hence, the DA technology has
been used to enlarge the training data. In order to simulate
various shooting conditions in the field as closely as possible,
this paper finally chose the DA methods as given below:

Color jittering: we adjusted the brightness, contrast,
and saturation of the images randomly to detect objects
in different lighting conditions and cameras

Random flipping/translation: it could prevent the ob-
jects from appearing only in certain position of the
image

Random rotate: it could make the model learn the
objects across various viewpoints

Random cropping: it could reduce the influence of the
background and enhance the stability of the model

During training, one or more combined DA methods
were used to augment the dataset randomly, which are
shown in Figures 6(a) and 6(b).

As shown in Figure 6(a), random cropping provides the
greatest improvement, followed by random rotation and
random flipping. Figure 6 shows that the top three methods
all used cropping and flipping. *ese two methods are
suitable for improving the performance of the dataset in this
paper. *en, we compared the impact with DA (flip + crop)
and without DA on each pest, and the results are presented
as Table 5.

*e experiments use SSD with Inception. After DA, we
have a total of approximately 10575 images for training.
Table 5 shows the effect of DA on the models. It could be
learned from Table 5 that the mAP value has been improved
after DA. Among them, the AP values of Athalia rosae
japanensis, Mamestra brassicae, Pieris rapae, and Plutella
xylostella decreased, and the AP value of Pieris rapae de-
creased by 0.1383, while the AP values of other pest samples
increased significantly. By analyzing the dataset, Athalia
rosae japanensis, Mamestra brassicae, Pieris rapae, and
Plutella xylostella have the largest amount images in the
dataset, but there might also be overfitting. After increasing
the images, the results are closer to the real state, resulting in
a decrease in the AP value of this part of the pests. *e
remaining small sample is insufficient. After DA, more
features are learned, and the AP values are increased greatly,
thereby improving the mAP value of the model. *erefore,
we observed an appropriate increase in the number of
images is conducive to improve the model performance.

4.3. Impact of Dropout on Performance. In this work, there
are fewer training data, and the model may have overfitting.
Dropout is an effective way to prevent overfitting in deep
neural network. It combines exponentially different neural
network architectures by randomly dropping out neurons in
the network. Each time the data are applied to different
neural networks, the final comprehensive averaging strategy
can avoid the overfitting problem. *e neurons were
dropped out (aka removed) by the layer according to the
probability q (q� 1− p) during training, and the effect of
change of dropout rates on pest dataset is shown in Figure 7.

Srivastava et al. [41] gave the typical values of p; generally
p takes 0.5 to 0.8 for hidden layer. *e choice of p is
combined with the number of hidden units n, and the
smaller p requires a larger n. Figure 7 shows that the model
obtains the best mAP when p is 0.8. *is is because when p is
between 0.5 and 0.7, the excessive feature information is
hidden and the generated model has weakened ability to fit
the data. *e value of mAP increases as p increases, reaching
a peak at p � 0.8. When the p further increased, it can be
found that the detection performance of the model begins to
decrease, because the dataset is too small to limit the size of
the model parameter [44].

5. Design and Implementation of Oilseed Rape
Pest Detection System

In the previous works, a pest detection model is trained and
works well. So, we transplant this oilseed rape pest detection
model to Android mobile platform. *e system utilizes the

Table 3: Experiment equipment.

Equipment Specification

Memory 32GB
Processor Intel core i7 7800X CPU
Graphics GeForce GTX 1080Ti
Operating system Linux Ubuntu16.04

Mobile Information Systems 7



calculating ability of popular mobile device and provides
real-time detection in agricultural production. Compared
with most of the previous work, the advantages of this
system are follows:

(i) Capture and detection are processed in the same
device at the same time and it shows the detection
results instantly without waiting

(ii) �e system can process images captured by various
camera devices in different resolutions

(iii) �e system has high adaptability to different
lighting conditions and complex background (lab-
oratory and field environment); the model works
well with different pest poses.

�e system is easy to use and robust to detect.

5.1. Software Environment. �e system development envi-
ronment is based on the MacOS Mojave version 10.14.1

operating system and is configured by Android Studio 3.2
JDK 1.8.

5.2. Overall Structural Design. �e overall structure of the
oilseed rape pest detection system is shown in Figure 8.

�e system adopts modular design idea, which is divided
into image acquisition module, image preprocessing mod-
ule, image detection module, and result display module. �e
image acquisition module captures an image through a
mobile device camera, or mobile album; the image pre-
processing module cuts the input image into a fixed size,
which can reduce the interference of the background to the
result, so that the model can detect the object more accu-
rately; the image detection module can detect 12 common
oilseed rape pests; the results display module displays the
species and location of pests in the image.�e users can view
more test results and detailed information of the corre-
sponding results, learn the skills of artificially identifying of
pest species, and understand pest control programs. �e
detailed functions of the application are presented in
Figures 9(a)–9(c).

�is application is called Dr. Pest. When the user
launches the application, the startup interface appears,
including the name of the app, the icon, and the photo
button. Click the Identify Pest button; user can directly
take or select a photo from the mobile album, determine
the image to be detected, and wait a few seconds before
entering the detection result display interface. In the image,
different color boxes are used to represent different pest
categories. At the bottom of the page, the example images,
species, recognition accuracy, and related expressions of
pests are displayed. If you want to know the detailed in-
troduction of the pest and control measures or access the
relevant web page, click on the corresponding pest to enter
the next interface.

5.3. Software Testing. �e program is packaged into the
Android installation package file, which is installed into the
HUAWEI Honor V10 mobile phone with the Android

Table 4: �e results for five different architectures.

Meta-architecture Faster R-CNN R-FCN SSD

Feature extractor ResNet101 Inception ResNet101 Inception MobileNet

Athalia rosae japanensis 0.8321 0.8393 0.7703 0.8218 0.8302
Creatonotus transiens 0.5743 0.5527 0.6083 0.586 0.5951
Entomoscelis adonidis 0.8765 0.8246 0.9161 0.6176 0.6030
Entomoscelis suturalis 0.6562 0.4162 0.4344 0.7555 0.4980
Hellula undalis 0.7563 0.7029 0.7106 0.7738 0.6247
Lipaphis erysimi 0.2149 0.3003 0.3606 0.3772 0.3236
Mamestra brassicae 0.9288 0.8445 0.9280 0.967 0.8431
Meligethes aeneus 0.5375 0.2637 0.3556 0.2247 0.3476
Phyllotreta striolata 0.7604 0.5197 0.6124 0.6275 0.6760
Pieris rapae 0.8143 0.8040 0.8432 0.9111 0.6609
Plutella xylostella 0.8629 0.7890 0.7880 0.8767 0.7846
Psylliodes punctifrons 0.4537 0.4202 0.5368 0.554 0.7593
mAP@0.6 0.6890 0.6064 0.6554 0.6744 0.6288
Time (s) 0.158 0.13 0.148 0.052 0.045
Memory (MB) 191.3 52.9 201.7 60.6 23.6
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Figure 5: Plot of model loss on dataset.
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version 9.0. �e mobile terminal configuration is shown in
Table 6.

We tested the accuracy and detection time of the soft-
ware. According to the observation, it takes about 1 second

to detect an image on the mobile phone. �e experiment
prepared a total of 303 pest test images, 540 objects, in-
cluding 12 categories in Table 1, covering as many different
lighting conditions and poses as possible. Test mainly
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Figure 6: Experimental result for the SSD w/Inception with data augmentation. (a) Each experiment uses only one data augmentation
method. (b) Test of all the combinations of DA methods, showing the top 3 methods.

Table 5: Validation set results for the model with and without data augmentation.

Method Athalia rosae japanensis Creatonotus transiens Entomoscelis adonidis Entomoscelis suturalis

Without data augmentation 0.8218 0.586 0.6176 0.7555
Data augmentation 0.7858 0.6106 0.8593 0.9167

Method Hellula undalis Lipaphis erysimi Mamestra brassicae Meligethes aeneus
Without data augmentation 0.7738 0.3772 0.967 0.2247
Data augmentation 0.842 0.5914 0.9577 0.301

Method Phyllotreta striolata Pieris rapae Plutella xylostella Psylliodes punctifrons mAP
Without data augmentation 0.6275 0.9111 0.8767 0.554 0.6744
Data augmentation 0.7759 0.7728 0.8062 0.6808 0.7417
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Figure 7: Effect of change dropout rates on mAP. We set p � 0.5, 0.6, 0.7, 0.8, and 0.9, and the mAP changes accordingly. When p � 1.0, it
means the model without dropout.
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calculates the accuracy, missing rate, and false reject rate of
the objects, as shown in Table 7.

5.4. Discussion. Figures 10(a)–10(f ) show examples of test
images that are correctly detected by the model.

Figures 10(a) and 10(b) are taken from the side of the
pests, while the rest are mostly frontal, reflecting the
change of perspectives. Figures 10(b) and 10(f ) detect
ambiguous objects correctly, which indicate that when the
pests in the image are blurred, the model can also ac-
curately detect the object. Figure 10(c) shows the postures
of pest is diverse, and the color of each sample in
Figure 10(d) is different, which indicates that the model
effectively handles the shape and color difference within
the class. Feature extraction and occlusion processing are
two key elements in multiobject detection [45].�e two
pests overlap each other in Figure 10(c), and half of the

Intelligent detection system of rapeseed pests based on Android platform

Image acquisition module

Mobile divice camera

Mobile album images

Input
Image preprocessing Rapeseed pest

detection model

Output Bounding box

Objects class View details

More results

Image preprocessing module Rapeseed pest detection module Result display module

Figure 8: Overall structure of the oilseed rape pest detection system.

(a) (b) (c)

Figure 9: Android oilseed rape pest detection application interface. (a) Application startup interface. (b) Detection result display interface.
(c) Detailed view interface.

Table 6: �e configuration of the mobile terminal.

Items Parameter values

CPU frequency HiSilicon Kirin 970
ROM 64GB
Size of screen 2160∗ 1080
Number of CPU cores 2
RAM 4GB
Pixels of camera 5120∗ 3840
�e experiments use SSD with Inception.

Table 7: �e test results of the mobile application.

Method Accuracy
Missing
rate

False reject
rate

Oilseed rape pest detection
system

0.6982 0.2074 0.0944
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features of the pests are occluded in Figure 10(e); neither
of them captures the complete pests, which shows that the
model has a certain generalization ability for missing
features. *ese results confirmed the feasibility of the
detection system. Especially when the image contains only
one class of objects, the model can accurately detect each
object in different backgrounds.

*ere still needs improvements in the detection system,
and the typical examples that were wrongly detected are
shown as Figures 11(a)–11(d). It is concluded the detection
ability of the model is insufficient in the following situations,

which can be used as the next research focus in the future. In
Figure 11(a), two pests overlap and the system only regards
them as one.*is indicates that when the overlapping area of
pests adjacent is large, the results of multiobject detection are
not good and it is impossible to distinguish whether the
overlapping objects are independent individuals or not. *e
system shows that there are two pests in Figure 11(b), one of
which is detected accurately and the other is detected flower
buds as Lipaphis erysimi. *is is because the shape and color
of the oilseed rape flower buds are similar to those of the
Lipaphis erysimi. *e flower buds are repeatedly mistaken

(a) (b)

(c) (d)

(e) (f)

Figure 10: Examples of test images for correct detection. *e eight images reflect the model that can achieve good performance in some
cases. (a) Plutella xylostell. (b) Phyllotreta striolata. (c) Phyllotreta striolata. (d) Lipaphis erysimi. (e) Meligethes aeneus. (f ) Psylliodes
punctifrons.
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for Lipaphis erysimi in the detection, and the number of pests
will greatly disturbed with the result. Plutella xylostell has
three postures in Figure 11(c); the object can be detected
correctly when the side and back facing up, but the abdomen
face up is mistaken for Psylliodes punctifrons. Because the
data collected by the experiment are mostly taken from the
side and back when a new pest pose appears, it is impossible
to accurately identify the object. Seven Lipaphis erysimi pests
were found in Figure 11(d), but only five were detected. *e
dataset of this experiment is mostly from the Internet. *e
size of pests in the Internet images is large, and the dataset
collected from the field and lab contain only a few small
objects, so the detection model has poor ability to detect
small objects.

6. Conclusion

*is paper created an oilseed rape pest dataset that covers the
12 typical oilseed rape pests and filled in the blank of the
open dataset of oilseed rape pests. *e application of
common object detection algorithms in oilseed rape pest
detection is compared and analyzed. Among them, SSD w/
Inception balances the performance indicators such as de-
tection accuracy, time, and memory usage and can be ap-
plied to mobile devices. On the basis of the model, the DA

method is selected to solve the uneven class balance problem
in the experimental dataset. *e experimental results
showed that the method can improve the detection accuracy
by 0.7 percentage points. In order to avoid data overfitting,
the dropout layer is added. When p � 0.8, the mAP value of
the model was as high as 77.14%. It was tested on images
collected under different illuminations and backgrounds.
*emodel has good ability to detect oilseed rape pests under
complex noise. Eventually, the trained model was applied to
the Android platform to develop an oilseed rape pest de-
tection system. It is also the first application of oilseed rape
pest detection based on deep learning in China. Users can
accomplish detecting the pests of oilseed rape in the field
real-time by operating the intuitive and simple interface
based on an Android mobile phone, which effectively im-
proves the efficiency of agricultural production.

*e detection capability of the model is still insufficient,
encountering multiobject overlap, feature occlusion, and
small object detection tasks, which will be the next research
direction. In the future work, we will try to solve the above
problems by expanding the oilseed rape pest dataset and
adjusting the model network structure. In addition, the
oilseed rape pest detection system has only completed
preliminary development work, and more functional im-
provement works are needed in the next step.

(a) (b)

(c) (d)

Figure 11: Examples of test images for failure detection.*emodel cannot perform well when detecting these types of objects, reflecting the
shortcomings of the model. (a) Psylliodes punctifrons. (b) Plutella xylostell. (c) Psylliodes punctifrons and Plutella xylostell. (d) Lipaphis
erysimi.
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