Title: Application of Deep Learning on Single-Cell RNA-sequencing Data Analysis: A Review Running title: Deep learning in scRNA-seq data analysis

Authors: Matthew Brendel ${ }^{1,2 \#}$, Chang Su ${ }^{3{ }^{3 * *}}$, Zilong Bai ${ }^{1}$, Hao Zhang ${ }^{1}$, Olivier Elemento ${ }^{2}$, Fei Wang ${ }^{1 *}$
${ }^{1}$ Department of Population Health Sciences, Weill Cornell Medicine. Cornell University. New York, NY 10065, USA.
${ }^{2}$ Institute for Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine. Cornell University, New York, NY 10065, USA.
${ }^{3}$ Department of Health Service Administration and Policy, Temple University, Philadelphia, PA 19122, USA.
\# Matthew Brendel and Chang Su contributed equally to this work
* Corresponding authors:

Chang Su,

Department of Health Service Administration and Policy, Temple University, Philadelphia, PA 19122, USA.
Email: su.chang@temple.edu

Fei Wang,

Department of Population Health Sciences, Weill Cornell Medical College, New York, NY 10065, USA. Email: few2001@med.cornell.edu

Key words: Single-cell RNA sequencing; scRNA-seq; deep learning; deep neural networks

Abstract

Single-cell RNA-sequencing (scRNA-seq) has become a routinely used technique to quantify the gene expression profile of thousands of single cells simultaneously. Analysis of scRNA-seq data plays an important role in the study of cell states and phenotypes, and has helped elucidate biological processes, such as those occurring during development of complex organisms and improved our understanding of disease states, such as cancer, diabetes, and COVID, among others. Deep learning, a recent advance of artificial intelligence that has been used to address many problems involving large datasets, has also emerged as a promising tool for scRNA-seq data analysis, as it has a capacity to extract informative, compact features from noisy, heterogeneous, and high-dimensional scRNA-seq data to improve downstream analysis. The present review aims at surveying recently developed deep learning techniques in scRNA-seq data analysis, identifying key steps within the scRNA-seq data analysis pipeline that have been advanced by deep learning, and explaining the benefits of deep learning over more conventional analysis tools. Finally, we summarize the challenges in current deep learning approaches faced within scRNA-seq data and discuss potential directions for improvements in deep algorithms for scRNA-seq data analysis.

Introduction

Since the first single-cell RNA sequencing (scRNA-seq) paper in 2009 and subsequent designation of "method of the year" a few years after, there has been a significant amount of effort to advance both the experimental and computational techniques used for the study of single-cell transcriptomes [1]. The benefit of scRNA-seq, compared to bulk RNA-seq, is the ability to interrogate thousands of individual cells simultaneously, thus revealing previously hidden heterogeneous cellular populations. scRNA-seq can then be used to answer biological questions related to developmental processes, understand complex and heterogeneous cellular or genetic changes based on treatment conditions or disease states, or identify novel cell types within a cellular population. Many popular packages, such as Seurat [2], Scanpy [3], Monocle [4] and Bioconductor OSCA (orchestrating single-cell analysis) [5], have been developed for a streamlined and reproducible analysis of scRNA-seq data. A pipeline for scRNA-seq analysis typically contains three steps (see Figure 1): (1) scRNA-seq data collection that produces a gene by cell matrix, of which elements are the raw gene expression read counts or unique molecular identifiers (UMIs), normalized to account for total genes captured for a particular cell either using standard approaches such as log or square root normalization, or more advanced approaches such as sctransform [6]; (2) data preprocessing including representation learning and dimensionality reduction, as well as optional doublet removal, cell-cycle variance removal, data imputation and denoising, and batch effect removal; and (3) downstream analyses, such as cell clustering, cell type annotation, and trajectory inference for discovery of cellular dynamic process along cells' development [7]. The result of this process can be used to answer biological questions of interest or determine unique features about the cellular populations that have been discovered.

Machine learning, a branch of artificial intelligence relying on mathematical and statistical principles, uses sets of data to build models that can perform specific tasks of interest and help accelerate or improve human decision making. In recent years, machine learning has successfully been used to analyze high-throughput omics data to improve upon the understanding of biological mechanisms of human health conditions [8, 9]. Conventional machine learning approaches usually require a significant amount of effort
to develop a feature engineering strategy designed by domain experts, especially in the analysis of uncertain, heterogenous, and high-dimensional data like scRNA-seq data. As one of the latest and most popular advanced sub-categories of machine learning, deep learning provides a methodology that is more powerful in discovering latent, informative patterns from complex data and has achieved extraordinary improvements in computer vision and natural language processing (NLP) tasks. Importantly, compared to conventional machine learning, deep learning models can have thousands to millions of trainable parameters, which allow these models to uncover complex, non-linear patterns within the data in an end-to-end manner for improved analysis, specifically in the context of biology. In addition, deep learning models have a flexible architecture, which can be easily adjusted or assembled to adapt to solve different problems. Early evidence has demonstrated tremendous ability of deep learning in identifying underlying, informative patterns from scRNA-seq data, accounting for the heterogeneity present between scRNA-seq experiments, and noise and sparsity associated with scRNA-seq [10-12].

This review focuses on the use of deep learning in advancing key steps in the scRNA-seq data analysis. Extending on previous work [10-12], this review provides a comprehensive survey of deep learning in scRNA-seq data analysis. This review first provides an overview of deep learning, then introduces the most comprehensive list of deep learning models that have been used for various aspects of scRNA-seq data analysis, and finally, discusses limitations of these approaches and potential future directions in the field for improved scRNA-seq data analysis.

To narrow the scope of the paper, some aspects of scRNA-seq analysis have been excluded. Firstly, any discussion about sequencing read quality checks, read alignment, or quality checks for the alignment have been excluded, as deep learning is not involved in these procedures. Secondly, there is no discussion of RNA velocity-based downstream analyses, which involve identifying developmental transitions between cell types, including approaches such as DeepCycle [13] and VeloAE [14]. Since the input to the RNA velocity differs from that of standard scRNA-seq data analysis, which requires splicing information, this topic has been excluded. In addition, techniques such as Cobolt [15], scMM [16], and Schema [17], that
combine information from multiple types of single-cell omics data have been excluded; this is to avoid providing extensive background on all different types of sequencing and antibody-based signal recognition approaches. Finally, studies that focused on simulating scRNA-seq data using deep learning, such as ESCO [18] and ACTIVA [19] are also excluded as they are not strictly necessary for scRNA-seq data analysis. More details of article inclusion and exclusion criteria can be found in the Supplementary Method and Supplementary Figure S1.

Deep learning architecture in scRNA-seq data analysis

To differentiate machine learning from deep learning, we can refer to deep learning as the use of deep neural networks (DNNs) where "deep" describes the multilayer network structure. A deep feed-forward neural network (DFNN) is the most basic deep architecture by simply stacking layers of "neurons" (see Figure 2A). An artificial neuron is the basic computational unit of the DNNs, which takes the weighted summation of all inputs and feeds the result to a non-linear activation function, such as sigmoid, rectifier (i.e., rectified linear unit [ReLU]), and hyperbolic tangent (see Figure 2B), inspired by how human neurons work. A layer consists of a set of neurons and a DNN is built by stacking layers (see Figure 2A). In the basic design, a neuron receives information from all neurons of the previous layer with trainable weights while sending its output to the successor layer. Mimicking information flow in a human brain, the input information (i.e., gene expression profiles of the cells in scRNA-seq) flows from the input layer through the hidden layers and then the model generates an output at the last layer, i.e., the output layer. The large set of trainable weights of the neurons and the non-linear transformations enable the DNNs to capture underlying complex patterns of the data. Training of a DNN is the procedure of determination of these trainable weights that optimize model performance. In deep learning, the model training is typically done based on backpropagation, which mathematically transmits model prediction error in the reverse order of information flow from the output layer to the input layer to update model parameters or weights [20].

Based on the task of interest and the manner of model training, machine learning, and subsequently deep learning, can be grouped into three main categories: supervised learning, unsupervised learning, and semi-supervised learning. The standard DFNN (deep feed-forward neural network) is an architecture mainly used for supervised learning (see Figure 1A). In this scenario, the information available consists of a set of training data and the labels associated with each observation within the training set. The goal is to map the input data to a representation that can be used for tasks such as classification (for categorical labels) or regression (continuous labels). Semi-supervised learning, works when few data points have labels, using the limited labels to help inform the representation and label of the unlabeled data. Several scRNA-seq studies in this review use such technique, although it is not frequent.

There are several deep learning architectures suitable for unsupervised learning, which model data without any supervision and focuses on identifying underlying patterns from the data and are widely used in scRNA-seq data analysis, such as scRNA-seq data dimensionality reduction and cell clustering. The deep autoencoder (or autoencoder for simplicity) is a variant of the DFNN for unsupervised learning, which aims at learning compact representations of data while attempting to maximally preserve input data information (e.g., raw input gene expression in scRNA-seq) [21,22]. A deep autoencoder typically consists of two components: an encoder and a decoder (see Figure 2C). The encoder is a DFNN that compacts data into a low-dimensional feature space at the so-called bottleneck layer. Then the decoder, with a mirror structure of the encoder, reconstructs the data in the original space from the low-dimensional representations derived by the encoder. Parameters of the autoencoder can be learned through minimizing such reconstruction errors using backpropagation. The learned low-dimensional representations of samples (i.e., cells in scRNA-seq data) are also called embeddings. Compared to those non-deep learning models like principal component analysis (PCA) that are components of well-established scRNA-seq data analysis software like Seurat [2], an autoencoder is capable of finding a non-linear manifold where the data lies [20].

To overcome pitfalls of autoencoders like overfitting, several modifications to the autoencoder structure have been proposed that contain specific benefits for scRNA-seq data (see Figures 2D-F). For
instance, the denoising autoencoder (DAE) corrupts the input data slightly, by adding noise to a certain percentage of inputs, and then tries to rebuild the original input (see Figure 2D). In this way, model robustness in overcoming data noise is enhanced, and hence quality of the low-dimensional representation of samples (i.e., cells) learned from the scRNA-seq data [23, 24] is improved. This can be added on top of standard regularization strategies such as L1 and L2 regularizations of model weights.

Variational autoencoders (VAEs) are a type of generative model, as opposed to a discriminative model like the standard autoencoder. A VAE learns a latent representation distribution (such as Gaussian distribution), instead of a specific vector, which can be used to generate examples of cells' latent representations (see Figure 2E). Compared to the standard autoencoders, VAEs allow for reduced dimensionality, but also the quantification of uncertainty of the latent representation [25]. In addition, VAEs allow for a smoother latent representation of the data, which is beneficial when trying to understand relationships between cells at lower dimensions. For example, the smoothed low-dimensional representations can help improve accuracy in measuring distance between cells, when using metrics like Euclidean distance. The variational component of the optimization process acts as a regularization term for the autoencoder to improve generalizability to other data sources [26]. Typically, training of a VAE is based on the loss function composed of the reconstruction error (such as mean-squared error) and the Kullback-Leibler (KL) divergence between the latent distribution and an assumed prior distribution. In this context, VAEs can suffer from KL vanishing, or loss of informativeness for the latent representation (latent space exactly matches prior distribution). Modifications, such as the β-VAE and other variations on it [27], have been developed to address these issues and adapted for single-cell analysis. In addition, depending on the value of β, these models also have been shown to improve the disentanglement, or the independence of the latent dimensions, which can advance scRNA-seq data analysis. In addition, by involving an adversarial loss function, popularized by generative adversarial networks (GANs) [28] that have proven to be useful in synthetic data generation in other contexts, the VAEs can be described as an adversarial autoencoder [29].

Graph neural networks (GNNs) have successfully been applied to graph or network structured data analysis [30]. Typically, in each GNN layer, each node aggregates information from its local neighbors in the graph to update its representation (see Figure 2F). The graph autoencoder (GAE) is a novel modification of autoencoders by using GNN layers (see Figure 2F). In scRNA-seq data analysis, a cellular graph is usually built from the k-nearest neighbor (KNN) or shared nearest neighbor (SNN) strategies based on cells' gene expression profiles [2]. In this context, the GAE can be used to learn cell (i.e., node in the cellular graph) representations by incorporating cellular graph structure to decrease the noise of an individual cell. Figure 2F illustrates an example of GAE architecture for scRNA-seq analysis. Specifically, the encoder takes as input both gene expression read count matrix and cellular graph to generate cell representations, while the decoder(s) reconstructs the cellular graph structure (or both cellular graph structure and gene expression profile). There have also been more recent graph structures, using known protein-protein interaction (PPI) and cell-gene graphs, as prior knowledge, to improve scRNA-seq data analysis [63].

Applications of deep learning in scRNA-seq data analysis

This section describes how deep learning is currently being used to improve key steps in scRNA-seq data analysis (see Table 1).

scRNA-seq data imputation and denoising

An intrinsic pitfall of scRNA-seq is that as little as $6-30 \%$ of all transcripts are captured, based on the version of the chemistry used during sequencing and limited sequencing depth per cell [31]. Therefore, stochastically, cells will have what is known as "dropout" or the loss of all transcripts for a given gene [32], which is not biologically meaningful or accurate. From the data perspective, zero expression levels can be observed in the single-cell gene expression matrix, however some of them are "true" zeros, indicating the lack of expression of genes in specific cells, while unfortunately some others could be "false" zeros observed from genes that are expressed, i.e., dropout events, due to the low RNA capture rate (see Figure 1B). Therefore, when imputing missing values in scRNA-seq data, one must distinguish the "true" zeros
and "false" zeros (see Figure 1B). This makes scRNA-seq data imputation more difficult than that of other biomedical data (such as clinical data), where missing values can be identified easily. Hence people also refer to the imputation procedure as scRNA-seq data denoising. It is important to note that denoising is not used in all deep learning-based approaches and therefore can be considered a potential component of the model, and benchmarking studies should be performed to see if it provides substantial benefits.

To account for the issue, conventional approaches [33-35] were proposed mainly focusing on imputing missing values based on correlated or similar genes or cells. However, they are usually computationally intensive and limited in capturing non-linearity in scRNA-seq data. To better address this issue, deep learning approaches have been developed for scRNA-seq data imputation and denoising [3649]. Based on an idea similar to regression imputation [50], i.e., predicting missing values of target features (genes) using other features as predictors, DeepImpute (deep neural network imputation) [36] has been shown to be an effective approach for scRNA-seq data imputation using deep learning. Since DeepImpute only focuses on a subset of genes to impute (default 512), it can take advantage of the strength of the deep neural network but also reduces model parameters to make itself efficient and scalable. scIGAN (GAN for single-cell imputation) [37] leveraged a novel deep learning model, GAN (generative adversarial network). Specifically, scIGAN generates cells to impute dropout events, instead of using observed cells.

Other efforts that aimed at solving the scRNA-seq data imputation task use deep autoencoders. Intuitively, the reconstructed values by an autoencoder can be used to fill missing values in the original single-cell gene expression data. Based on such idea, a recent scRNA-seq analysis pipeline, scGMAI [38], has used an autoencoder for data imputation. Their experimental results on seventeen public scRNA-seq datasets demonstrated improvements of the autoencoder-based imputation in cell clustering task. SAVERX [39] also used a standard autoencoder to denoise data. What makes SAVER-X unique is that the autoencoder was used to model the portion of expression of each gene that is predictable by other genes. Another innovation of SAVER-X is the incorporation of transfer learning framework. Particularly, the
autoencoder can be pretrained using public cross-species (human and mouse) datasets, making it capable to transfer knowledge learned from mouse data to improve human data analysis.

In addition, some other studies combined the autoencoder architecture with parametric functions to facilitate imputation. DCA (deep count autoencoder) [40] used the zero-inflated negative binomial distribution (ZINB) noise model, which is effective at characterizing discrete, over-dispersed, and highly sparse count data, into the autoencoder architecture. Instead of directly reconstructing input data, DCA can produce three gene-specific parameters of ZINB, including mean, dispersion, and dropout probability, at the last layer of the autoencoder. After model training, the mean matrix from the output of the decoder can be used as a "denoised" version or imputed version of the original count matrix for downstream analysis. Yet, ZINB has its inherent shortcomings. As allowing three parameters for describing each data point, ZINB may be over-permissive to give a too high degree of freedom which may make the results unstable. To overcome this, ZINBAE (ZINB model-based autoencoder) [41] developed a ZINB autoencoder by introducing a differentiable function [51] to approximate the categorical data and a regularization term to control the ZINB. scSDAE (sparsity-penalized stacked denoising autoencoder) [42] leveraged a stacked DAE for scRNA-seq imputation with L1 loss to prevent overfitting. GraphSCI [43] combined the graph convolutional network (GCN), a type of GNN, with the standard autoencoder to model gene-gene coexpression relations and single-cell gene expression matrix, respectively. The incorporation of gene-gene co-expression relations as prior knowledge helps to alleviate bias in imputation and reduce impact of technical variations in sequencing.

It is worth noting that a notable benefit of deep learning in scRNA-seq data imputation and denoising is that there could be some non-linear relationships between certain genes. The deep architecture would allow for a more informed imputation strategy as compared to standard linear approaches. In addition, whether or not the zero-inflated negative binomial model is appropriate has been debated [52]. Finally,
additional information, such as mapping relationships between genes in a graph structure, has been used for improved imputation.

Doublet removal

The two main technologies used in single-cell isolation for downstream sequencing are microfluidic approaches, where cells are individually placed into oil droplets using microfluidic devices, and nanowellbased approaches, where tiny, patterned wells are created and individual cells are placed within each well [31,53]. While these technologies have been improved and even commercialized over the past decade, errors can occur, in which more than one cell is captured within a droplet or well, i.e., so-called a "doublet". This can lead to improper interpretation of gene expression for a particular cell as the expression is a combination of multiple, and possibly different types of cells. This can happen if cells are not completely disassociated from one another after collection of the biological specimen.

To address this, single-cell doublet detection techniques have been developed. Typically, a doublet detection technique can be broken down into 3 main stages: doublet simulation, cell representation learning, and classifier training [54]. Solo [54] is a single-cell doublet detection model that leveraged the deep learning technique. For stage one, i.e., doublet simulation, Solo repeatedly took a random subset of cells (assumed to be singlets or single cells) and summed their UMIs, to generate N different simulated doublets. For stage two, an unsupervised scRNA-seq data representation learning is engaged to embed these cells, singlets, and simulated doublets into a low-dimensional space. Specifically, Solo used the VAE-based representation learning model, scVI [55], to achieve the informative and robust cell representations. For stage three, Solo removed the decoder region and froze the weights for the encoder region. A set of fully connected layers were added to the end of the encoder, and then the model was trained to distinguish "singlet" and "doublet". Interestingly, scVI accounted for sequencing depth, which the authors state was a critical feature to include when running their model.

Traditional machine learning approaches for doublet detection, including Scrublet [56] and DoubletFinder [57], differ in the representation learning approach, usually PCA, as compared to a VAE, and in the way the authors identify doublets, relying on nearest neighbor approaches, compared to a neural network used in Solo. Interestingly, for Solo, the authors tested using both a VAE with KNN (K nearest neighbors) classifier and PCA with a neural network classifier, both of which performed worse in identifying doublets. This may highlight the need for both non-linear dimensionality reduction, to model the non-linear relationship between combinations of cells, and the need for a nonlinear classifier, as the latent space can still have non-linear relationships between singlets and doublets.

Cell-cycle variance annotation

Gene expression can change as the cell moves along its normal cell cycle. The frequency by which cell types move between phases of the cell cycle varies due to many different factors [58], and can impact the expression of certain genes as a function of cycle. This change may add additional noise to downstream gene expression analysis and such uninformative variation between cells should be removed, or these changes may be useful information for downstream interpretation of sequencing data,. Typically, Seurat [2] used a cell scoring package, which can be used to regress out or subtract out the influence of cell cycle in the PCA latent space or explain variation among cells based on cell stage. Our literature search did find one study, Cyclum [58], which utilized the deep learning technique to account for cell cycle regression. Cyclum aimed at finding a nonlinear periodic function that encodes the cells' gene expression profiles to lowdimensional space and are sensitive to circular trajectories. To this end, it used a modified asymmetric autoencoder, which was composed of a standard encoder for representation learning and a decoder that uses a combination of cosine and sine as activation functions in the first layer and followed by a second layer for linear transformations. As a direct comparison to other linear methods (such as PCA), Cyclum showed superior performance in all datasets, measured using Hoechst staining of cells to identify cell cycle as ground truth labels. The test sets have a somewhat homogeneous cell population, so benchmarking on other
datasets, with several different cell types, may be interesting to identify model performance, and improvement in subsequent downstream analyses.

scRNA-seq data representation learning for dimensionality reduction

scRNA-seq data typically contains genome wide expression profiles of cells and hence has a very high feature space, making data analysis challenging due to the curse of dimensionality. The emerging term, scRNA-seq data representation learning, refers to the process of learning meaningful (information preserved) and compressed (low-dimensional) representations, or so-called embeddings, of cells based on their gene expression profiles and has been an essential intermediate step in single-cell analysis. It can not only advance other scRNA-seq data preprocessing procedures, such as doublet detection and cell-cycle variance annotation, but also benefit downstream analyses such as cell clustering, cell type annotation, and trajectory inference.

Early efforts in scRNA-seq data dimensionality reduction aimed at identifying a set of highly variable genes [2]. In addition, principal component analysis (PCA), which aims at determining principal components that can largely describe variance of the original data, has also been widely used to reduce dimensionality of scRNA-seq data. Though PCA is used in well-established software like Seurat [2], it cannot capture non-linear patterns in data and hence may harbor limitations when it comes to accurately reflecting the nature of cells. Due to their intrinsic ability to learn underlying, meaningful, and non-linear patterns from raw data [20], deep learning approaches [55, 59-88], especially the deep autoencoder and its extensions, have been effective techniques for scRNA-seq data representation learning and dimensionality reduction.
scScope [59] used an autoencoder to learn improved low dimensional representations of scRNAseq data while simultaneously addressing dropout events. To this end, scScope introduced an imputer layer to generate a corrected input data based on the output of the decoder and re-sent it back to the encoder to re-learn an updated latent representation in an end-to-end manner. VAEs, which have shown the ability to disentangle latent representations or improve independence of latent dimensions [89], have demonstrated
notable achievements in scRNA-seq representation learning. VASC (VAE for scRNA-seq data) [60] is an early effort that used VAE architecture with a a zero-inflated layer to account for dropout for scRNA-seq data dimensionality reduction. Compared to the traditional approaches, VASC resulted in better representations for very rare cell populations but also performed well on data with more cells and higher dropout rate. scVI (single-cell variational inference) [55] also used a VAE for scRNA-seq representation learning. It aggregated information across similar cells and genes to approximate latent distribution of the raw expression data but also accounted for batch effects. scDHA (single-cell decomposition using hierarchical) [62] leveraged an autoencoder combined with an ensemble of VAEs for learning informative representations of cells while preventing overfitting.

In VAEs, the modification of the prior distribution can be used to enhance the learned latent representation. scVAE (variational autoencoders for single-cell data) [64] utilized a Gaussian mixture model to model the latent representation instead of a standard normal. The Gaussian mixture enables the model to learn robust representations but also discover latent cluster structure simultaneously. scPhere [65] used the von Mises-Fisher (vMF) distribution to project data points onto the surface of a unit hypersphere and tested model variants that use hyperbolic space as the latent embedding [90]. In this way, scPhere decreased the crowding of points associated with normal VAE training and improved temporal information of data. In addition, there are modifications to loss function of VAEs to improve the disentangled representation. The basic VAEs, which typically use a KL loss (Kullback-Leibler divergence), may suffer from the issue of less informative representation, i.e., the learned representations are insufficient to represent the original data [91]. To overcome such issue, the DiffVAE [66] and MMD-VAE (maximum mean discrepancy VAE) [67] utilized a MMD loss instead of the traditional KL loss in the VAEs. DR-A (dimensionality reduction with adversarial variational autoencoder) [68] is a model that utilized a modified VAE, where the KL divergence component is replaced with two adversarial losses, one for latent representation and another for reconstruction. scRAE [69] builds upon this by modifying the adversarial autoencoder structure. Instead of sampling from a prior distribution and feeding that directly into the
adversarial arm of the model, which is done in DR-A, the authors add a neural network after sampling from the prior distribution to be matched with the latent distribution generated from scRNA-seq autoencoder part of the model. The authors argue this form of regularization allows for a reduction in the bias associated with an assumed normal distribution, such as in DR-A, and shows this model outperforms several other approaches including DR-A. Kimmel [70] introduced a β-VAE to learn a disentangled representation of scRNA-seq data. While the author did see improvement in some downstream analyses such as identifying different cell conditions from the representation, others, such as cell type clustering had a decreased performance.

GAEs have also been used to model topology structure of relationships between cells in addition to the features (gene expression profiles) themselves, towards achieving better representations. GraphDiffVAE [66] and scGAE (single-cell GAE) [71] are existing efforts in this context. Typically, they first constructed a cell-graph by connecting each cell to its K nearest neighbors based on gene expression profiles. Then it models and reconstructs the cell-graph and the gene expression matrix to learn low-dimensional representations of cells.

Model interpretability is a concern in deep learning. For scRNA-seq data, a common way for interpretable deep representation learning has been the use of prior domain knowledge, i.e., known relationships between molecules, like RNA and transcription factors, to modify standard neural networks. SCA (sparsely connected autoencoder) [72] used various forms of the autoencoder where the connections in the autoencoder are related to genes, transcription factors, miRNA targets, cancer-related immune signatures, and kinase specific protein targets. Additionally, other methods have leveraged similar known relationships, which allow for the construction of gene regulatory networks (GRNs). In the case of knowledge-primed neural networks (KPNNs) [86], the dimensionality reduction from the input, genes, to the output, phenotype, can be done by connecting nodes in one layer to the next that represent true relationships previously identified from large scale databases, such as SIGNOR (The SIGnaling Network Open Resource) [92] and TTRUST (Transcriptional Regulatory Relationships Unraveled by Sentence-
based Text mining) [93]. GRNs can be reconstructed by analyzing the node weights across layers. Similarly, methods have utilized other forms of data representation using specific gene-gene correlations, to generate GRNs using more complex deep learning models, such as convolutional and recurrent neural networks [94]. In these settings, the supervised learning model can be thought of as a feature extraction method, that reduces the input feature space to a lower dimensional representation that can be used to predict whether there are specific interactions between genes.

More general pathway information is also useful to generate a more interpretable deep learning model. GOAE (gene ontology autoencoder) [73] used gene ontology (GO) [95] to determine the connections within an autoencoder. DeepAE [74] used an autoencoder and weights associated with each hidden unit to identify GO terms that are associated with high weighted genes. pmVAE (pathway module VAE) [75] encoded gene-pathway memberships for interpretable representation learning. Specifically, pmVAE contains a series of VAE subnetworks, each of which refers to a specific pathway module and only includes genes associated to this pathway. All pathway modules are combined to achieve global reconstruction of the input scRNA-seq data. VEGA (VAE enhanced by gene annotations) [76] performed a similar approach by masking genes such that genes within a certain gene module have similar contributions to a single latent dimension for the decoder. In addition, incorporating domain knowledge as a regularization term in the loss function to guide model training is another way to enhance interpretability. Rybakov et al. [77] injected GO into the loss function as a regularization term, such that genes associated with a certain pathway will be the only weights that contribute to the sum of a certain latent dimension. In LDVAE [78], the authors tried to improve interpretability of scVI by converting the decoder into a single linear layer, such that each gene can have a weight associated with each hidden unit in the latent space. While interpretability increases, there can be a decrease in performance, as now models are built based on known relationships and there could be some unknown relationships that are not modeled due to gaps in biological knowledge.

Batch effect removal

Due to the stochastic nature of single cell sequencing, experiments done at different times, in different locations, using different reagents, using different technologies, or using different technicians, may have specific biases associated with that experiment that may influence sequencing results. To combat this, deep learning models [96-109] have been developed to learn a shared latent representation for these different experiments, that removes technical noise but keeps biological variation.

A common way to address this task is based on domain adaptation, which usually relies on GANs, an advanced branch of deep learning. Typically, a latent representation is generated using the autoencoder or its extensions, and then an adversarial training step is used in a discriminator module outside of the autoencoder to reduce difference in latent representations between batches. Following such an idea, iMAP [101] is a well-designed batch effect removal framework based on a autoencoder and GAN. Specifically, it used an encoder to produce batch-ignorant representation of cells and two generators to reconstruct the expression profile. Applied to tumor microenvironment datasets from two platforms, iMAP showed the capacity in taking advantage of powers of both platforms and identified novel cell-cell interactions using a non-deep learning approach, CellPhoneDB. In DAVAE (domain-adversarial and variational approximation) [97], a gradient reversal layer (GRL) was designed for domain adaptation to remove the batch effect. The scDGN (single-cell domain generalization network) framework [104] also used GRL. In contrast to other models, scDGN is trained in a supervised manner, aiming at maximizing the accuracy of cell type prediction while minimizing difference between batches. scGAN (single-cell generative adversarial network) [100] utilized a VAE architecture. The authors incorporated a discriminator module to predict batch from the data using an adversarial training. AD-AE (adversarial deconfounding autoencoder) [99] aimed to learn a confounder-free representation of data. The authors performed an adversarial optimization by adding an adversarial arm to the model to predict "confounders", such as batch and age. By alternating training by freezing the adversary arm weights and optimizing the loss by minimizing the reconstruction loss and maximizing the confounder loss and then freezing the autoencoder weights and minimizing the confounder
prediction, the authors "remove" confounder information from the latent space. Pang and Tegnér [106] used BERT Transformer [110], an advanced attention-based neural network, as the encoder and an adversarial GAN based approach for batch alignment. SCALEX [98] incorporated a domain-specific batch normalization layer in the decoder of the VAE model to account for technical variations based on batches.

In addition to adversarial based approaches, there are also methods based on distribution matching, such as methods using different regularization terms like MMD (maximum mean discrepancy). BERMUDA (batch effect removal using deep autoencoders) aimed to match the latent representations learned by autoencoders between two batches [102]. Specifically, the autoencoder was performed on two batches separately. To overcome batch effects, the autoencoder was trained by optimizing a loss containing two components: a standard reconstruction loss and an MMD-based transfer loss between the latent representations of similar clusters from the two batches. trVAE (transfer VAE) [103] targeted at matching distributions across conditions. In the case of two conditions, the authors feed one condition into the encoder with the appropriate conditions associated with it. Then for the decoder the authors attach the opposite condition in the latent representation to transform the original condition feature matrix into the same space as the second condition. The MMD loss between the two conditions on the decoder region of the model was engaged to match distributions between different batches.

In addition, there are alternative ways to do batch correction. For example, the scScope pipeline [59] used a built-in batch correction layer in the DNN to performance batch correction. SMILE [96] utilized a contrastive learning framework [111], which forces each cell to be like itself plus a Gaussian noise while dissimilar to any other cells. scETM (single-cell embedded topic model) [105] used topic modeling to account for different batches and allow for some correction associated with batch-specific differences between cells. Specifically, it contains an encoder to infer cell type mixture and a linear decoder based on matrix tri-factorization.

Cell clustering

One major goal of scRNA-seq analysis is to group the heterogeneous cell population into homogeneous sub-populations, such that cells within a sub-population are likely to have the same cell type or status. Clustering, an unsupervised learning approach, is a good fit to address this task. Typically, a clustering algorithm aims at identifying clusters, by minimizing dissimilarity within a given cluster while maximizing that between clusters. The well-established single-cell pipelines, such as Seurat [2] or Scanpy [3], use graph-based clustering methods such as Louvain [112] and Leiden [113] algorithms. Generally, they first build a cell-cell network using strategy like KNN (K nearest neighbors) based on gene expression profiles of cells, and then identified clusters by optimizing a measure such as "modularity" in Louvain [112], which measures cluster structure in the network (graph). In addition, the well-known K-means, which greedily adjusts clusters' centroids to optimize cluster structure, has also been widely used in scRNA-seq data analysis. Typically, the clustering algorithms take low-dimensional representations of cells as input, instead of raw gene expression profiles. In the deep learning setting [23-25, 114-123], the two steps, representation learning and clustering, can be done sequentially or simultaneously.

For the sequential modeling approaches, deep learning-based representation learning was performed first and followed by the classical clustering algorithms performed on the learned lowdimensional representations. scAIDE (single-cell autoencoder distance-preserved embedding network) [114] first provided a hybrid deep architecture for representation learning. Specifically, an autoencoder is used for imputation of the original input matrix, meanwhile a MDS (multidimensional scaling) encoder was used for dimensionality reduction. After that, scAIDE proposed a variant of K-means, called RPH-Kmeans, which utilized the LSH (locality sensitive hashing) technique [124] to tackle the data imbalance for clusters problem (i.e. different sized clusters) [114]. In addition, DUSC [23] made an extension to DAE for representation learning, i.e., DAWN (denoising autoencoder with neuronal approximator), which enables the model to automatically determine the number of latent features that are sufficient to represent the original gene expression data efficiently. The learned low dimensional representations were then used to
identify clusters using an expectation-maximization (EM) algorithm [125]. scDMFK [115] also used DAE and combined with the fuzzy K-means algorithm to identify cell clusters. scCCESS [116] sampled the input data randomly to obtain multiple subsets. Then it learned low-dimensional representations in each subset using autoencoders and performed clustering subsequently. An ensemble clustering method was used to integrate clustering results in each subset to get the final one.

For the simultaneous modeling approaches, the models were designed in an end-to-end manner. Taking raw gene expression profiles as input, the data representation learning and clustering modules can be done automatically and these two modules can even improve each other in some advanced models. To achieve this, transfer learning is an intuitive option, which generally first pretrains a representation learning model, usually an autoencoder or its extensions, and then removes decoder and adds the pretrained encoder to another neural network for clustering. For instance, DESC [117] engaged a stacked autoencoder and pretrained it to learn low-dimensional representations of cells. After pretraining, the encoder was added to the neural network for cell clustering, in which batch effect can be removed over iterations in model training. CarDEC (count-adapted regularized deep embedded clustering) [118] is an advanced deep architecture that enables simultaneous batch effect correction, denoising, and clustering of scRNA-seq data. An innovation of CarDEC is that it treats the highly variable genes (HVGs) and lowly variably genes (LVGs) as different feature blocks. Specifically, it pretrained an autoencoder using HVGs, which were combined with LVG features for representation learning and clustering.

In addition, some authors designed hybrid deep architectures for joint representation learning and clustering. For instance, scziDesk (single-cell zero-inflated deep soft K-means) [119] learned data representation using ZINB (zero-inflated negative binomial) autoencoder while capturing non-linear dependencies between genes, and fed the learned representations to soft k-means clustering. The ZINB autoencoder and clustering module were trained jointly. GraphSCC [24] is a deep graph-based model for cell clustering. It contains three components: a DAE that encodes input gene expression profiles for preserving local structure, a GCN (graph convolutional network) encodes structural information of the cell-
cell network, and a dual self-supervised module that connects the above two modules to learn informative latent representations of data and discover cluster structures. The low-dimensional representations learned by GraphSCC showed superior intra-cluster compactness and inter-cluster separability. scGNN (single-cell graph neural network) [120] is a hypothesis-free deep learning framework that integrates autoencoder, GNN, and left truncated mixed Gaussian modeling for scRNA-seq data analysis. scGNN performs imputation, representation learning, and clustering simultaneously, but also can produce a learned cell-cell interaction network.

All in all, both the sequential modeling approaches and simultaneous modeling approaches have shown improvement in cell clustering based on scRNA-seq data compared to the traditional non-deep clustering approaches. However, there has not been a direct comparison to show that performing the tasks sequentially or simultaneously has a strong impact on downstream analysis. This may be a future area of discussion and could be helpful when identifying which approach to use. In addition, tuning of the number of clusters based on the number of different cell types, and similarity between those cell types is something that is not fully investigated.

Cell annotation

After cell clustering analysis, there is the need of interpreting or annotating the cell sub-populations, which is the so-called cell annotation. Traditionally, cell annotation can be done by identifying gene markers or gene signatures which are differentially expressed in the specific cell cluster and interpreting it manually [126]. However, such approaches are both labor- and resource-consuming. To address this, researchers are seeking deep learning approaches [127-147] that can handle this task with limited human supervision.

The supervised classification model, which can predict types or states of unlabeled cells based on labeled cells, is a good fit to address this task. For instance, scAnCluster [127] designed a hybrid deep model, which combined a cell type classifier with autoencoder for representation learning and clustering. JIND (joint integration and discrimination) [128] used a GAN style deep architecture, where an encoder is
pretrained on classification tasks instead of using an autoencoder framework. The model is also able to account for batch effects. ItClust [129] engaged a transfer learning framework that pretrained model in source data to capture cell-type-specific gene expression information and then transferred model to identify and annotate clusters in the target data. scDeepSort [130] used an advanced GNN (graph neural network), GraphSAGE, to perform supervised classification for cell type annotation, accounting for cell interactions. AutoClass [131] used an autoencoder, where the output reconstruction loss is combined with a classification loss, for cell annotation with data imputation.

It is not uncommon to have only a subset of cells available for analysis with some level of annotation. In this context, semi-supervised learning, which can take full advantage of both labeled and unlabeled data to train a model, has been used in computational cell annotation. scANVI (single-cell annotation using variational inference) [132] is an extension of scVI [55] by incorporating semi-supervised learning to address cell type annotation with partial label information. scSemiCluster [133] learned cell labels using combination of unlabeled data and labeled data with an additional cluster compactness loss based on similarity matrix generation. scAdapt [134] used an adversarial training approach to perform semisupervised cell type annotation. Specifically, it introduced the domain adaptation in DNN to include both adversary-based global distribution alignment and class-level alignment to preserve discriminations between cell clusters in the latent space. scAdapt has shown significance in cell annotation in simulated, cross-platforms, cross-species, and spatial transcriptomic datasets. scArches [135] used an architecture by concatenating nodes for new batches or datasets to existing autoencoder frameworks, to leverage information from other data sources. Moreover, in order for the utilization of the existing annotations to accelerate curation of newly sequenced cells, deep learning-based cell-querying approach has been proposed. Cell BLAST uses large scale reference databases with an autoencoder-based generative model to build low dimensional representations of cells, and use a developed cell-similarity metric, normalized projection distance, to map query cells to a specific cell type and allow for novel cell types to be identified [148].

Lastly, there is the situation where cell label information is very limited. To address this, there has been a study based on meta-learning to identify previously uncharacterized cell types. The meta-learning can train model to learn from models of known cell type classification to predict never-before-seen cell types. An existing effort in this context is the MARS [136], which used a DFNN (deep feed-forward neural network) as an embedding function to encode gene expression profiles. Under the meta-learning framework, the DFNN was shared by all experiments in the meta-dataset, which enables MARS to generalize to an unannotated experiment to address never-before-seen cell types.

Trajectory inference

Biological questions can be answered by analyzing how cells change as they move from one cell type to another or one cell stage to another. Trajectory analysis in scRNA-seq is an approach to interrogate this type of question [7]. A "pseudotime" or developmental ranking of cells are established, such that the analysis seeks for how gene expression changes as a function of this time. The key process that is used for many approaches is transforming a latent representation of the model into a graph structure. Next, the model usually requires a start cell, which in developmental analyses is usually one with some "stem-like" marker. The algorithms developed traverse the graph, usually the novel component of most algorithms, to find a path from the start cell to several terminal states. Standard scRNA-seq data analysis tools that provide trajectory inference include Scanpy [3], Monocle [4], VIA [149], and Palantir [150], etc. To date, these tools have been using traditional methods like PCA for data dimensionality reduction for inferring trajectories. While approaches like VIA claimed that dimensionality reduction is not a necessary step for their algorithm, there remains the comparison between linear and nonlinear approaches for dimensionality reduction in this task. VITAE (variational inference for trajectory by autoencoder) [151] is an existing effort that uses deep learning to advance trajectory inference. Specifically, VITAE combined a VAE for latent representation learning with a hierarchical mixture model to represent the trajectory. The use of a deep learning model, VAE, enables VITAE to recognize non-linear patterns in data and adjust for confounding covariates to integrate multiple datasets at scale.

Discussion: open issues and future directions

In this review, we have investigated how deep learning has been incorporated to advance different elements of scRNA-seq data analysis. Despite the promising results obtained using the deep learning techniques, there remain challenges in the field that need to be solved.

Need of benchmarking studies

One of the most pressing needs, especially for the deep learning approaches developed for scRNA-seq analysis, are benchmarking studies. Most of the papers published using deep learning approaches compared performance to other standard methods but didn't go into great depth when comparing across different types of deep learning models. Single-cell experiments can be vastly different, with tissue samples that contain known cell types, such as in the pancreas (alpha cells, beta cells, delta cells, etc.) or from much more complex tissues, such as in diseases such as cancer or COVID, where there are many different cell types, and variations of cell types present within the tissue sample. However, most methods claimed superior performance only based on a set of example datasets from specific single-cell experiments. What's more, it is difficult to assess, with the vast number of approaches that have been developed, whether a certain regularization term or added preprocessing step is essential for a particular scRNA-seq data analysis. Therefore, to overcome the above issues, one potential way would be to better understand when these deep learning models fail or what the limitations are for these approaches. Understanding the types of deep learning approaches and model structures that can be beneficial in some cases as compared to others would be very important for (1) developing new approaches to handle these shortcomings and (2) guiding the field as to what methods perform better under specific conditions. In addition, another major improvement in the field would be the human cell atlas, i.e., the aggregation of many different human single cell expression data across many institutions to cover all major organ systems within the body. This will allow for large amounts of annotated scRNA-seq data, from multiple institutions. This collection of data can allow for more comprehensive benchmarking studies, as a dataset for standardized model evaluation, similar to that
of ImageNet or CIFAR10 for computer vision algorithm developers. Fortunately, recent work is moving in this direction, as a group has just tested several batch correction approaches using an atlas level amount of single cell data and another group has tested 45 different single cell trajectory inference approaches on 110 different single cell datasets and proposed guidelines for method selection [7, 152].

Integrative analysis of multiple datasets

While deep learning has been involved in continuously increased scRNA-seq data analysis studies, they usually suffer from limited available information of single dataset, on the order of several tens of thousands of single cells, for the analyses. At this point, it may be difficult to identify substantial amounts of rare cell populations and characterize how these rare cell populations change under varying disease states. These datasets are orders of magnitude smaller than datasets in computer vision tasks where deep learning has achieved significant improvements. For example, most deep learning models in computer vision are pretrained on ImageNet, which contains 1.2 million images split between 1000 different classes. With the increasing availability of scRNA-seq data, the use of these smaller datasets for computational analyses may be changing. Recent work by Sikkema et al, uses a combination of 46 different datasets with 2.2 million cells to analyze lung tissue across healthy and diseased patients [153]. The authors specifically did a benchmarking step to identify the appropriate single cell integration approach to use for their dataset, and found that the deep learning method, scANVI, outperformed all other methods, including the standard pipeline approach of Seurat. In addition, this was further validated in a large-scale benchmarking dataset [152], showing that two out of the three top performing methods were deep learning approaches. The authors suggest that standard approaches for data integration, such as Harmony, work best when biological complexity is small but are outperformed by deep learning approaches in more complex settings [152]. Additionally, the deep learning use of transfer learning, similar to approaches such as scArches, can be used to save the information gained from large-scale training sets, to additional researchers that do not have access to such large and diverse datasets. This idea of large-scale model training and transfer learning to fine-tune the model are key aspects of deep learning and a potential future direction in the field of scRNA-
seq computational analysis. The field of scRNA-seq is continuing to embrace the concept of open-source data sharing, and new toolkits, such as scverse (https://scverse.org), look to provide a unified framework for doing these large-scale scRNA-seq analyses. Information gathered in these analyses, on top of other large scale data collection efforts such as TCGA, can be utilized to better understand how cellular changes correlate with disease [154]. In addition, for datasets where patient scRNA-seq and additional disease related information, such as the HPAP-DB dataset [155], information beyond transcriptome data can be used to identify how distinct cellular changes affect clinical phenotypes [156].

Knowledge-enhanced deep modeling

As the field of deep learning has advanced, the "deep" architectures being developed have become more complex and more "black-box" like, in other words it is difficult to understand and interpret how the models work. To make deep learning useful for clinicians, and biology in general, interpreting deep learning models has been an active area of research. In addition, the "deep" architectures may result in the overfitting issue if the models developed are too complex and hence focus on limited details of the data. Meanwhile, the heterogeneous cell populations and the high dimensionality of gene expression profiles challenge the modeling training, potentially leading to underfitting, such that the models developed are not capable of sufficiently capturing patterns within the data. In this context, incorporating biomedical domain knowledge has been a desirable option to account for those issues in data analysis. To date, there have been several existing studies [72, 75, 77, 78] that developed knowledge-enhanced deep learning models for scRNA-seq analysis. Though these models have gained notable improvement in specific application areas, there remains considerable room for improvement as the knowledge used is limited to specific resources like the GO (gene ontology) knowledgebase. In addition, today's biomedical knowledge graphs (BKGs) [157-159] have been an important biomedical resource that store comprehensive knowledge in biology and medicine and have been engaged to improve omics data analysis[159-162]. Generally, a BKG is a type of biomedical knowledge base with a graph/network structure where nodes are a set of biomedical entities (e.g., diseases, drugs, genes, biological processes, etc.) and edges between nodes/entities are relations linking the
biomedical entities (e.g., drug-treats-disease, disease-associates-gene, drug-interacts-drug, etc.) [157, 158, 163]. The BKGs have been used to interpret findings from omics data analysis through BKG query. For instance, Santos et al. [159] developed a clinical knowledge graph (CKG) platform, which enables clinically meaningful queries for automated proteomics data analysis, knowledge mining, and visualization. Doddahonnaiah et al. [161] used a BKG derived from literature to augment the annotation and interpretation of scRNA-seq data. The gene-cell type associations in their BKG were used to categorize cell clusters identified by scRNA-seq data. In addition, researchers have been seeking to develop BKG-guided machine learning and deep learning models to improve scRNA-seq data analysis. In their recent work, Cao and Gao [162] developed a deep learning model for multi-omics single-cell data integration and regulatory inference. Specifically, a graph VAE was used to learn feature embeddings from a prior knowledge-based guidance graph (a specific BKG), which were then fed to the omics VAE to reconstruct omics data via inner product with cell embeddings. In this way, unpaired multi-omics single-cell data such as scRNA-seq, scATAC-seq, and snmC-seq (with non-overlapped samples and features) can be projected to the shared cell embedding space.

Integrative modeling with multi-omics data

The ever-improving single-cell isolation and barcoding techniques have been producing diverse omics data at single-cell level, such as genetics, genomics and transcriptomics, and proteomics [164]. On the other hand, integrative analyses of multi-omics data at the bulk level [165-167] have shown the promise to provide a comprehensive understanding of molecular mechanisms to accelerate biology and medicine, as it provides the route to study molecular processes from multiple angles. Compared to traditional machine learning methods, deep learning has demonstrated its superiority in bulk multi-omics data analysis [168170], due to the capacity in capturing informative latent features from the high-dimensional heterogeneous multi-omics feature space, and the flexible architecture that can model each modality separately using small DNNs (e.g., autoencoders) and combine them later to aggregate information extracted from each modality appropriately to learn a joint representation [171]. Drawing on the success in bulk multi-omics data,
integrating scRNA-seq data with other single-cell omics data as well as multi-omics data at bulk level using deep learning may help provide a better and deeper understanding of the biological mechanisms. While there have been many successes in multi-omics data integration [172-176], there remains specific and distinct challenges, for both joint-modality single cell sequencing, such as CITE-seq [177], and the integration of single modality single cell omics sequencing data. For joint modality sequencing, to leverage both datasets simultaneously, most methods employ a method of joint representation learning, or finding a shared latent representation of the data for all modalities. One challenge with this type of joint sequencing is that there can be an increase in noise and sparsity in the data, compared to scRNA-seq data using one modality [178]. In addition, it is difficult the balance of both modalities during the embedding process, and it is possible that some modalities can dominate the downstream embedding tasks leading to the reduction of biological variability that exists within one modality. Finally, there are inherent biases [179] between different institutions, making joint learning more challenging when generalizing across institutions. Additionally, joint sequencing models are much less frequent than single modality sequencing methods, so an important direction for analysis is to develop methods to integrate two different modalities with unique cell populations. In this setting some goals would be to predict the expression of one modality from another or identify cells in the same cellular state across different modalities. This remains a significant computational challenge, as highlighted by the 2021 NeurIPS single cell challenge. Several methods were developed in this challenge as well as outside, but more work can be done to improve overall performance and more work can be done to improve multi-omic analysis when unique or rare cell populations are in one technology, but not present within another.

Spatially resolved transcriptomics (SRT) is a new approach to single cell analysis that preserves the spatial relationship of RNA-sequencing within a tissue. While SRT has the advantage of spatial resolution, the major technology currently on the market, the 10x Visium platform, currently generates 50 micron spots that are pooled for analysis, losing the ability to identify the transcriptome of a single cell. There are other approaches that aim to improve the resolution, such as Slide-Seqv2 [180], but these too
have drawbacks such as limited ability to detect low expressing genes compared with scRNA-seq methods [181]. It is therefore important to realize that scRNA-seq can act complimentary to the SRT technology. Firstly, SRT will require unique computational and deep learning algorithms, separate from scRNA-seq. For example, a method PASTE [182], shows that scRNA-seq methods are insufficient to properly analyze SRT data. In addition, cell-cell communication networks can be elucidated using newly developed algorithms [183]. However, scRNA-seq currently can provide unique gene information that has been leveraged during SRT analysis. For example, DestVI uses a reference scRNA-seq dataset to deconvolve or attempt to identify unique cell types within a given SRT spot [184]. In addition, work has been done to jointly embed seqFISH data and an scRNA-seq atlas, to annotate specific cell types in the seqFISH dataset [185]. Therefore, with current SRT spatial resolution constraints and detection limitations, SRT and scRNA-seq can act synergistically. Additionally, the autoencoder structures used in the context of scRNAseq and in this review can also be components used within SRT analysis.

Golden standard pipeline

We have discussed deep learning applications in steps in scRNA-seq data preprocessing, including data imputation, representation learning, doublet removal, batch effect removal, and cell cycle regression, and scRNA-seq data downstream analyses, such as cell clustering, cell annotation, and trajectory inference. However, there are several steps in the pipeline that we have discussed, such as doublet detection and imputation, not always used for analysis. The well-established software like Seurat and Scanpy do allow users to customize the analysis pipeline according to the application scenarios. Efforts like scAEspy [186] and sfaira [187] also built deep learning-based scRNA-seq data analysis pipelines. It will be important to perform thorough comparisons to validate (1) the need for each of these steps, (2) the better way to arrange them in the analysis pipeline, and (3) how deep learning impacts these steps to advance the whole analysis pipeline. There should be systematic effort to determine critical steps in the scRNA-seq analysis pipeline to assure that methods are being developed for critical steps in the analysis.

Conclusions

scRNA-seq has been a critical technique to study cell level gene expression. Deep learning, a powerful artificial intelligence technique that has shown significant capacity in big data mining and outperforms the conventional machine learning, has now firmly been introduced in scRNA-seq data analysis. Specifically, deep learning has been involved in key steps to advance scRNA-seq data analysis. Notable achievements have been gained through the use of deep learning techniques compared to the traditional data analysis methods. By carefully reviewing and comparing existing applications of deep learning in scRNA-seq data analysis, we summarize the challenges the current deep learning applications are faced with and discuss potential future directions in this field.

Competing interests

The authors have declared no competing interests.

CRediT Author Statement

Matthew Brendel: Conceptualization, Writing - Original Draft, Writing - Review and Editing, Fei Wang: Conceptualization and Supervision, Chang Su - Writing - Original Draft, Writing - Review and Editing. Zilong Bai, Olivier Elemento and Hao Zhang: Writing - Review and Editing.

Acknowledgments

FW would like to acknowledge the support from NSF 1750326, NIH R01MH124740 and RF1AG072449.

References

1. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods. 2009;6(5):377-82.
2. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888-902.e21.
3. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biology. 2018;19(1):15.
4. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology. 2014;32(4):381-6.
5. Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, et al. Orchestrating singlecell analysis with Bioconductor. Nature Methods. 2020;17(2):137-45.
6. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biology. 2019;20(1):296.
7. Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nature Biotechnology. 2019;37(5):547-54.
8. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nature Reviews Genetics. 2015;16(6):321-32.
9. Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multiomics data analysis: A review. Biotechnology Advances. 2021;49:107739.
10. Ma Q, Xu D. Deep learning shapes single-cell data analysis. Nature Reviews Molecular Cell Biology. 2022;23(5):303-4.
11. Flores M, Liu Z, Zhang T, Hasib MM, Chiu Y-C, Ye Z, et al. Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis. Briefings in Bioinformatics. 2022;23(1):bbab531.
12. Bao S, Li K, Yan C, Zhang Z, Qu J, Zhou M. Deep learning-based advances and applications for single-cell RNA-sequencing data analysis. Briefings in Bioinformatics. 2021:bbab473.
13. Riba A, Oravecz A, Durik M, Jiménez S, Alunni V, Cerciat M, et al. Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning. bioRxiv. 2021:2021.03.17.435887.
14. Qiao C, Huang Y. Representation learning of RNA velocity reveals robust cell transitions. bioRxiv. 2021:2021.03.19.436127.
15. Gong B, Zhou Y, Purdom E. Cobolt: Joint analysis of multimodal single-cell sequencing data. bioRxiv. 2021:2021.04.03.438329.
16. Minoura K, Abe K, Nam H, Nishikawa H, Shimamura T. ScMM: Mixture-of-Experts multimodal deep generative model for single-cell multiomics data analysis. bioRxiv. 2021:2021.02.18.431907.
17. Singh R, Hie BL, Narayan A, Berger B. Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities. Genome Biology. 2021;22(1):131.
18. Tian J, Wang J, Roeder K. ESCO: single cell expression simulation incorporating gene coexpression. Bioinformatics. 2021;37(16):2374-81.
19. Heydari AA, Davalos OA, Zhao L, Hoyer KK, Sindi SS. ACTIVA: realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders. bioRxiv. 2021:2021.01.28.428725.
20. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44.
21. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research. 2010;11:3371-408.
22. Liou C-Y, Cheng W-C, Liou J-W, Liou D-R. Autoencoder for words. Neurocomputing. 2014;139:84-96.
23. Srinivasan S, Leshchyk A, Johnson NT, Korkin D. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. RNA. 2020;26(10):1303-19.
24. Zeng Y, Lin J, Zhou X, Lu Y, Yang Y. Graph Convolutional Network-based Method for Clustering Single-cell RNA-seq Data. bioRxiv. 2021:2020.09.02.278804.
25. Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nature Communications. 2018;9(1):2002.
26. Mitra R, MacLean AL. RVAgene: generative modeling of gene expression time series data. Bioinformatics. 2021;37(19):3252-62.
27. Higgins I, Matthey L, Pal A, Burgess CP, Glorot X, Botvinick MM, et al., editors. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR; 2017.
28. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al., editors. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2; 2014.
29. Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. Adversarial autoencoders. arXiv preprint arXiv:151105644. 2015.
30. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural networks: A review of methods and applications. AI Open. 2020;1:57-81.
31. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nature Communications. 2017;8(1):14049.
32. Patruno L, Maspero D, Craighero F, Angaroni F, Antoniotti M, Graudenzi A. A review of computational strategies for denoising and imputation of single-cell transcriptomic data. Briefings in Bioinformatics. 2020;22(4).
33. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell. 2018;174(3):716-29.e27.
34. Ronen J, Akalin A. netSmooth: Network-smoothing based imputation for single cell RNA-seq. F1000Res. 2018;7:8-
35. Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nature Methods. 2018;15(7):539-42.
36. Arisdakessian C, Poirion O, Yunits B, Zhu X, Garmire LX. DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data. Genome Biology. 2019;20(1):211.
37. Xu Y, Zhang Z, You L, Liu J, Fan Z, Zhou X. scIGANs: single-cell RNA-seq imputation using generative adversarial networks. Nucleic Acids Research. 2020;48(15):e85.
38. Yu B, Chen C, Qi R, Zheng R, Skillman-Lawrence PJ, Wang X, et al. scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder. Briefings in Bioinformatics. 2020;22(4).
39. Wang J, Agarwal D, Huang M, Hu G, Zhou Z, Ye C, et al. Data denoising with transfer learning in single-cell transcriptomics. Nature Methods. 2019;16(9):875-8.
40. Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nature Communications. 2019;10(1):390.
41. Tian T, Min MR, Wei Z. Model-based autoencoders for imputing discrete single-cell RNA-seq data. Methods. 2021;192:112-9.
42. Chi W, Deng M. Sparsity-Penalized Stacked Denoising Autoencoders for Imputing Single-Cell RNA-seq Data. Genes. 2020;11(5):532.
43. Rao J, Zhou X, Lu Y, Zhao H, Yang Y. Imputing single-cell RNA-seq data by combining graph convolution and autoencoder neural networks. iScience. 2021;24(5):102393.
44. Huang M, Zhang Z, Zhang NR. Dimension reduction and denoising of single-cell RNA sequencing data in the presence of observed confounding variables. bioRxiv. 2020:2020.08.03.234765.
45. Li X, Li S, Huang L, Zhang S, Wong K-c. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning. Briefings in Bioinformatics. 2021:bbab368.
46. Xu L, Xu Y, Xue T, Zhang X, Li J. AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders. Frontiers in Genetics. 2021;12.
47. Xu C, Cai L, Gao J. An efficient scRNA-seq dropout imputation method using graph attention network. BMC Bioinformatics. 2021;22(1):582.
48. Gunady MK, Kancherla J, Bravo HC, Feizi S. scGAIN: Single Cell RNA-seq Data Imputation using Generative Adversarial Networks. bioRxiv. 2019:837302.
49. Badsha MB, Li R, Liu B, Li YI, Xian M, Banovich NE, et al. Imputation of single-cell gene expression with an autoencoder neural network. Quantitative Biology. 2020;8(1):78-94.
50. Enders CK. Applied missing data analysis: Guilford press; 2010.
51. Jang E, Gu S, Poole B. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:161101144. 2016.
52. Svensson V. Droplet scRNA-seq is not zero-inflated. Nature Biotechnology. 2020;38(2):147-50.
53. Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nature Methods. 2017;14(4):395-8.
54. Bernstein NJ, Fong NL, Lam I, Roy MA, Hendrickson DG, Kelley DR. Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-Supervised Deep Learning. Cell Systems. 2020;11(1):95-101.e5.
55. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nature Methods. 2018;15(12):1053-8.
56. Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identification of Cell Doublets in SingleCell Transcriptomic Data. Cell Systems. 2019;8(4):281-91.e9.
57. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Systems. 2019;8(4):329-37.e4.
58. Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW. Cell Growth and Size Homeostasis in Proliferating Animal Cells. Science. 2009;325(5937):167-71.
59. Deng Y, Bao F, Dai Q, Wu LF, Altschuler SJ. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nature Methods. 2019;16(4):311-4.
60. Wang D, Gu J. VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder. Genomics, Proteomics \& Bioinformatics. 2018;16(5):320-31.
61. Cho H, Berger B, Peng J. Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks. Cell Systems. 2018;7(2):185-91.e4.
62. Tran D, Nguyen H, Tran B, La Vecchia C, Luu HN, Nguyen T. Fast and precise single-cell data analysis using a hierarchical autoencoder. Nature Communications. 2021;12(1):1029.
63. Li J, Jiang W, Han H, Liu J, Liu B, Wang Y. ScGSLC: An unsupervised graph similarity learning framework for single-cell RNA-seq data clustering. Computational Biology and Chemistry. 2021;90:107415.
64. Grønbech CH, Vording MF, Timshel PN, Sønderby CK, Pers TH, Winther O. scVAE: variational auto-encoders for single-cell gene expression data. Bioinformatics. 2020;36(16):4415-22.
65. Ding J, Regev A. Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Nature Communications. 2021;12(1):2554.
66. Bica I, Andrés-Terré H, Cvejic A, Liò P. Unsupervised generative and graph representation learning for modelling cell differentiation. Scientific Reports. 2020;10(1):9790.
67. Zhang C. Single-Cell Data Analysis Using MMD Variational Autoencoder. bioRxiv. 2019:613414.
68. Lin E, Mukherjee S, Kannan S. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis. BMC Bioinformatics. 2020;21(1):64.
69. Mondal AK, Asnani H, Singla P, Ap P. scRAE: Deterministic Regularized Autoencoders with Flexible Priors for Clustering Single-cell Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2021:1-.
70. Kimmel JC. Disentangling latent representations of single cell RNA-seq experiments. bioRxiv. 2020:2020.03.04.972166.
71. Luo Z, Xu C, Zhang Z, Jin W. scGAE: topology-preserving dimensionality reduction for singlecell RNA-seq data using graph autoencoder. bioRxiv. 2021:2021.02.16.431357.
72. Alessandri L, Cordero F, Beccuti M, Licheri N, Arigoni M, Olivero M, et al. Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining. npj Systems Biology and Applications. 2021;7(1):1.
73. Peng J, Wang X, Shang X. Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data. BMC Bioinformatics. 2019;20(8):284.
74. Zhang S, Li X, Lin Q, Lin J, Wong K-C. Uncovering the key dimensions of high-throughput biomolecular data using deep learning. Nucleic Acids Research. 2020;48(10):e56-e.
75. Gut G, Stark SG, Rätsch G, Davidson NR. pmVAE: Learning Interpretable Single-Cell Representations with Pathway Modules. bioRxiv. 2021:2021.01.28.428664.
76. Seninge L, Anastopoulos I, Ding H, Stuart J. Biological network-inspired interpretable variational autoencoder. bioRxiv. 2020:2020.12.17.423310.
77. Rybakov S, Lotfollahi M, Theis FJ, Wolf FA. Learning interpretable latent autoencoder representations with annotations of feature sets. bioRxiv. 2020:2020.12.02.401182.
78. Svensson V, Gayoso A, Yosef N, Pachter L. Interpretable factor models of single-cell RNA-seq via variational autoencoders. Bioinformatics. 2020;36(11):3418-21.
79. Zhao J, Wang N, Wang H, Zheng C, Su Y. SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder. Frontiers in genetics. 2021;12:733906-.
80. Wang H, Zhao J, Su Y, Zheng CH. scCDG: A Method based on DAE and GCN for scRNA-seq data Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2021:1-.
81. Buterez D, Bica I, Tariq I, Andrés-Terré H, Liò P. CellVGAE: An unsupervised scRNA-seq analysis workflow with graph attention networks. bioRxiv. 2020:2020.12.20.423645.
82. Ciortan M, Defrance M. GNN-based embedding for clustering scRNA-seq data. Bioinformatics. 2021:btab787.
83. Ciortan M, Defrance M. Contrastive self-supervised clustering of scRNA-seq data. BMC Bioinformatics. 2021;22(1):280.
84. Lukassen S, Ten FW, Adam L, Eils R, Conrad C. Gene set inference from single-cell sequencing data using a hybrid of matrix factorization and variational autoencoders. Nature Machine Intelligence. 2020;2(12):800-9.
85. Prince E, Hankinson TC. HD Spot: Interpretable Deep Learning Classification of Single Cell Transcript Data. bioRxiv. 2019:822759.
86. Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome Biology. 2020;21(1):190.
87. Gold MP, LeNail A, Fraenkel E. Shallow Sparsely-Connected Autoencoders for Gene Set Projection. Biocomputing 2019: WORLD SCIENTIFIC; 2018. p. 374-85.
88. Yu H, Welch JD. MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks. Genome Biology. 2021;22(1):158.
89. Kingma DP, Welling M. An Introduction to Variational Autoencoders. Foundations and Trends ${ }^{\circledR}$ in Machine Learning. 2019;12(4):307-92.
90. Davidson TR, Falorsi L, De Cao N, Kipf T, Tomczak JM, editors. Hyperspherical variational autoencoders. 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018; 2018: Association For Uncertainty in Artificial Intelligence (AUAI).
91. Zhao S, Song J, Ermon S. Infovae: Information maximizing variational autoencoders. arXiv preprint arXiv:170602262. 2017.
92. Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L, et al. SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. Nucleic Acids Research. 2020;48(D1):D504-D10.
93. Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, et al. TRRUST: a reference database of human transcriptional regulatory interactions. Scientific Reports. 2015;5(1):11432.
94. Zhao M, He W, Tang J, Zou Q, Guo F. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Briefings in Bioinformatics. 2022;23(2):bbab568.
95. Consortium GO. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research. 2004;32(suppl_1):D258-D61.
96. Xu Y, Das P, McCord RP. SMILE: mutual information learning for integration of single-cell omics data. Bioinformatics. 2021;38(2):476-86.
97. Hu J, Zhong Y, Shang X. Efficient and scalable integration of single-cell data using domainadversarial and variational approximation. bioRxiv. 2021:2021.04.06.438733.
98. Xiong L, Tian K, Li Y, Zhang QC. Construction of continuously expandable single-cell atlases through integration of heterogeneous datasets in a generalized cell-embedding space. bioRxiv. 2021:2021.04.06.438536.
99. Dincer AB, Janizek JD, Lee S-I. Adversarial deconfounding autoencoder for learning robust gene expression embeddings. Bioinformatics. 2020;36(Supplement_2):i573-i82.
100. Bahrami M, Maitra M, Nagy C, Turecki G, Rabiee HR, Li Y. Deep feature extraction of single-cell transcriptomes by generative adversarial network. Bioinformatics. 2020;37(10):1345-51.
101. Wang D, Hou S, Zhang L, Wang X, Liu B, Zhang Z. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks. Genome Biology. 2021;22(1):63.
102. Wang T, Johnson TS, Shao W, Lu Z, Helm BR, Zhang J, et al. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Genome Biology. 2019;20(1):165.
103. Lotfollahi M, Naghipourfar M, Theis FJ, Wolf FA. Conditional out-of-distribution generation for unpaired data using transfer VAE. Bioinformatics. 2020;36(Supplement_2):i610-i7.
104. Ge S, Wang H, Alavi A, Xing E, Bar-joseph Z. Supervised Adversarial Alignment of Single-Cell RNA-seq Data. Journal of Computational Biology. 2021;28(5):501-13.
105. Zhao Y, Cai H, Zhang Z, Tang J, Li Y. Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data. bioRxiv. 2021:2021.01.13.426593.
106. Pang M, Tegnér J. Multitask learning for Transformers with application to large-scale single-cell transcriptomes. bioRxiv. 2020:2020.02.05.935239.
107. Zou B, Zhang T, Zhou R, Jiang X, Yang H, Jin X, et al. deepMNN: Deep Learning-Based SingleCell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors. Frontiers in Genetics. 2021;12.
108. Wang X, Wang J, Zhang H, Huang S, Yin Y. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data. Bioinformatics. 2021:btab821.
109. Yu W, Mahfouz A, Reinders MJT. CBA: Cluster-Guided Batch Alignment for Single Cell RNAseq. Frontiers in Genetics. 2021;12.
110. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805. 2018.
111. Wu Z, Xiong Y, Yu SX, Lin D. Unsupervised feature learning via non-parametric instance discrimination. IEEE conference on computer vision and pattern recognition2018. p. 3733-42.
112. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment. 2008;2008(10):P10008.
113. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Scientific Reports. 2019;9(1):5233.
114. Xie K, Huang Y, Zeng F, Liu Z, Chen T. scAIDE: clustering of large-scale single-cell RNA-seq data reveals putative and rare cell types. NAR Genomics and Bioinformatics. 2020;2(4).
115. Chen L, Wang W, Zhai Y, Deng M. Single-Cell Transcriptome Data Clustering via Multinomial Modeling and Adaptive Fuzzy K-Means Algorithm. Frontiers in Genetics. 2020;11(295).
116. Geddes TA, Kim T, Nan L, Burchfield JG, Yang JYH, Tao D, et al. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. BMC Bioinformatics. 2019;20(19):660.
117. Li X, Wang K, Lyu Y, Pan H, Zhang J, Stambolian D, et al. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nature Communications. 2020;11(1):2338.
118. Lakkis J, Wang D, Zhang Y, Hu G, Wang K, Pan H, et al. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics. Genome Research. 2021;31(10):1753-66.
119. Chen L, Wang W, Zhai Y, Deng M. Deep soft K-means clustering with self-training for single-cell RNA sequence data. NAR Genomics and Bioinformatics. 2020;2(2).
120. Wang J, Ma A, Chang Y, Gong J, Jiang Y, Qi R, et al. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nature Communications. 2021;12(1):1882.
121. Amodio M, van Dijk D, Srinivasan K, Chen WS, Mohsen H, Moon KR, et al. Exploring single-cell data with deep multitasking neural networks. Nature Methods. 2019;16(11):1139-45.
122. Li X, Zhang S, Wong K-C. Deep embedded clustering with multiple objectives on scRNA-seq data.

Briefings in Bioinformatics. 2021;22(5):bbab090.
123. Andreas Kopf, Vincent Fortuin, Vignesh Ram Somnath, Claassen M. Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations. The International Conference on Learning Representations (ICLR)2020.
124. Gionis A, Indyk P, Motwani R. Similarity search in high dimensions via hashing. 25th International Conference on Very Large Data Bases: Springer; 1999. p. 518-29.
125. Do CB, Batzoglou S. What is the expectation maximization algorithm? Nature Biotechnology. 2008;26(8):897-9.
126. Clarke ZA, Andrews TS, Atif J, Pouyabahar D, Innes BT, MacParland SA, et al. Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nature Protocols. 2021;16(6):2749-64.
127. Chen L, Zhai Y, He Q, Wang W, Deng M. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation. Genes. 2020;11(7):792.
128. Goyal M, Serrano G, Shomorony I, Hernaez M, Ochoa I. JIND: Joint Integration and Discrimination for Automated Single-Cell Annotation. bioRxiv. 2020:2020.10.06.327601.
129. Hu J, Li X, Hu G, Lyu Y, Susztak K, Li M. Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis. Nature Machine Intelligence. 2020;2(10):607-18.
130. Shao X, Yang H, Zhuang X, Liao J, Yang Y, Yang P, et al. Reference-free Cell-type Annotation for Single-cell Transcriptomics using Deep Learning with a Weighted Graph Neural Network. bioRxiv. 2020:2020.05.13.094953.
131. Li H, Brouwer CR, Luo W. A Universal Deep Neural Network for In-Depth Cleaning of SingleCell RNA-Seq Data. bioRxiv. 2020:2020.12.04.412247.
132. Xu C, Lopez R, Mehlman E, Regier J, Jordan MI, Yosef N. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Molecular Systems Biology. 2021;17(1):e9620.
133. Chen L, He Q, Zhai Y, Deng M. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation. Bioinformatics. 2021;37(6):775-84.
134. Zhou X, Chai H, Zeng Y, Zhao H, Luo C-H, Yang Y. scAdapt: Virtual adversarial domain adaptation network for single cell RNA-seq data classification across platforms and species. bioRxiv. 2021:2021.01.18.427083.
135. Lotfollahi M, Naghipourfar M, Luecken MD, Khajavi M, Büttner M, Wagenstetter M, et al. Mapping single-cell data to reference atlases by transfer learning. Nature Biotechnology. 2021.
136. Brbić M, Zitnik M, Wang S, Pisco AO, Altman RB, Darmanis S, et al. MARS: discovering novel cell types across heterogeneous single-cell experiments. Nature Methods. 2020;17(12):1200-6.
137. Zhang J, Zhang X, Wang Y, Zeng F, Zhao X-M. MAT2: manifold alignment of single-cell transcriptomes with cell triplets. Bioinformatics. 2021;37(19):3263-9.
138. Kimmel JC, Kelley DR. Semi-supervised adversarial neural networks for single-cell classification. Genome Research. 2021.
139. Song Q, Su J, Zhang W. scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics. Nature Communications. 2021;12(1):3826.
140. Yuan M, Chen L, Deng M. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets. Bioinformatics. 2022;38(3):738-45.
141. Koh W, Hoon S. MapCell: Learning a Comparative Cell Type Distance Metric With Siamese Neural Nets With Applications Toward Cell-Type Identification Across Experimental Datasets. Front Cell Dev Biol. 2021;9:767897-.
142. Wang T, Bai J, Nabavi S. Single-cell classification using graph convolutional networks. BMC Bioinformatics. 2021;22(1):364.
143. Yin Q, Wang Y, Guan J, Ji G. scIAE: an integrative autoencoder-based ensemble classification framework for single-cell RNA-seq data. Briefings in Bioinformatics. 2021:bbab508.
144. Duan B, Chen S, Chen X, Zhu C, Tang C, Wang S, et al. Integrating multiple references for singlecell assignment. Nucleic Acids Research. 2021;49(14):e80-e.
145. Liu X, Gosline SJC, Pflieger LT, Wallet P, Iyer A, Guinney J, et al. Knowledge-based classification of fine-grained immune cell types in single-cell RNA-Seq data. Briefings in Bioinformatics. 2021;22(5):bbab039.
146. Dong Z, Alterovitz G. netAE: semi-supervised dimensionality reduction of single-cell RNA sequencing to facilitate cell labeling. Bioinformatics. 2021;37(1):43-9.
147. Wang L, Miao X, Nie R, Zhang Z, Zhang J, Cai J. MultiCapsNet: A General Framework for Data Integration and Interpretable Classification. Frontiers in Genetics. 2021;12.
148. Cao Z-J, Wei L, Lu S, Yang D-C, Gao G. Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST. Nature Communications. 2020;11(1):3458.
149. Stassen SV, Yip GGK, Wong KKY, Ho JWK, Tsia KK. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nature Communications. 2021;12(1):5528.
150. Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Pe'er D. Characterization of cell fate probabilities in single-cell data with Palantir. Nature Biotechnology. 2019;37(4):451-60.
151. Du J-H, Gao M, Wang J. Model-based Trajectory Inference for Single-Cell RNA Sequencing Using Deep Learning with a Mixture Prior. bioRxiv. 2020:2020.12.26.424452.
152. Luecken MD, Büttner M, Chaichoompu K, Danese A, Interlandi M, Mueller MF, et al. Benchmarking atlas-level data integration in single-cell genomics. Nature Methods. 2022:19(1):41-50.
153. Sikkema L, Strobl DC, Zappia L, Madissoon E, Markov NS, Zaragosi L-E, et al. An integrated cell atlas of the human lung in health and disease. bioRxiv. 2022.
154. Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell. 2021;184(3):792-809.e23.
155. Kaestner KH, Powers AC, Naji A, Consortium H, Atkinson MA. NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes. 2019;68(7):1394-402.
156. Dann E, Henderson NC, Teichmann SA, Morgan MD, Marioni JC. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nature Biotechnology. 2022;40(2):245-53.
157. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife. 2017;6:e26726.
158. Su C, Hou Y, Guo W, Chaudhry F, Ghahramani G, Zhang H, et al. iBKH: The integrative Biomedical Knowledge Hub. medRxiv. 2021:2021.03. 12.21253461.
159. Santos A, Colaço AR, Nielsen AB, Niu L, Geyer PE, Coscia F, et al. Clinical Knowledge Graph Integrates Proteomics Data into Clinical Decision-Making. bioRxiv. 2020:2020.05.09.084897.
160. Blatti C, III, Emad A, Berry MJ, Gatzke L, Epstein M, Lanier D, et al. Knowledge-guided analysis of "omics" data using the KnowEnG cloud platform. PLOS Biology. 2020;18(1):e3000583.
161. Doddahonnaiah D, Lenehan PJ, Hughes TK, Zemmour D, Garcia-Rivera E, Venkatakrishnan AJ, et al. A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets. Genes. 2021;12(6):898.
162. Cao Z-J, Gao G. Multi-omics single-cell data integration and regulatory inference with graphlinked embedding. Nature Biotechnology. 2022.
163. Nicholson DN, Greene CS. Constructing knowledge graphs and their biomedical applications. Computational and Structural Biotechnology Journal. 2020;18:1414-28.
164. Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods. Experimental \& Molecular Medicine. 2020;52(9):1428-42.
165. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biology. 2017;18(1):83.
166. Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinformatics and Biology Insights. 2020;14:1177932219899051.
167. Wörheide MA, Krumsiek J, Kastenmüller G, Arnold M. Multi-omics integration in biomedical research - A metabolomics-centric review. Analytica Chimica Acta. 2021;1141:144-62.
168. Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using deep learning. Briefings in Bioinformatics. 2021.
169. Zhang L, Lv C, Jin Y, Cheng G, Fu Y, Yuan D, et al. Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma. Frontiers in Genetics. 2018;9(477).
170. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clinical Cancer Research. 2018;24(6):1248.
171. Su C, Xu Z, Pathak J, Wang F. Deep learning in mental health outcome research: a scoping review. Translational Psychiatry. 2020;10(1):116.
172. Gayoso A, Steier Z, Lopez R, Regier J, Nazor KL, Streets A, et al. Joint probabilistic modeling of single-cell multi-omic data with totalVI. Nature Methods. 2021;18(3):272-82.
173. Wu KE, Yost KE, Chang HY, Zou J. BABEL enables cross-modality translation between multiomic profiles at single-cell resolution. Proceedings of the National Academy of Sciences. 2021;118(15):e2023070118.
174. Zuo C, Chen L. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data. Briefings in Bioinformatics. 2021;22(4):bbaa287.
175. Minoura K, Abe K, Nam H, Nishikawa H, Shimamura T. A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. Cell Reports Methods. 2021;1(5):100071.
176. Zuo C, Dai H, Chen L. Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data. Bioinformatics. 2021;37(22):4091-9.
177. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nature Methods. 2017;14(9):865-8.
178. Stanojevic S, Li Y, Garmire LX. Computational methods for single-cell multi-omics integration and alignment. arXiv preprint arXiv:220106725. 2022.
179. Luecken MD, Burkhardt DB, Cannoodt R, Lance C, Agrawal A, Aliee H, et al., editors. A sandbox for prediction and integration of dna, rna, and proteins in single cells. Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2); 2021.
180. Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nature Biotechnology. 2021;39(3):313-9.
181. Marshall JL, Noel T, Wang QS, Chen H, Murray E, Subramanian A, et al. High-resolution SlideseqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience. 2022;25(4).
182. Zeira R, Land M, Strzalkowski A, Raphael BJ. Alignment and integration of spatial transcriptomics data. Nature Methods. 2022;19(5):567-75.
183. Fischer DS, Schaar AC, Theis FJ. Learning cell communication from spatial graphs of cells. bioRxiv. 2021:2021.07.11.451750.
184. Lopez R, Li B, Keren-Shaul H, Boyeau P, Kedmi M, Pilzer D, et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nature Biotechnology. 2022.
185. Lohoff T, Ghazanfar S, Missarova A, Koulena N, Pierson N, Griffiths JA, et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nature Biotechnology. 2022;40(1):74-85.
186. Tangherloni A, Ricciuti F, Besozzi D, Liò P, Cvejic A. Analysis of single-cell RNA sequencing data based on autoencoders. BMC Bioinformatics. 2021;22(1):309.
187. Fischer DS, Dony L, König M, Moeed A, Zappia L, Heumos L, et al. Sfaira accelerates data and model reuse in single cell genomics. Genome Biology. 2021;22(1):248.
188. Sabour S, Frosst N, Hinton GE, editors. Dynamic routing between capsules. Proceedings of the 31st International Conference on Neural Information Processing Systems; 2017.

Table 1. A summary of the selected studies in this review

Author Name, Publication Year	Category	Model Name	Model Type	Code Availability	Technical Advancement
Arisdakessian et al., 2019 [36]	Imputation and Denoising	DeepImpute	AE	https://github.com/lanagarmire/deepim pute (Python)	Utilizing correlated genes to impute missing values using autoencoder
Xu et al., 2020 [37]	Imputation and Denoising	scIGAN	GAN	https:/github.com/xuyungang/scIGAN s	Use KNN of a set of boundary equilibirum GAN-generated cells for a certain cell type to perform imputation
Yu et al., 2021 [38]	Imputation and Denoising	scGMAI	AE	https:/github.com/QUST- AIBBDRC/scGMAI	Output of autoencoder with softplus activation functions used as imputed representation for further dimensionality reduction with FastICA and clustering with GMM
Wang et al., 2019 [39]	Imputation and Denoising	SAVER-X	AE	https://github.com/jingshuw/SAVERX	Novel empirical bayesian shrinkage approach to predicting imputed values from autoencoder output based on gene-gene relationships
Eraslan et al., 2019 [40]	Imputation and Denoising	DCA	AE	https://github.com/theislab/dca	Zero-inflated negative binomial loss for denoising

Wang et al., 2018 [60]	Dimensionality Reduction	VASC	VAE	https://github.com/wangresearch/VASC	Modeling the data as zero-inflated (gumbel distribution) in decoder using VAE
Cho et al., 2018 [61]	Dimensionality Reduction	net-SNE	DFNN	https://github.com/hhcho/netsne	Apply t-SNE loss function to neural network
Lopez et al., 2018 [55]	Dimensionality Reduction	scVI	VAE	https://github.com/YosefLab/scvi-tools	Cell specific scaling of counts based on size factor for cell that is modeled into VAE
Tran et al., 2021 [62]	Dimensionality Reduction	scDHA	AE \| VAE	https://github.com/duct317/scDHA	Non-negative weights for non-negative kernel autoencoder for feature selection and multiple decoders in VAE for the stacked bayesian autoencoder for feature representation
Li et al., 2021 [63]	Dimensionality Reduction	scGSLC	GCN	https://github.com/sharpwei/GCN_sc_ cluster	Use protein-protein interaction network to perform dimensionality reduction for improved clustering
Grønbech et al., 2020 [64]	Dimensionality Reduction	scVAE	VAE	https://github.com/scvae/scvae	Introduction of a gaussian mixture prior for the VAE training
Ding et al., 2021 [65]	Dimensionality Reduction	scPhere	VAE	https://github.com/klarman-cellobservatory/scPhere	Spherical or hyperbolic embedding to improve clustering and latent representation of single cells
Bica et al., 2020 [66]	Dimensionality Reduction	DiffVAE/Gr aphVAE	VAE	https://github.com/ioanabica/DiffVAE	VAE and GraphVAE framework for scRNA-seq analysis with InfoVAE model
$\begin{aligned} & \begin{array}{l} \text { Zhang } 2019 \\ \text { [67] } \end{array} \\ & \hline \end{aligned}$	Dimensionality Reduction	MMD-VAE	VAE	https://mmd-vae.hi-it.org/	Replace KL divergence term with MMD for VAE training
Lin et al., 2020 [68]	Dimensionality Reduction	DR-A	AAE	https://github.com/eugenelin1/DRA	Adversairal loss on reconstructed output and latent space of the variational autoencoder
Mondal et al., 2021 [69]	Dimensionality Reduction	scRAE	AAE	https://github.com/arnabkmondal/scR AE	Uses a P-GEN network, or neural network to reduce the bias of the regularization term for the autoencdoer latent representation in VAE or AAE framework
Kimmel, 2020 [70]	Dimensionality Reduction		VAE/ β-VAE	-	Use β-VAE for disentangled representation of single cells generating more interpretable latent representations
Luo et al. 2021 [71]	Dimensionality Reduction	scGAE	GAE	https://github.com/ZixiangLuo1161/sc GAE	Using graph attention encoder for dimensionality reduction
Alessandri et al., 2021	Dimensionality Reduction	SCA	AE	https://github.com/kendomaniac/SCAt utorial	Using known relationships of genes with transcription factors, kinases, and miRNA to model network connections for autoencoder
Peng et al., 2019 [73]	Dimensionality Reduction	GOAE	AE	-	Use prior knowledge gene ontology terms to impact the connection between layers for the autoencoder
Zhang et al., 2020 [74]	Dimensionality Reduction	DeepAE	AE	https://github.com/sourcescodes/Deep AE	Use weights from neural network to generate gene ontology terms for hidden representation dimensions
$\begin{aligned} & \text { Gut et al., } 2021 \text { (Preprint) } \\ & {[75]} \end{aligned}$	Dimensionality Reduction	pmVAE	VAE	https://github.com/ratschlab/pmvae	Ensemble of VAEs each with a pathway specific set of genes for more interpretable single cell representation
Seninge et al., 2021 [76]	Dimensionality Reduction	VEGA	VAE	https://github.com/LucasESBS/vegareproducibility	Use mask on linear decoder weights to improve interpretation based on gene database
$\begin{aligned} & \hline \begin{array}{l} \text { Rybakov et al., } 2020 \\ \text { (Preprint) [77] } \end{array} \\ & \hline \end{aligned}$	Dimensionality Reduction		AE	https://github.com/theislab/intercode	Use pathway databases, such as MSigDB, to induce regularization into model for improved interpretability
Svensson et al., 2020 [78]	Dimensionality Reduction	LDVAE	VAE	https://github.com/YosefLab/scvi-tools	Restrict decoder of scVI to linear layer for improved interpretability
Zhou et al., 2021 [79]	Dimensionality Reduction	SCDRHA	GAE	https://github.com/WHY-17/SCDRHA	Uses output of DCA as input for Graph attention autoencoder

Wang et al., 2021 [80]	Dimensionality Reduction	scCDG	DAE \| GAE	https://github.com/WHY-17/scCDG	Graph Autoencoder on latent representation from denoising autoencoder
Buterez et al., 2021 (Preprint) [81]	Dimensionality Reduction	CellvgaE	GAE	https://github.com/davidbuterez/CellV GAE	Use variational graph attention autoencoder for dimensionality reduction
Ciortan et al., 2021 [82]	Dimensionality Reduction	graph-sc	GAE	https://github.com/ciortanmadalina/gra ph-sc	Input cell-gene graph into graph autoencoder for dimensionality reduction
Ciortan et al., 2021 [83]	Dimensionality Reduction	contrastive- sc	DFNN	https://github.com/ciortanmadalina/con trastive-sc	SimCLR loss using two different dropout representations of the same cell for self-supervised contrastive learning
Lukkassen et al., 2020 [84]	Dimensionality Reduction	resVAE	VAE	https://github.com/lab-conrad/resVAE	Mask out latent representation based on known cell type or other meta data
$\begin{array}{lll} \hline \text { Prince et al., } & 2019 \\ \text { (Preprint) [85] } \end{array}$	Dimensionality Reduction	HD Spot	AE	-	Genetic algorithm to optimize autoencoder hyperparameters and converting the encoder to a classifier to perform SHAP for improved interpretability of gene importance for different classes
Fortelny et al., 2020 [86]	Dimensionality Reduction	KPNN	DFNN	https://github.com/epigen/KPNN	Control node connections in neural network based on known biological pathways
Gold et al., 2019 [87]	Dimensionality Reduction	$\begin{aligned} & \hline \text { SSCA/SSC } \\ & \text { VA } \\ & \hline \end{aligned}$	AE \| VAE	-	Use known gene sets to control node connections in autoencoder
Yu et al., 2021 [88]	Dimensionality Reduction	MichigAN	VAE \| GAN	https://github.com/welchlab/MichiGAN	Use β-TCVAE for disentangled representation of single cells generating more interpretable latent representations
Xu et al., 2021 [96]	Batch Removal Effect	SMILE	DFNN	https://github.com/rpmccordlab/SMIL E	Contrastive learning loss (NCE) for the integration of multiple datasets
Hu et al., 2021 [97]	Batch Removal Effect	DAVAE	VAE	https://github.com/jhu99/davae_paper	Gradient reversal layer for adversarial training to perform data integration
Xiong et al., 2021 (Preprint) [98]	Batch Removal	SCALEX	VAE	https://github.com/jsxlei/SCALEX	Use decoder-based domain-specific batch normalization for multi-source data integration
Dincer et al., 2020 [99]	Batch Removal Effect	AD-AE	AE	https://gitlab.cs.washington.edu/abdinc er/ad-ae	Adversarial training of autoencoder for multiple different confounders including age and batch to learn deconfounded latent representation
$\begin{aligned} & \hline \begin{array}{l} \text { Bahrami } \\ {[100]} \end{array} \\ & \hline \end{aligned}$	Batch Removal Effect	scGAN	VAE	https://github.com/li-lab-mcgill/singlecell-deepfeature	Adversarial training of VAE with categorical (batch) or continuous (age) variables for data integration
Wang et al., 2021 [101]	Batch Removal Effect	iMAP	AE \| GAN	https://github.com/Svvord/iMAP	Two step integration using (1) content loss and (2) random walk MNNbased GAN model
Wang et al., 2019 [102]	Batch Removal Effect	BERMUDA	AE	https://github.com/txWang/BERMUD A	Integration of cluster pairs between batches identified using MetaNeighbor with MMD regularization
Lotfollahi et al., 2020 [103]	BatchEffect Removal	trVAE	VAE	https://github.com/theislab/trVAE	Conditional VAE with MMD regualrization in latent space
Ge et al., 2021 [104]	Batch Removal	scDGN	DFNN	https://github.com/SongweiGe/scDGN	Semi-supervised learning with domain adaptation using gradient reversal layer
Zhao et al., 2021 [105]	Batch Removal	scETM	VAE	https://github.com/hui2000ji/scETM	Interpretable decoder using matrix tri-factorization (Topic Modeling)
Pang and Tegnér, 2020 (Preprint) [106]	$\begin{array}{lr} \hline \begin{array}{l} \text { Batch } \\ \text { Removal } \end{array} & \text { Effect } \\ \hline \end{array}$		BERT Transformer	-	Use transformers for encoder and decoder
Zou et al., 2021 [107]	Batch Removal Effect	DeepMNN	DFNN	https://github.com/zoubinai/deepMNN	Use Residual Network to perform batch correction on predetermined MNN pairs of cells using highly variable genes

Wang et al., 2021 [108]	Batch Removal Effect	HDMC	AE	https://github.com/zhanglabNKU/HD MC	Contrastive loss using MetaNeighbor-identified similar clusters between batches for improved batch correction
Yu et al., 2021 [109]	Batch Removal Effect	CBA	AE	https://github.com/GEOBIOywb/CBA	Integrate pre-defined matching cell clusters from two domains using a two-stream autoencoder network, which uses concatenation of latent representation within and between streams
Xie et al., 2020 [114]	Cell Clustering	scAIDE	AE \| DFNN	https://github.com/tinglabs/scAIDE	MDS encoder for improved autoencoder dimensionality reduction and rph kmeans for improved clustering of different sized clusters
Chen et al., 2020 [115]	Cell Clustering	scDMFK	AE	https://github.com/xuebaliang/scDMF K	Simultaneous dimensionality reduction and clustering using an adaptive fuzzy k-menas loss function
Geddes et al., 2019 [116]	Cell Clustering	scCCESS	AE	https://github.com/gedcom/scCCESS	Consensus clustering of latent representation clustering from ensemble of random projection or random subset of gene autoencoders
Li et al., 2020 [117]	Cell Clustering	DESC	AE	https://github.com/eleozzr/desc	Pretrain stacked autoencoder, then perform simultaneous clustering and dimensionality reduction using deep embedding clustering
Lakkis et al., 2021 [118]	Cell Clustering	CarDEC	AE	https://github.com/jlakkis/CarDEC	Separate encoder for high and low expressing genes with separate loss functions to improve single cell representation
Chen et al., 2020 [119]	Cell Clustering	scziDesk	AE	https://github.com/xuebaliang/ scziDesk	Weighted soft k-means clustering of latent space during autoencoder training
Wang et al., 2021 [120]	Cell Clustering	scGNN	AE \| GAE	https://github.com/juexinwang/scGNN	Combination of several autoencoder structures, including a graph autoencoder to perform entire piepline of single cell analysis after preprocessing
$\begin{aligned} & \text { Srinivasan et al., } 2020 \\ & {[23]} \end{aligned}$	Cell Clustering	DUSC	DAE	https://github.com/KorkinLab/DUSC	Denoising autoencoder for dimensionality reduction
Zeng et al., 2021 (Preprint) [24]	Cell Clustering	GraphSCC	GCN \| DAE	$\begin{aligned} & \hline \text { https://github.com/GeniusYx/GraphSC } \\ & \text { C } \end{aligned}$	Joint residual graph convolutional network and denoising autoencoder with simultaneous clustering for improved latent representation and clustering
Amodio et al., 2019 [121]	Cell Clustering	SAUCIE	AE	https://github.com/KrishnaswamyLab/ SAUCIE	Information dimension regularization and cluster distance regularization for improved clustering
Li et al., 2021 [122]	Cell Clustering	EMDEC	AE	-	Use optimization procedure for hyperparameters and architecture for DEC with single cell RNA-seq data
Kopf et al., 2020 [123]	Cell Clustering	$\begin{aligned} & \text { MoE-Sim- } \\ & \text { VAE } \end{aligned}$	VAE	https://github.com/andkopf/MoESimV AE	Use mixture of gaussians prior for VAE, define separate decoders for each gaussian for reconstruction, and use similarity+DEPICT loss function for clustering
Ding et al., 2018 [25]	Cell Clustering	SCVIS	VAE	https://bitbucket.org/jerry00/scvis-dev	Probabilistic generative model with asymmetric t-SNE objective for improved clustering with dimensionality reduction
Chen et al., 2020 [127]	Cell Annotation	scAnCluster	AE	https://github.com/xuebaliang/scAnClu ster	Inclusion of soft k-means clustering with entropy regularization and a self-supervised cell similarity loss for improved clustering
$\begin{array}{lll} \hline \text { Goyal et al., } & 2020 \\ \text { (Preprint) } \\ \text { [128] } \end{array}$	Cell Type Annotation 	JIND	DFNN	https://github.com/mohit1997/JIND	Use adversarial training to match latent representation coming from source and target domains for downstream cell annotation
Hu et al., 2020 [129]	Cell Type Annotation	ItClust	DAE	https://github.com/jianhuupenn/ItClust	Pretrain model on source dataset and then finetune on target dataset
Shao et al., 2021 [130]	Cell Type Annotation	scDeepSort	GAE	https://github.com/ZJUFanLab/scDeep Sort	Use graph neural network on cell-gene graph to predict pre-defined cell types
$\begin{aligned} & \text { Li et al., } 2020 \text { (Preprint) } \\ & \text { [131] } \end{aligned}$	Cell Type Annotation	AutoClass	AE	https://github.com/datapplab/AutoClas s	Pseudo-labels from k-means clustering or known cell types during training to improve autoencoder-based imputation

Xu et al., 2021 [132]	Cell Annotation	Type	scANVI	VAE	https://github.com/YosefLab/scvi-tools	Semi-supervised extension of scVI
Chen et al., 2020 [133]	Cell Annotation	Type	scSemiClust er	AE	https://github.com/xuebaliang/scSemi Cluster	Cluster Compactness Loss for labeled data to improve transfer learning
Zhou et al., 2021 (Preprint) [134]	Cell Annotation	Type	scAdapt	GAN	https://github.com/zhoux85/scAdapt	Use virtual adversarial training loss and semantic alignment loss to improve training in a semi-supervised setting
$\begin{aligned} & \text { Lotfallahi et al., } 2021 \\ & \text { [135] } \end{aligned}$	Cell Annotation	Type	scArches	VAE	https://github.com/theislab/scarches	Concatenation of new dataset to pretrained autoencoder ("architectural surgery") for improved mapping of query to reference dataset
Brbić et al., 2020 [136]	Cell Annotation	Type	MARS	AE	https://github.com/snap-stanford/mars	Meta-learning approach to allow for identification of new clusters during transfer learning in new datasets
Zhang et al., 2021 [137]	Cell Annotation	Type	MAT^{2}	AE	https://github.com/ZhangJinglong/MAT2	Generate triplets using either known cell labels, or pseudo-labels based on Seurat for contrastive learning using triplet loss and use triplet loss in batch correction
Kimmel et al., 2021 [138]	Cell Annotation	Type	scNym	DFNN	https://github.com/calico/scnym	Use MixMatch for semi-supervised learning
Song et al., 2021 [139]	Cell Annotation	Type	scGCN	GCN	https://github.com/QSonggithub/scGCN	Development of multiple mutual nearest neighbor graphs based on CCA using reference and query datasets for transfer learning
Yuan et al., 2021 [140]	Cell Annotation	Type	scMRA	AE \| GCN	https://github.com/ddb-qiwang/scMRA-torch	Development of cell type prototype knowledge graph based on multiple different source domains for improved transfer learning to unlabeled dataset
Koh et al., 2021 [141]	Cell Annotation	Type	MapCell	DFNN	https://github.com/lianchye/mapcell	Use siamese network with contrastive loss for pairs of cells identified as the same type. Use learned distance metric for label transfer and new cell discovery
Wang et al., 2021 [142]	Cell Annotation	Type	SigGCN	$\begin{aligned} & \hline \text { GAE } \\ & \text { DFNN } \\ & \hline \end{aligned}$	https://github. com/NabaviLab/sigGCN	Concatenate latent representation learned from FFNN and GAE to predict cell type
Yin et al., 2021 [143]	Cell Annotation	Type	scIAE	AE	https://github.com/JGuan-lab/scIAE	Use ensemble of autoencoders with random projections to perform dimensionality reduction. Use the learned representations to train downstream classifiers for new data
Duan et al., 2021 [144]	Cell Annotation	Type	mtSC	DFNN	https://github.com/bm2-lab/mtSC	Use N-pair loss for deep metric learning across all reference datasets separately for trained model and use a consensus score from each reference dataset for cell annotation of query cell
Liu et al., 2021 [145]	Cell Annotation	Type	ImmClassifi er	DFNN	https://github.com/xliuuth/ImmClassifier	Use probability of coarse cell predictions into fine-grain predictions using the coarse grain probability distribution as input of a FFNN
Dong et al., 2021 [146]	Cell Annotation	Type	netAE	VAE	https://github.com/LeoZDong/netAE	Introduction of cell classification on latent representation for labeled cells and modularity loss based on cell-cell similarity matrix of latent representation
Cao et al., 2020 [148]	Cell Annotation	Type	Cell BLAST	VAE	https://github.com/gaolab/Cell_BLAST	Use of improved distance-metric for mapping query cell to reference latent-representation and includes poission distribution as method for data augmentation of input scRNA-seq data
Wang et al., 2021 [147]	Cell Annotation	Type	MultiCapsN et	$\begin{aligned} & \hline \text { CapsNet } \\ & {[188]} \\ & \hline \end{aligned}$	https://github.com/bojone/Capsule	Use of Capsule Network for single-cell sequencing analysis
Du et al. 2020 (Preprint) [151]	Trajectory Analysis		VITAE	VAE	https://github.com/jaydu1/VITAE	Use hierarchical mixture model based on latent representation from VAE to predict cell pseudotime

Tangherloni et al., $2021[186]$	Complete analysis framework	scAEspy	-	https://gitlab.com/cvejic-group/scaespy	Single-cell analysis package containing several different autoencoder architectures for analysis
Fischer et al., 2021[187]	Complete analysis framework	sfaira	-	https://github.com/theislab/sfaira	Single cell package containing pipeline and pretrained models
Abbreviations: AE = autoencoder; CapsNet = capsule neural network; DAE = denoising autoencoder; DFNN = deep feed-forward neural network; GAN = generative adversarial networks; GAE = graph autoencoder; GCN $=$ graph convolutional network; VAE = variational autoencoder.					

Figures

Figure 1. Schematic of the common pipeline in scRNA-seq analysis. A. scRNA-seq data collection. BF. scRNA-seq data preprocessing where deep learning has been involved, including imputation and denoising, doublet removal, cell-cycle variance removal, representation learning for dimensionality reduction, and batch effect removal. G-I. Downstream analyses of scRNA-seq data, including cell clustering, cell type annotation, and trajectory inference.

Figure 2. Illustration of deep learning architectures that have been used in scRNA-seq analysis. A. Basic design of a feed-forward neural network. B. A neural network is composed of "neurons" organized into layers. Each neuron combines a set of weights from the prior layer, passes the weighted summed value through a non-linear activation function, such as sigmoid, rectifier (i.e., rectified linear unit [ReLU]), and hyperbolic tangent, to produce a transformed output. In scRNA-seq data analysis, Autoencoder, a special variant of the feedforward neural network aiming at learning low-dimensional representations of data while preserving data information, has been widely used (C). To overcome its pitfalls, variants of Autoencoder have been developed. In order to address the overfitting problems, the Denoising Autoencoder (DAE) forces the input data to be partially corrupted and tries to reconstruct the raw un-corrupted data (D); the Variational Autoencoder (VAE) aims at compressing input data into a constrained multivariate latent
distribution space in the encoder, which is regular enough and can be used to generate new content in the decoder (E). Benefiting from the advanced deep learning architecture, the Graph Neural Network (GNN), Graph Autoencoder (GAE) has been developed. The encoder of GAE considers both sample features (e.g., cells' gene expression profiles/counts) and samples' neighborhood information (e.g., topological structure of cellular interaction network) to produce low-dimensional representations while preserving topology in data; the decoder unpacks the low-dimensional representations to reconstruct the input network structure and/or sample features (\mathbf{F}).

Abbreviations: scRNA-seq = single-cell RNA sequencing.

