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CHAPTER I 

Introduction 

1 . 1 Background 

Numerical models are critical to effective design and planning of engineered systems. 

Computers allow scientists and engineers to simulate the performance of engineered systems 

with far greater flexibility and less cost than can be achieved through physical experiments. 

Quantities that are difficult or impossible to measure experimentally can be accurately estimated 

in simulations. Simulated experiments can be repeated with variation of parameters to isolate 

cause-and-effect relationships that are important to improving designs. With accurate 

mathematical models, resources for physical models can be concentrated on prototypes that are 

thought to be particularly promising or used to verify certain critical modeling assumptions. 

The effectiveness of models depends on how well relevant physical phenomenon is 

represented mathematically. Many important problems in soil mechanics and particulate physics 

involve large discontinuous deformations, which are beyond the capabilities of numerical 

simulations based on continuum mechanics. Examples are soil plowing, pentrometers, pile 

driving, soil-tire interactions, hopper flows, mixing of powders, and mass movements by 

avalanche. Continuum formulations do not exist for such a wide range of behavior, particularly 

in the case of frictional materials such as sand [52]. In a particular situation, soil may deform as 

a solid, flow as a fluid, or behave as individual particles . All of these "phases" play important 

roles in the mechanical behavior, yet at present no single model exists that can account for these 

different modes of soil behavior. In the absence of such a model, a large and important class of 

soil mechanics problems lies beyond the reach of mathematical modeling. 

1.2 Towards a Continuum Mechanics Model for Granular Media 

Well-known methods of numerical approximation such as finite differences, fmite 

elements or boundary elements have their origins in continuum descriptions of the media. 

Therefore, these methods are limited in principle by the assumptions of continuum mechanics. 

Historically, granular media have been treated, by Civil Engineers, as elastic or plastic solids 

because such descriptions fit expected design behavior. In fact, in many situations involving 

excavation, vehicle mobility, and material handling a fluid mechanics description for the soil 

may be more appropriate. 
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The principal difficulty in applying solid mechanics continuum theory to particulate 

media comes from the mathematical description of the kinematics that defmes the movement of 

material "particles" within the continuum. The traditional use of continuum mechanics is 

limited to strains with continuous deformation. Figure 1.1 (a) shows the results from a finite 

element model of a soil plowing experiment. The continuous deformations required by the fmite 

element formulation do not capture the kinematics of motion of the real soil system, which are 

illustrated in Figure 1. 1 (b). Movement must obey compatibility relationships that preclude 

formation of slip planes and motions· are restricted to an affine mapping in which each point in 

the initial configuration can be mapped into the deformed configuration as shown in Figure 1.2. 

The deformations thus defmed represent topologically equivalent configurations because 

deformation from one configuration to another is continuous and a one-to-one mapping exists. A 

continuum can deform such that in the vicinity of any arbitrary point a second point can be found 

at a sufficiently small distance, c , in the initial configuration so that the points are separated by 

less 8 than in the deformed configuration. By contrast, when a discontinuity exists or a crack 

forms , two points can exist at the same initial location ( c =0) 8 yet can be non-zero. 

In fact, the preceding description of a continuum is somewhat restrictive because finite 

discontinuities can exist provided relevant interface conditions are prescribed. For example, the 

Goodman joint element [21] used in fmite element analyses is intended for such interface 

conditions. In fracture mechanics, discontinuities arise based on predefmed fracture criteria that 

can be modeled as an evolving material topology. In these cases where compatibility breaks 

down, a mapping can exist between initial and deformed configuration by introducing conditions 

for the discontinuity. For example, while two points may initially lie at virtually the same 

location they may lie on different sides of some defmed line; and, hence can be mapped to the 

new configuration uniquely . 

While the mapping between points on a discontinuity presents no special difficulties in 

principle, analysis of such points is complicated because under large deformations, points along 

the discontinuity that are initially in "contact" no longer interact mechanically after relative 

movements exceeding a grain size in magnitude. Thus normal and shear tractions carried by 

pairs of points initially, must be carried by different pairs after deformation. As a result, the 

constitutive equation that relates traction at the interface to displacement along the interface is 

more difficult to defme because the traction no longer depends on the distance between the flXed 

material points A and Band the stress state is not a function of the deformation alone. 

Finally, there is the question of defming the discontinuity. In fracture mechanics, the 

formation and propagation of a fracture is controlled by a fracture criteria. No such criteria yet 

exist for shear bonding in soils . The continuum description breaks down at the point of shear 

bonding (e.g. Valanis and Peters) [52] leaving the problem ill-posed. To construct a suitable 

theory is needed. To create such a theory, a better view of the micro mechanics is needed. 

From the preceding discussion it may be concluded that the difficulties with describing 

soil , as a continuum are significant. The continuum description at best applies to the particles 

themselves, whereas in a particulate media discontinuities are the predominant feature . The 

behavior of the mass is controlled by the interactions between particles or groups of particles and 

not the character of the particles themselves . Thus, while the fmite number of discontinuities in 
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a continuum can be dealt with through application of special interface relationships, the behavior 

of a particulate mass is completely dominated by interactions at interfaces . 
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Figure 1 .2: Fracture Formation 
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The traditional approach in soil mechanics is to ignore the individual particles in the 

media and concentrate on the group or mass behavior of the soil grains as a homogenized 

continuum. Not withstanding the logical contradiction contained within the model, it has served 

well in practice because: 1) for many soil mechanics problems deformations are small, and 2) 

the deformations occur over spatial scales much larger than the largest individual particle. The 

present research deals with deformations for which neither of the two conditions is met. 

For large deformations the movement of soil particles can defy mapping by any notion 

of affine deformation. An example of such motion is the flow of sand in an hourglass (Figure 

1.3). Regardless of the initial proximity of particles A and B, they are decidedly disconnected in 

their fmal locations. For all but the smallest movements, the forces between particle pairs are 

independent of their initial locations. 

Figure 1.3: Sand Flow through an Hour Glass 

Further, the multiphase aspect of sand behavior is evident. In either the top or bottom chambers 

of the hourglass the sand exists essentially as a solid. The sand flowing from the top chamber 

behaves as a fluid . In the free-fall portion of the hourglass, the discrete nature of the particles 

becomes evident. Upon striking the pile in the bottom chamber the sand reverts to a fluid as it 

flows down the slope of the sand pile. Finally, the sand returns to a solid state as it comes to 

rest. 

In a fluid state, individual particle movements defy meaningful description. For fluids in 

general, traction do not depend on the details of individual particle motions but rather on time

averaged deformation rates . Accordingly, the traction represents a time-average of individual 

particle forces . 
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However, the fluid model is unsatisfactory for particulate media for two reasons. First, 

for small deformations, particles behave as solids whereby the stress state does depend on 

relative movements between adjacent grains. Thus, the fluid description is appropriate only 

when deformations are large. Secondly, the relationship between inter-particle force and 

movement is generally rate independent and therefore does not possess a simple viscosity law. 

In summary, it appears that particulate media poses three fundamental problem when 

viewed from the standpoint of a continuum. 

a. The motions of the individual particles cannot be mapped as affine deformations 

from the initial reference frame to a deformed configuration. 

b . Forces between material points are not related to their relative displacements if those 

displacements are greater than the nominal particle diameter. 

c. Interparticle forces do not depend on relative displacement rates. The non-viscous 

nature of flowing soil gives rise to multi-phase behavior. 

1.3 Discrete Element Method 

An alternative to the continuum description for soil and rock mechanics problems is an 

approach that models the material as a collection of individual particles that interact only at inter

particle contact points. The "particle model," is a generic term for the class of simulation 

models where the discrete representation of a physical phenomenon involves the use of 

interacting particles . Particle models have successfully been applied to a wide class of problems 

in plasma physics, astrophysics, fluid dynamics, and molecular dynamics [6], [20] , [24] , [31], 

[35] , and [40]. A particle model consists of a set of particles each of which has an individual 

collection of attributes (e.g ., mass, particle position, velocity) and some constitutive 

relationships describing the interaction among particles. The particle attributes evolve according 

to the equations of motion. 

If a rate independent viscosity is considered by introducing a rate dependent viscosity such as 

T- D 
-Po FCD 

Then 

F(T) =Po ~yield stress 

Cundall [1974] was one of the frrst to use particle-modeling techniques for evaluating 

soil and rock mechanics problems. He coined the term Distinct Element Method (DEM) and 
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developed computer programs for evaluating two-dimensional blocks of rock with complex 

shapes [15]. Cundall later developed the Universal Distinct Element Code (UDEC) for 

evaluating two- and three-dimensional interaction of a mixture of rock blocks that have different 

types of deformability [ 16]. UD EC provided capability for dealing with joint constitutive 

behavior, dynamic cracking, fluid flow and fluid pressure effects. In the late 1970's Cundall 

developed the computer program BALL to conduct research into the behavior of assemblies of 

discs and spheres [14]. Several authors have used DEMs to model granular assemblies' [12], [3] 

Ng and Dobry [37] used aDEM to study small strain cyclic loading. Their simulation results 

agreed closely with trends found in laboratory tests of sands. Shukla and Sadd [45] used DEM 

to investigate how mechanical stress waves propagate in granular material and how they 

are influenced by media microstructure. Hopkins [25] used a variation of the DEM to model ice 

jamming in northern rivers and sea ice ridging in the Arctic. 

Sophisticated algorithms have been developed to describe the evolution of the particulate 

system, including the formation and breaking of inter-element contact [48]. Determination of 

forces between elements requires relationships to describe normal and shear interaction at the 

contacts. In some models, the individual particles can even "break" when stress conditions 

within the particle reach some critical level. Typically, soil particles have been modeled as two

dimensional circular rigid disks or three-dimensional spheres. Ting [50] has developed ellipse

based two-dimensional particles to represent the effects of contact flatness and particle 

angularity. Six-sided solids have also been used to model granular material [19]. 

The predominant disadvantage of D EMs is the enormous computational requirement for 

keeping track of all particle contact locations. At present, the maximum number of particles that 

can be feasibly handled in DEM computations is no more than a few tens of thousands of 

particles. Centrifuge scaling principles have been used to allow for modeling of full-scale 

geotechnical problems using a practical number of particles while maintaining stress similitude 

[48]. Of course, centrifuge scaling does not maintain geometric scaling because the ratio 

between structure to particle size in the model is much less than that of the actual media. Ba ant 

et al. [4] numerically found that the size of the particle simulation could influence the mode of 

failure. Another method to counter the computational requirement of DEM has been to couple 

D EM models with the finite element method (FEM) for analysis of rock mass [39], [2] and the 

boundary element method (BEM) for penetration tests in sand [27]. The ability to couple DEMs 

with FEMs or BEMs allows for the modeling of larger problems, while maintaining a minimal 

number of particles and reducing computer run time. However, for many problems, even this 

approach requires excessively large particle systems while adding the complexity of solving the 

coupled FEM/BEM problem. 

An initial goal of this dissertation is to increase the feasibility limit of a DEM by at least 

a factor of ten, a value that, at best, permits study of particulate systems at scales comparable to 

those of laboratory testes specimens. For example, a laboratory direct shear soil test of medium 

sand will contain over 200,000 particles. 
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1.4 Smoothed Particle (Hydrodynamic) Codes 

A class of models that admits the flexibility in kinematics description required for 

particulate modeling is the smoothed particle method (SPM). The SPM was developed by 

Monagahan [32], [33], [34], [35] originally for astronomical computation such as for galaxy 

formation and cratering. More recently the method has been used for analysis of penetration 

problems [29]. The method consists of smoothing the governing differential equation via a 

convolution integral in space thereby producing a weighted average form of the equation. By 

operating on the integral using integration by parts, spatial derivatives are "moved" to the 

weighting function (which is prescribed). Thus, the differential equations are converted to 

integral equations in which the dependent variable does not appear in any derivative term. The 

time evolution of the dependant variable proceeds in a manner similar to the DEM. Ostensibly, 

differentiability of the dependent variable is no longer a requirement because no derivatives are 

computed. Thus, discontinuities, separations, and change of phase can occur without 

introducing significant numerical difficulties. However, it should always be kept in mind that 

the constitutive Equations used to derive the differential Equations that serve as a starting point 

of the SPM are based on the notion of affme mapping between subsequent configurations. Thus, 

the discontinuous deformations simulated by the method may not be consistent with the physics 

on which the models are based. For example, a projectile cannot pierce an (ideal) elastic-plastic 

material because nothing in elastic-plastic theory allows such discontinuities to form in the 

continuum. The formation of the hole is strictly a numerical artifact of the spreading of the 

particles. The SPM will provide the key concepts used for the model proposed in later chapters. 

1 . 5 Objective of Research 

The objective of this research is to develop an alternative approach from which a 

mathematical theory for the mechanics of particulate matter can be formulated. This approach 

will be called a smooth soil particle system. Each smoothed soil particle will be modeled 

essentially as a point in the soil mass at which the state of the system is monitored. The particle 

carries with it an estimate of the state of the soil mass within its vicinity. The objective of the 

theoretical development is to derive the relationships that describe the interactions among the 

observation points. The key feature of the theory is that as the system is refmed by adding more 

monitoring points the equations will begin to describe the behavior of a true particulate system. 

Importantly, the computational implementation is similar to that of traditional DEM one-to-one 

models so that computer technology developed for DEM can be incorporated into the smoothed 

soil particle system. 

The research is limited to dry, fairly uniform cohesionless soils. Specific objectives of 

the research can be listed as follows: 

a. To develop a three-dimensional discrete elements model and improve its 

computational efficiency to allow for large simulations. There are two issues driving 

this effort. First, regardless of the "smoothing" scheme ultimately developed, it is 
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likely that the general integration scheme will remain unchanged. The number of 

aggregate particles needed to model real problems in three dimensions will 

undoubtedly be large. Since, realistic problems will involve particle systems on the 

order of 100,000 to 1,000,000 particles; the need for improved computational 

efficiency is paramount. The second need for a large particle model is to develop an 

ability to model laboratory experiments on a one-to-one basis. The principal 

requirement of the averaged particle model is that it converges to the behavior of the 

one-to-one model, as the analysis mesh is refmed. Therefore, for the averaged model 

to be useful, the one-to-one model must provide an accurate representation of the real 

particulate medium. To provide the link between the particle model representation 

and actual soil behavior, particle models must, at a minimum, be able to model small, 

simple experiments on soil. 

b. To demonstrate that simulation of laboratory experiments yields results comparable to 

real soils. Further, the behavior of these simulations should be controlled by well

defmed material parameters. This objective must be met for discrete particle 

modeling to be applicable to real soils. This objective is important because the DEM 

makes simplistic assumptions as to the geometry and interaction of individual 

particles. Little work has been done to determine what properties of the D EM are 

required to realistically model soils. 

c. To establish an averaging scheme to convert properties local to the particles (e.g. 

mass, momentum) into continuum attributes (e.g. density, velocity gradients). An 

important issue to be resolved is how the coarseness of the particle system effects the 

properties of the averaged continuum. It is postulated that beyond a certain threshold 

number of particles, the actual number of particles participating in the average has 

little effect on the average. This principle, if verified, would put the averaging 

scheme on a logically sound, yet practical basis. 

d. To devise a computational procedure for modeling prototype-scale behavior using 

sparse smooth particle systems for which computations can be performed on existing 

computer systems. 

1.6 Dissertation Organization 

This Dissertation consists of seven chapters and an appendix. Chapter One covers the 

background and introduction of the dissertation, a review of particle modeling schemes, 

objective of the research, and the organization of the dissertation. The second chapter describes 

the development of the DEM model and efforts to improve the efficiency of the model that 

serves as a "numerical laboratory". The third chapter takes up the general question of 

descriptive averaging of physical quantities of the particulate system. It also describes the 

development of continuum relationships derived based on "averaged" quantities. Chapter Four 

describes various laboratory experiments that were performed and the comparison of these test 

results with results from soil particle model simulations of the laboratory tests. Chapter Five 

describes the development of the numerical method used in the smooth particulate model. 
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Chapter Six describes the results from numerical simulations from the smoothed particle of 

laboratory soil experiments. Conclusions of the research and recommendations for funher study 

are provided in Chapter Seven. 
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CHAPTER II 

The Soil Particle Model 

This chapter describes the basic mathematical formulations used to develop the soil 

particle model and the effort to optimize the model for use on high performance computing 

resources . Examples such as soil plowing and trap door simulations are shown in Figure 2.1 . 

The primary objective of this study was to develop a model that could simulate laboratory soil 

experiments in which the number of computer particles is approximately the same as the 

number of actual soil particles in a laboratory experiment. 

By performing large particle simulations, large data sets of discrete particle information 

are obtained. These data are imperative to development of the smooth particle system. The 

principal requirement of the smooth particle model is that its results converge to the behavior of 

the one-to-one model, as the analysis mesh is refined. Therefore, for the averaged model to be 

useful, the one-to-one model must provide an accurate representation of the real particulate 

medium. To provide the link between the particle model representation and actual soil 

behavior, particle models must, at a minimum, be able to model simple experiments on soil. 

The objective was not to build the most physically realistic DEM model, but to build a 

model that allows for large simulations from which meaningful statistical data on the particulate 

mass can be obtained. Simplistic assumptions were made as to the geometry and interaction of 

individual particles, partly on the belief that only certain details of the inter-particle interaction 

actually cause identifiable effects in the emergent behavior of large particle groups. The simple 

particle model used in the present research contains these essential physical features. 

The developed model uses three-dimensional rigid spherical particles. Interparticle 

interactions are modeled by linear springs in the normal and tangential direction at the particle 

contacts. A local hysteretic damping law was developed to dissipate energy. To simplify the 

model, particle rotation was not allowed. It is believed that for many large deformation 

problems (e.g. plowing) with a large number of particles, individual particle rotation is not 

significant to the overall kinematics. The physical interpretation of the non-rotating particle 

assumption is that the particles possess infmite rotational inertia. Simulations by Ting, et al. 

[ 46] show that the effect of large rotational inertia is increased internal friction of the particulate 

media; and, they suggest that modeling real soil strength behavior requires that the rotational 

inertia of particles be increased significantly. Chapter four will show comparisons of computer 

simulations and laboratory soil tests and draws conclusions on when particle rotation is 

important. 
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2. 1 Stability of OEM 

Discrete element models generally use explicit integration schemes to determine the 

motion of the particles. This is because particle contacts are formed and lost during a time step 

leading to highly discontinuous non-linear behavior. 

Implicit integration schemes require difficult non-linear iteration, which involves the 

solution of very large systems of equations. Explicit integration schemes avoids iterations but 

their singularity comes at the expense of limitations in the computational time step. This 

section considers this limitation in detail. The critical time-step, ten required to ensure that the 

numerical scheme will remain stable during the simulation is approximated from a single 

degree-of-freedom system as: 

(2.1) 

where m is the mass of the smallest particle and k is the contact spring stiffness of the 

smallest particle. In practice, the approximate critical time step is reduced by at least a factor 

of ten to ensure stability of the simulation [14]. 

Corkum and Ting [13] stated that if two particles are in contact for less than three time 

steps, energy produced from the contact is not necessarily conserved. However, if the contact 

lasts for three time steps or more, energy is conserved. Corkum and Ting derived relationships 

(Equations 2.2 and 2.6) to ensure that the contact existed for at least three time steps for 

particle-wall interaction and particle-particle interaction. For particle wall-interaction, the 

stability criteria is: 

kt2 
ct 

2- - - >0 
m m 

where c is a viscous damping coefficient. 

A line on a plot of 1r k versus 1r c can be defined that separates stable and unstable 

simulations: 

where 1r k and 1r c are dimensionless terms defined as (see appendix A): 

kt
2 

7rk = 
m 

and 

(2.2) 

(2.3) 

(2.4) 
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ct 
1r=c 

m 

A similar relationship can be developed for particle-particle interactions. 

for particle-particle interactions with no global damping is: 

or 

or 

2 
_ 2kt

2 
_ 2ct > 

0 
m m 

(2.5) 

The stability criteria 

(2.6) 

(2.7) 

(2.8) 

The advantage of using these critical time step relationships is that the effect of the 

viscous damper is included in the calculation and provides a more accurate estimate of the true 

critical time step for the system. The viscous damper, as well as any other damping 

mechanism, stiffens the particulate system and reduces the critical time step. Equation (2.2) 

and (2.6) illustrate how the viscous damper stiffens the system and lowers the critical time step 

of a system. 

The issue of a critical time step is very important when trying to model real granular 

material. Sands consist of particles that have relatively small mass and large contact stiffness. 

This combination can drive the critical time step to such a small number that meaningful 

simulations cannot be performed. The dimensional analysis was originally performed 

(Appendix A) to determine if scaling laws could be used to increase the critical time step while 

maintaining stress similitude. The results indicate that scaling laws do not provide any 

advantage to modeling the system. In fact, it was found that to maintain the stress-strain 

relationship for the material, the particle spring stiffness is dependent on the size of the particle. 

The smaller the particle is, the smaller the particle stiffness must become to maintain the stress

strain relationship of the material . Additionally , the critical time step was found to be 

proportional to the particle size. As smaller particle sizes are used, for a given material, the 

critical time step will decrease. This indicates that DEMs have a computational limit with 

respect to modeling small soil grains. 

2.2 Particle Force Calculations 

The interaction between two particles can be described by a set of springs, dashpots, 

and a frictional slider as shown in Figure 2.2. Normal and shear forces are computed between 

the two particles if the two particles are in contact. Two particles are in contact only if the 

distance, D, between their centers is less than or equal to the sum of their radii, i.e.: 
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Figure 2.2: Particle Contact Interaction Model 
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(2.9) 

where R A and R 8 are the radii for particles A and B. 

If two particles are in contact, the normal unit vector, n; , and the shear unit vector (
1 
,are 

determined. The normal unit vector n
1

, points from the center of one particle A to the center 

of the particle B: 

B. -A. 
n . = I I 

I D 
(2.10) 

where A; and B
1 
are the center point locations for particles A and B and the subscript i 

represents the coordinate direction. 

The shear vector t; , is computed from the relative shearing velocity between the two 

contacting particles and is determined by: 

(2.11) 

and 

s r n v . = v . -v. 
I I I 

(2.12) 

where vs is the relative shear velocity component of the two contacting particles, vn is the 

relative normal velocity component of the two contacting particles, and vr is the relative 

velocity of the two particles in contact, given by 

r A B 
v . =v. -v. 

I I I 
(2.13) 

Such that 

(2.14) 

2.2.1 Normal Force 

The normal force between the two particles, which is a repulsive force acting along the 

normal unit vector, is computed as: 
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(2 .15) 

where K (:}ef! is the nonnal effective stiffness constant for the two particles defined as : 

K AB 
(N}ef! = 1 1 . 

1 
(2 .16) 

--+--
K A K B 

N N 

K ~ and K! are the nonnal stiffness constants for particles A and B, respectively, and '¥ IS a 

penalty function that reduces particle penetrations. Because the stiffness of a particle is 

dependent on the particle size, K ~ will not equal K! when the contacting particles are of 

different sizes. A simple linear contact stiffness is used because it is believed that for large 

strain problems the nature of the force-displacement relationship at contacts is relatively 

unimportant. Rather, most deformation occurs due to interparticle movement's [17] . The 

penalty function was developed with two conditions in mind. First, '¥ should equal zero when 

D - ( R A + R 
8 

) ~ 0 . Secondly, if D - ( R A + R 8 ) < 0 , then as the distance between particle 

centers becomes smaller, '¥ should increase. 

2.2.2 Shear Forces 

The shear force component of the particle-particle interaction is computed by 

integrating the relative shear velocity, v ;s over time to provide the contact shear displacement, 

8 ~ , for the current time step, llt. : 

A trial shear force increment for the time step is then computed as 

where K (~)elf is the effective shear spring stiffness constant. 

As long as the two particles remain in contact, the shear force increment 

is added to the previously accumulated shear force for the contact, i.e. , 

(2.17) 

(2 .18) 

(2 .19) 

18 



where the indices L and L - 1 refer to times t L and t (L-I}, and D.t = t L - t (L-I). 

The magnitude of the trial shear force is compared to a maximum shear force computed 

by a Coulomb-type friction law given by Equation 2.20. If the trial shear force exceeds this 

maximum shear force; the shear force is set equal to the maximum shear force: 

(2 .20) 

where ¢e-; is the contact friction angle. 

2.3 Energy Damping 

The energy dissipation characteristics of the contact interaction law are critical for 

realistic simulation [14]. The major simplifying assumption that makes DEM computationally 

viable is that the particles are rigid and that interaction between particles occurs at the contact 

through discrete contact mechanisms. In real soil grains, energy is dissipated in the complex 

deformation process, which may include heat generated by plastic deformation, abrasion of the 

particle contact area, creation of sound and chipping or splitting of the particle. Particle 

interaction with boundaries may involve energy dissipation due to energy carried through the 

boundary materials. All of these mechanisms must be captured by the energy dissipation 

characteristics of the simple contact mechanisms. To improve energy dissipation 

characteristics, the introduction of a global damper was suggested by Cundall and Strack [14] . 

The global damper invokes a viscous force on a particle in proportion to its velocity, as if the 

particles were moving in a viscous fluid . Of course, for most simulations, the particles are not 

moving in a viscous fluid, leading to physically erroneous effects. 

In many problems, the static position of the particulate mass is of interest. In the static 

position, DEM represents a spring-mass (elastic) system with constant interparticle connectivity 

that, in the absence of energy dissipation will oscillate freely at its resonant frequency about the 

equilibrium position at amplitude on the order of the particle size. In real granular media the 

numerous mechanisms that exist to dissipate energy, not modeled by the DEM, ensure such 

extreme oscillations do not occur. Thus, a OEM must allow for the dissipation of energy to 

ensure that a static equilibrium position can be reached. The problem that immediately arises 

from integrating all energy dissipating mechanism into a single mechanisms is that the system 

either will be insufficiently damped or that other unwanted, physical effects will be introduced 

by the artificial energy dissipation law. The method used for energy dissipation should thus 

have the following criteria: 

1) the model should be calibrated from an "integrated" measurement of energy 

dissipation (e.g. a coefficient of restitution 

2) energy dissipation should be tied to particle interactions to avoid excessive 

dissipation during "free-fall" motions when coordination numbers (the average 
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number of contacts per particle) are small, as is the case for global viscous damping 

schemes 
3) motions should be strongly damped once a pennanent contact is made to ensure 

static equilibrium can be obtained 

4) spurious rate dependence should not be introduced, as may happen when viscous 

damping is used either at the contact or as a global effect 

5) there must be a clear criteria for establishing the critical time step. 

Typically, DEM energy dissipation mechanisms are shear friction sliders , which 

dissipate energy via Coulomb friction; local viscous damping of shear and nonnal contact 

motions; and global viscous damping [13] . The problem with the use of a viscous damper is 

that it introduces an artificial rate effect into the problems that is not present in granular 

material. Studies of wave propagation [45] indicate that such physically inappropriate damping 

can give rise to significant errors. As noted above, in the case of the global damper the 

problem may be more acute because not only is spurious rate dependence introduced but also 

the effect is applied even in the absence of particle interactions. Additionally, the viscous 

damper stiffens the contact system, thus lowering the critical time step required to maintain 

numerical stability. 

2.3.1 Hysteretic Contact Law 

Shukla and Sadd [45] investigated three contact laws for DEM simulations; linear, 

nonlinear, and nonlinear hysteretic contact laws, and demonstrated how these laws effected the 

wave propagation process within a dry granular media. The linear and non-linear contact laws 

included viscous damping while the non-linear hysteretic contact law did not. These 

simulations where compared against experimental tests of disks made of aluminum material. 

Shukla and Sadd concluded that the non-linear hysteretic damping provided the necessary 

damping to control the inter-granular wave amplitude behavior and was the best match with the 

experimental data for both the wave speed and amplitude attenuation. 

In an attempt to improve the energy damping of the large particle system in the present 

research effort, a non-linear hysteretic damping law was developed and incorporated into the 

model. The hysteretic contact law is defmed as a two-part curve consisting of a linear portion 

for initial loading and a non-linear curve for unloading and subsequent reloading. The particle 

force associated with the non-linear curve is computed as the product of the contact 

displacement, 8 , and a modified contact spring stiffness, Kr. The function describing Kr 

was arbitrarily selected as a power function that was related to the maximum contact 

displacement, 8 m , and the coefficient of restitution, e : 

(2.21) 

and 
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where 

n- 1 

n= 2 -e 
-- otherwise 

e 

(2.22) 

Figure 2.3 shows a typical linear loading curve and the subsequent non-linear curve for 

various levels of damping. The coefficient of restitution is defmed as the height to which a 

particle will bounce after being dropped onto a rigid, flat surface divided by the initial drop 

height of the particle. The power n is related to the coefficient of restitution by considering 

that e is defmed as: 

1 -
0.9 _____ ___!__----,r----*1-'Hh 

0 .8 +-------+----:------l-4~~ 

0. 7 +-----+---h ~--#~ --f---,H-1 

0.6 .J_ _ ___J. __ -A--___ -rf+*-1-+--l 

0. 5 +--------,.- -+-----41- -------L-.,4---/--~ 

0 .4 +---- ~__._ _____, ,4--~ ...J-If-__..,.---l 

0.3 --- -41-- -----,.L--,.- -6- --.4--1-- ~ 

0 .2 ..;..--- -4-+ ------,..L----*- -~+-.f-- -+--1 
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Figure 2.3: Hysteretic Contact Law 
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where W 1 
is the work associated with the contact during the initial loading. W 

1 

the initial linear loading force curve as: 

(2.23) 

is defined by 

(2.24) 

W 0 
is the work associated with the particle breaking the contact. W

0 
is defmed by the non

linear curve as: 

k
~n+l 

rtil· 8nd8 = um 
Jo (n + 1) 8;,-1 

k8~ 
-

n+l 
(2.25) 

Substituting Equations (2.24) and (2.25) into Equation (2.23) yields a relationship between the 

coefficient of restitution and n : 

2 2-e 
e= or n=--

n+l e 

If kr at 8 m satisfies 

an in view of the critical time step 

t -
c 

then 

e 

2-e 

t= 1m 
v~ 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

Equation (2.29) can be used to evaluate how a change in e will affect the critical time step. 
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2.3.2 Variable Viscous Local Damper 

The hysteretic damping law will remove energy from the system only if contacts are 

formed and broken. If two particles remain in contact, they will oscillate along the non-linear 

portion of the hysteretic curve. Thus, an additional mechanism is required to ensure that the 

interacting particles will come to rest. The option of creating a more general hysteretic law is 

rejected to avoid introducing a large set of interval variables. Therefore, a variable viscous 

local damper is applied to the non-linear portion of the hysteretic damping curve. The viscous 

damper is set so that the maximum amount of viscous damping can occur without a decrease in 

the critical time step. If Equation (2.6) is used as the stability criteria, then 

Solving for the c that just meets this criterion: 

m-k t 2 

c= r 
t 

Substituting Equations (2.22) and (2.27) into Equation (2.31) produces: 

or 

1 8 
1---

n 8m 

c = .J nkm (1 - n
1 

n-1 

8 n-l 

8m 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

Note that the viscous damper is "engaged" only after the contact force begins to oscillate and 

make a minor contribution to the total energy dispersion in the system. 

2.4 Particle Motion 

Once all of the contact forces acting on a particle have been determined for each 

particle, the forces are resolved into orthogonal components. A gravitational force is applied to 

each particle. The magnitude of the gravitational force is equal to the product of the mass of 

the particle and the gravitational acceleration constant for the system. Forces acting upon each 

particle are vectors summed and the instantaneous acceleration of the particle, over the current 

time step, is determined using Newton's second law of motion: 
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(2.34) 

Finally, the updated velocity and location of each particle are determined using equations of 

motion: 

.A . A .. A 

X,,N = X;,(N- 1) + f:ltX;,(N-1) (2.35) 

and 

A A . A 1 2··A 

x i,N = x i,(N-1) + MXi(N-1 ) + 2 l:lt x i,(N-1) (2.36) 

2. 5 Optimization of Particle Code 

This section describes the effort to optimize the model for use with single processor 

computing resources. Efforts to optimize the model for parallel computing resources are 

described in [8]. The preliminary modeling effort of the soil particle model focused on the 

implementation of the DEM algorithm. Little or no attention was given to computational 

performance or efficiency. The algorithm consisted of two main sections: calculation of forces 

and integration of equations of motion to move particles. Each section loops over the entire 

number of particles, performing all calculations for that section on a particle-by-particle basis. 

Contacts are determined by calculating distances between all particles, and redundant contact 

and force calculations were eliminated by identifying each particle by a unique "id" number 

and limiting the checks to the current particle and those with a larger particle "id" number. 

The determination of particle contacts consumed the bulk of the computations. The resulting 

model, though simple, could only reasonably run problems in the couple of thousand-particle 

range for any simulation requiring a large number of time steps. 

The initial performance evaluation concentrated on single processor performance on a 

CRA Y Y -MP and was aimed solely at code structure. With no major algorithm modifications 

being made, the emphasis was on improved vectorization, improved input/output, and the 

elimination of redundant work. Though performance was improved by at least an order of 

magnitude, it was still insufficient. 

Performance profiling had clearly established the contact checks as the primary 

computational bottleneck. The all-against-all particle distance check, though simple, scales 

computationally as the square of the number of particles O(N2
) , making it impractical for large 

problems. By using a link-cell type method [23] , [24] to create a neighbors list [53], the 

contact check was reduced to an O(N) operation, dramatically reducing the computational 

requirement. This method divides the physical space of the simulation into a regular grid of 

cells. 
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A particle's "owning" cell can be determined with one pass through the particles. With the cell 

size being set greater than or equal to the maximum particle diameter, possible contacts are 

limited to particles within a cell and the 26 surrounding cells. The actual implementation only 

puts particles into the upper (or lower) 13 surrounding cells to avoid duplicating redundant 

(equal but opposite) force calculations. Larger cell sizes can decrease the frequency with which 

one has to update the neighbor 's list, but add considerably to the number of potential contacts. 

Since the neighbors list algorithm amounted to only 5 %-15 % of the total runtime, it was found 

to be more efficient to minimize the cell size and update each time step. The cell size was set 

to just larger than the diameter of the largest particle in the system. This ensured that the 

number of potential contacts within a cell was minimized and that a particle's interaction was 

limited to the cell it occupied and the surrounding 26 cells. Updating each time step also 

simplifies the transition to a parallel model. 
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Figure 2.4: Single processor CRA Y Y -MP CPU time-per-time step vs. number of particles for 

the three phases of single processor optimization 

Figure 2.4 shows the single processor improvements for the three versions of the_ model 

on a CRA y y -MP as the number of particle increases. The times given are an average tune-

per-time step. 
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Chapter Ill 

Continuum Representation of Discrete Particle Systems 

3.1 Background 

Most numerical models are discrete approximations to systems of differential equations. 

The differential equations are expressed in terms of continuous variables and describe the 

behavior of a continuous medium. In reality , all media are discrete and the continuum 

assumption serves only as a useful approximation that simplifies analysis. Normally, the 

difference in scale between the smallest element of the system and the problem domain is so 

great that the continuum approximation is valid. 

In the course of devising models of natural systems, two steps are essential: 1) a media 

is conceived that constitutes a continuum for which relevant balance laws can be stated and 2) 

constitutive laws are defmed to close the system of equations created from the balance laws. 

The central issue of a continuum description, versus a discrete description, is the continuity of 

field quantities . In particular, descriptions of deformable continuum bodies begin with a 

requirement for deformations to be compatible, meaning that the deformation fields are 

integratible so that unique displacements can be obtained from them. Physically, compatibility 

implies that a particular set of material points can be mapped uniquely, by affme 

transformation, from one stage of deformation to the next. Such deformations do not admit 

rips, tears, and fractures or so forth within the body without additional specification of auxiliary 

discontinuity conditions . In this regard, the size of the elementary particles making up the 

medium are not an issue because even in a discrete system, individual particles can be 

constrained to move in accordance with a continuous affme mapping . For movements that 

violate affme mappings, material points must belong to independent sets, regardless of their 
. 

stze. 

In other applications, the size of the discrete elements becomes an issue because certain 

field quantities display correlation lengths whereby values of a quantity at one location are 

related to that quantity at another. Quantities associated with a discrete element display 

spatially related behavior over dimensions equal to those of the element. In media consisting of 

discrete elements, therefore, it is sometimes expedient to forego devising a continuum 

description and proceed with a model of the discrete media such as described in the previous 

chapter. Discrete models provide a basis for a more direct link to the underlying physics but 

suffer from the drawback that the numerical representation of the media is significantly coarser 

than the actual media. This limitation must be weighed against the reality of a numerical model 

of a continuum which itself is an approximation of a discrete system. It can be expected that 

any numerical approximation will be coarser than the actual media whether based on a discrete 

description or a continuum representation. 

Formulations in continuum mechanics are based on field quantities such as density, 

stress, and strain, all quantities associated with a representative elemental volume (REV). The 
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REV is taken to be that volume for which a quantity can be averaged to produce a statistically 

stationary result. A typical example is density, which is defmed as the mass contained within a 

sampling volume. At the smallest scale, if the sampling volume lies within a solid grain the 

density will be that of the solid phase. If the sampling volume lies within a pore, the density 

will be zero. If an average is made for a somewhat larger volume the density will vary between 

the solid's density and zero. As the sampling volume increases the average density will 

approach the material's bulk density. The volume needed to obtain a statistically correct bulk 

density is the REV. For the REV formulation of the continuum, each material point is assumed 

to possess the attributes of the REV surrounding it. While it is recognized that the REV has a 

finite size, a fact that may affect accuracy of the continuum model, the REV size itself is 

typically not an explicit part of the continuum model. There is no REV size parameter. 

While it may appear that a discrete model permits a more direct link to physical 

phenomenon without incurring errors significantly greater than discrete numerical 

approximations of continuum equations, relatively few models are actually based on discrete 

models. The reason for this is simply the lack of recognition of coarse discrete models as viable 

alternatives to continuum models. Discrete models have found applications in studies of 

fundamental physical mechanisms at the fundamental scales [ 1], [ 1 0], [ 11], [28]. What is 

lacking is a general treatment of discrete models that systematically distinguishes length scales 

that arise as part of the numerical approximation process from the scales intrinsic to the 

physical system. 

Two types of discrete length scales are distinguished in the formulation that follows; a 

smoothing length scale and the characteristic physical length scale (e.g . particle size) of the 

discrete system. The numerical smoothing length scale is tied to a smoothing operator that 

distributes conserved quantities (e.g. momentum, mass, and energy) identified at a fmite set of 

points within the sampling area over a mathematical continuum. The smoothing operator is 

applied to the difference equations, derived from the discrete system, that contains the natural 

length scale. For most problems, the smoothing scale is larger than the natural scale. 

However, as the smoothing scale is made smaller, the difference equations describing the actual 

discrete system are recovered. 

3.2 Smoothing Field Quantities and Strain 

There are several motivations for using a smoothing operator in lieu of a REV. First, 

the method provides a systematic way to derive equations in terms of continuous functions 

without introducing the concept of the representative elementary volume (REV) which in tum is 

tied to the properties of an infmitesimal element. In the REV approach, the characteristic 

length scales are lost. In the smoothing approach, the discrete approximation is merely 

coarsened. Secondly, the smoothed media approach provides a means to convert the statistical 

properties of the individual components , such as grain size distribution, of the discrete system 

to continuous properties . For example, properties of elastic elements in a discrete particle can 

be related to the elastic stiffness tensor. Thirdly, the smoothed continuum properties converge 

to the discrete media properties as the smoothing length goes to zero. 
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3.2.1 Implied Average Volume 

The use of a smoothing operator for modeling discrete systems has been demonstrated 

in Smoothed Particle Hydrodynamics [7] , [33], [34], and [35]. This averaging approach yields 

an " implied averaging volume" (IAV). The averaging is implied because the defmite averaging 

volume of the REV is replaced by a space in which weighted averages are taken. For example, 

the implied mass average over the entire space is given by the integral 

m(x) = s:<X> ¢(x- x')m(x') dx' (3 .1) 

where x is the location of the averaging point and x' is a location of a particle in the vicinity 

of x . The kernel function, ¢(x- x'), weights the average with distance from the material 

point to which the average is assigned, giving rise to a characteristic length similar in concept 

to the REV dimension. The characteristic length, h , of the system as shown in Figure 3.1 is 

defmed as the size at which the average value of a quantity becomes statistically stationary. The 

kernel function is symmetric in its argument, monotonically decays with distance, and satisfies 

(3.2) 

The integral has compact support meaning 

f
x+h 

m{x) = x-h ¢(x- x')m(x') dx' (3.3) 

where 

I
x+h 

x- h ¢(x- x') dx' =I (3 .4) 

and 

(3 .5) 

Within the interval x- x'l ~ ! h i, the kernnel ¢(x- x') is assumed to be sufficiently smooth to 

permit mass distributions of the fonn 
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m{x) = Lmk 5(x -x') (3.6) 
k=l 

where mk is the mass of the k 'h particle located at xk in the system. The Dirac delta 

operator, 5(x- xk ), satisfies Equation (3.2) and is zero for x :t= xk. N is the total number of 

particles in the system. Equation (3 .6) holds for any x including x'. Thus by substituting 

Equation (3 . 6) into (3 .1): 

:t+h N ( ) 
m{x) = J x-h ¢(x- x') Lmk 5 x'- xk dx'. 

k=l 

The redistribution from discrete particle masses to the continuum of material points is mass 

conserving for the whole domain as follows 

Upon changing the order of summation and integration over x' and invoking the selector 

property of the delta operator we get 

(3 .7) 

(3.8) 

(3.9) 

Again, interchanging the order of summation and integration and noting the infinite extent of 

the integral, we evaluate the integral using Equation (3.2) to get 

oo N 

J -oo m{x)dx = Lmk. 
k=l 

(3 .10) 

The effect of mass averaging is to distribute (or numerically diffuse) the particle masses 

in accordance with the weighting kernel to produce a continuous field m{x). Like the REV , 

the lA V produces a continuum in which each material point within the medium is given a 

property corresponding to the smoothed average for particles making up the (actual) discrete 

media. The key advantage of the IAV over the REV is that a characteristic size of the 

smoothing function can be incorporated into the continuum defmition. 
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Figure 3.1: Characteristic Length of the Kernel Function 

3.2.2 Computation of Gradients 

~(x-x') 

A major advantage of the smoothing operator, Equation (3.1), is that derivatives and 

gradient operators for the smoothed quantities can be computed. The average gradient of the 

mass is defmed as 

J
x+h 

Vm(x) = x-h ¢(x- x') Vm(x') dx'. (3 .11) 

This formula has limited application in view of the character of m( x) given by 

Equation (3.6). However, in view of the smoothness requirements imposed on ¢(x), 
integration by parts may be applied to the integral to obtain 

' 

J
x+h 

Vm{x) = x-h -V ¢(x- x') m{x') dx'. (3.12) 

Note that the boundary term resulting from the integration by parts is zero when evaluated at 

the limits of x + h and x - h. Thus the gradient of the mass average becomes the weighted 

average of the mass using - V ¢{x- x') as the weighting kernel. The gradient is taken over 

the same volume of mass as the average itself. 
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3.2.3 Momentum, Velocity, and Velocity Gradient 

It is often useful to define averages in terms of weighted quantities where the weighting 

is in terms of a quantity, such as mass, that measures the attributes of the sampling space. A 

physically motivated example of a mass-weighted quantity is the average velocity, v, (x), which 

is determined from the averaged momentum, p , (x) and average mass, m(x) : 

- ( ) P;(x) 
V; x = m(x) (3 .13) 

where 

P; (x) = J ~a) ¢(x- x')m(x')v; (x') dx' (3 .14) 

and m { x) is computed from Equation (3 .1) . 

The spatial velocity gradient, LiJ , is given by 

The second term in Equation (3. 15) accounts for the non-uniform distribution of particles since 

m(x) varies with x . 

3.2. 4 Sampling Size Effects 

One of the primary advantages of the descriptive averaging is that size effects are 

accounted for through the use of the characteristic length of the kernel function. An 

understanding of how the characteristic length or sampling size affects the descriptive averaging 

process is required . If the characteristic length is set too small, the results from the descriptive 

averaging process will not properly model the macroscopic behavior. Conversely, if the 

characteristic length is too large, the results from the averaging process will tend to smooth out 

any localized effects, such as shear banding. 

An additional concern about the characteristic length is its effect on the numerical 

accuracy of gradients. Since gradients reflect change in a property or behavior, they require 

more data than a point variable, such as mass, to be reliable. To illustrate this point, the 

particle data set from the Treasure Island sample, described in Chapter 4, was analyzed. Each 

particle was assigned a horizontal velocity equal to the particle 's vertical position. By 
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definition, this should yield a value of one for the shear component of the spatial velocity 

gradient, L
12 

, as defmed by Equation (3 .15). However, some deviations from this ideal should 

be expected because in the averaging scheme the mass of a particle is lumped at the center of 

the particle. This can lead to an uneven distribution of masses that in tum will effect the 

estimate of the mass gradient. 

The shear component of the spatial velocity gradient was sampled using four different 

sampling lengths for two different kernel functions . The first kernel function is a hat function 

shown in Figure 3 .1. The second kernel is a spline function [35] used in smoothed particle 

hydrodynamics. Figure 3.2 demonstrates the impact that sampling size (i.e. , number of 

particles in the sample) has on the accuracy of the estimated gradient. Clearly , a fairly large 

number of particles, 200 or more is needed to deliver a good estimate of the gradient for this 

soil. 
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Figure 3.2: Effects of Sampling Size on Gradient Estimate 

The spline kernel function provided a slightly better estimate of the gradient than the 

hat kernel function . However, because of the complexity of the spline kernel function and 

additional computational requirements for computing averages, the hat kernel function was used 

for the remainder of the research. 
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3.2.5 Strain 

The ability to compute the spatial velocity gradient from the discrete system allows for 

the measurement of strain in the system. Typically, Lagrangian strain is used to describe the 

straining. Lagrangian strain is measured relative to an initial condition. A transformation 

between the spatial coordinate grid, from where the displacement measurements are taken, and 

the material grid, Figure 3.3, which relates the system relative to an initial configuration, must 

be developed to determine the Lagrangian strain history of material points during the 

simulation. To relate points between the two coordinate systems a deformation gradient tensor 

is defmed as: 

Material Grid~ 
. -· .. · ·-·····-···· ·-·-·- .. -··· ··-·- . -. : : . ; .. 
. - . . . 
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: •• -~~-.a.:.J.!~~~~-,.LLI.II~~ 

• • . 
• • . - -.. ····-·-· .......... ····-··· .... . . . . . : . ~ 

: . : 

~ : ~ 
Spatial 

Grid 

Figure 3.3: Deformed Material and Spatial Grid 
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(3.16) 

The upper case subscripts signify derivatives are taken with respect to the material coordinates. 

The lower case subscript implies the direction in the spatial coordinate system, FiJ maps from 

the reference grid to the spatial grid. The mapping between the spatial and reference grid must 

obey certain conditions. First, the axiom of impenetrability states that no two particles can 

occupy the same location in space at a given time. This requires that the mapping produce a 

single unique location for each particle in each grid system. Additionally, any two neighboring t 

points in the reference grid must remain neighbors in the spatial grid. The mapping between 

the grids must be continuous and possess continuous derivatives with respect to space and time. 

The above conditions are met if the determinant of F is non-zero. This determinant is referred 

to as the Jacobian determinant, J. 

The deformation gradient tensor is related to the spatial velocity gradient tensor, 

L .. = av1 = av, oX1 = !!_ ax; oX1 
lj • ax . ax . ax . dt axJ ax . 

J J J J 

Therefore, the rate at which the deformation gradient is changing can be written as: 
. -1 

L .. =FF 
lj 

or 

. 
F

1 
= L .. FjJ. 

I lj 

(3.17) 

(3.18) 

(3.19) 

By updating the deformation gradient tensor through time, a Lagrangian strain tensor can be 

computed as: 

(3.20) 

where 5IJ is the Kroncker delta function and C/J is the Green's deformation tensor defmed as: 

(3.21) 

The rate of change for the Lagrangian strain tensor is: 

3.22) 
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or 

Finally, substituting Equation (3 .19) into Equation (3 .23) yields: 

. 
Eu = LuFj/Fu 

3.3 Kinematics of Averaged Quantities 

At the particle level Newton's law for linear momentum gives the kinematics 

relationship: 

ck 
L/,c =pi 
c=l 

where C k is the total number of contacts acting on particle k . In the case of a constant 

particle mass 

. . 
P . = mv .. 

I I 

(3.23) 

(3.24) 

(3 .25) 

(3.26) 

The smoothed average of momentum is given by the weighted average of momentum of the K s 

particles in the region: 

1 
K, 

- ( ) """' A. k k P; X; =-L .. /1' P; 
Ps k=I 

(3.27) 

where 

(3.28) 

and 

(3.29) 

where x: is the coordinate of the particle center while the smoothed average momentum p 1 is 

a function of the positional coordinate x,. The average momentum rate is given as: 
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1 K, ~ -· 'k k k·K 
P; =-L P; +¢ P; 

Ps k=l 

(3.30) 

where 

(3.31) 

It follows from Equations (3.25) and (3.27) that 

-· 1 
P --. -

I 
(3. 32) 

Ps 

where 

a 
'\1 . = . 

I ax. 
I 

(3.33) 

The first term of Equation (3 .32) is the convective term that arises because the averaging is 

performed over a grid (possibly ftxed in space) that moves at a velocity v: relative to the 

weighted average of the particles. For simplicity of presentation, an observation frame is 

selected such that v: = 0. 

By regrouping the remaining term, the sum on the right hand side, Equation (3 .32) can 

be written as 

(3.34) 

where the sum is taken over Ls particle contacts within the sampling region. The superscripts 1 

and 2 denote the two particles making up the /-th contact as shown in Figure 3.4. 

Regardless of which particle is labeled 1 or 2 we have 

I 2 
n . = n. 

I I 
(3.35) 

and 

(3 .36) 
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It follows that, 

(3.37) 

and 

/,
1 I /, 2 2 

I nl = I n; (3.38) 

It is of interest to relate the right hand side of Equation (3. 34) to a gradient of stress 

with the goal of obtaining a relationship comparable to the conservation of linear momentum for 

a continuum. To this end, the particle stress is defined as : 

R~ c j c 
a iJ =- ~n , 1 

V c=l 

(3.39) 

Figure 3.4: Labeling of Particles and their Contacts 
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where R is the radius of the particle and V is the volume of the particle . It will be shown that 

a meaningful quantity is the volume-averaged particle stress: 

(3.40) 

where 

K ., 

n s = L¢kVk . (3.41) 

k=l 

The averaged stress can also be computed from the multi-particle contact quantities as 

(3.42) 

Because ¢ k is the only function of position, the gradient of the averaged stress is given by (for 

uniform n s ) 

(3 .43) 

Finally, we note that in view of Equation (3.37) 

1 L. ( ) - . I I 2 2 

V .cr .. =-" V ·"' R + V ·"' R n. +.. j I) L..J ; 'Y ; 'Y , J i 

n s 1=1 

(3 .44) 

On the other hand, we can substitute Equation (3 .36) into Equation (3.34) to get 

(3 .45) 

The value of ¢ 1 
can be approximated as 

(3.46) 

or as 
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(3.47) 

Subtracting these approximations we get: 

In view of Equation (3.35), 

(3.49) 

which gives, by substitution into Equation (3 .45) 

By comparison of Equations (3 .43) and (3 .50) we have: 

. 
PsP; = n/v Ja iJ (3.51) 

or 

(3.52) 

From Equations (3.26) and (3.27) 

~ 1 ~ .A.k k k 
p =-LJ'r m v;. 

Ps k=l 

(3.53) 

Thus, 

\1 .a .. = -
1 

mv. 
J IJ I. 

ns 
(3.54) 

The right hand side of Equation (3.54) is dimensionally equivalent to the product of a density 

(mass per unit volume) and acceleration (v; ). In fact, taking m and V; to be independent 

quantities we have 

. 
\1 .(]" .. = pv. 

j IJ I 

(3.55) 
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where 

Finally, from Equation (3. 55) 

m 
p=-. 

ns 

-
'V .(}" .. = 1'. 

J I) J i 

where, /; is the volume averaged force given by 

Thus, the particle system when smoothed follows the same momentum balance as the 

continuum. 

(3.56) 

(3.57) 

(3.58) 
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CHAPTER IV 

Large Deformation Analysis using OEM 

4. 1 Introduction 

A major hindrance to developing a theory for large deformations in particulate media is 

that force and kinematics relationships are impossible to measure at the particle level in three

dimensional granular flow. An alternative to physical measurements is to use a simulated 

particulate system from which quantities of interest can be computed. However, any continuum 

theory resulting from such simulated "measurements" would apply to the simulated media 

rather than to actual soil. This obvious point is important in view of the fact that the particulate 

simulations grossly simplify the real interactions. However, we cannot make experimental 

measurements at the particle level, interactions are based on inference from bulk behavior 

rather than direct experimental observation. Therefore, experimental verification of the 

numerical simulation is critical. 

4.2 Previous Work on OEM Validation 

There have been a limited number of reported attempts to validate DEM simulations 

with physical experiments . Rowell [43] used experimental data from Chapuis [9] to evaluate 

two-dimensional ellipse-based D EM simulations of dense and loose biaxial tests. Chapuis 

experiments consisted of assemblies of 400 to 600 cylinders, of 10-mm length. Four particle 

diameters ranging from 19.05 to 38.76 mm were used. Rowell was able to successfully model 

the cylinder's behavior in the dense condition. However, he was unable to model the loose 

condition. Sakaguchi and Ozaki [44] compared DEM simulations with experiments of 856 

cylinders of 10 mm diameter to evaluate the formation of arches (plugging) during the flow of 

granular material. Their DEM simulations yielded flow patterns that were in good agreement 

with experimental measurements. Rong, Negi, and Jofriet [42] performed numerical 

simulations and physical experiments of the flow behavior of bulk solids in bins. The 

particulate material used in the experiments consisted of hollow acrylic cylinders, 25 .4 mm 

outside diameter. Experiments were conducted in sample sizes of either 195 or 780 cylinders. 

The numerically generated particle trajectories and velocities agreed well with the observed 

experimental flow behavior. The verification experiments to date have typically been 

performed on a relatively small number (less than 10,000 particles) of idealized shaped particles 

whose motions have been restricted to two-dimensions and whose size is much larger than that 

of real soils. The boundary effects in such cases are large and the details at the particle-level 

become critical. 
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4.3 Effects of Representation Grain Size Distribution 

Much work has been done to quantify the effects of particle stiffness, rotation, and 

shape on the DEM simulation [49], and [50]. Theoretical relationships have been developed to 

assign the particle contact properties such as spring stiffness and damping to reproduce bulk 

properties of the material being modeled [45], and [47]. However, very little work has been 

done to quantify the effects of using multiple particle sizes. More important is the question, for 

accurate D EM simulations, of how many particle sizes of a real soil's grain size distribution 

curve must be used to properly simulate the behavior of the soil. Granular soils consist of 

mineral fragments of various sizes and shapes. The ratio of largest to smallest particle diameter 

can be quite large. The representation of the grain size distribution curve can have a significant 

effect on the contact statistics and the mechanical behavior of both the actual soil and the 

simulation. To examine the effects of the representation of the grain size distribution curve on 

DEM results, a numerical study was conducted that consisted of three-dimensional simulations 

of sedimentation involving up to 93,000 particles having ratios of smallest to largest diameter 

ranging from 1:1 to 9.2:1. An actual grain size distribution curve of Treasure Island sand 

(Figure 4.1) was used as the basis for the simulations. The simulations consisted of dropping 

the computer particles into a box and allowing the particulate mass to settle due to is own 

weight. The focus of the investigation was the distribution of porosity in the simulated media, 

particularly near rigid boundaries. Evaluation of the initial porosity states of the particle 

masses included variations in porosity, distribution of contacts, and tendency of the packing to 

crystallize near hard rigid boundaries. 

The Treasure Island sand was modeled using four simulations having 1, 2, 5, and 10 

particle sizes to represent the grain size distribution curve. The weight-based grain size 

distribution curve was converted to a discrete probability distribution function represented by M 

different sized particles. The probability of a certain grain size, P(Dx), occurring in a sample 

given is given by [26] 

(4.1) 

where D x is the grain size diameter for a particular location on the grain size distribution curve 

(e.g. D50 ). This equation assumes that the mass of the soil is distributed equally among theM 

different particle sizes. Clearly, as M increases, the simulation more adequately represents the 

actual soil. 

For this study, a constant sample mass of one gram was used. The number of particles 

required to represent a grain size distribution increases as more particle sizes are used, as 
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shown in Table 4.1. The increase in particles with m is due to the fact that more of the smaller 

size grains are being modeled as more particle sizes are used. Figure 4.2 plots the probability 

of particle occurrence versus grain size for each simulation of the grain size distribution. For 

well-graded soils, many more particles are needed to statistically simulate the particle 

distribution than required by uniform soils. Thus, the applicability of particle methods to 

model real soil media becomes greatly limited as the grain size distribution becomes broader. 

The representation of the grain size distribution curve can have a significant effect on 

the contact statistics and the mechanical behavior of the simulation. This fact is illustrated in 

Figure 4.3, which shows the particle packing of a simulation of only one-grain size as opposed 

to a simulation that used five different grain sizes. The simulation using only a single size 

particle size produces a very uniformly structured packing, while the simulation using five 

particle sizes produces a packing that is similar to real granular soils. 

Figure 4.4 shows how various representations of the grain size distribution curve effect 

the variation of planar porosity from a rigid boundary. A key fmding is that the representation 

of the grain size distribution has a significant effect on the porosity distribution near 

boundaries. The more particle sizes used to represent a particular distribution, the less 

pronounced the boundary effect would be. When the soil is represented by only one or two 

grain sizes, the tendency is for the particles to align with the rigid wall. This alignment 

propagates inward from the wall for several particle diameters. As the number of particle sizes 

is increased, the alignment becomes limited to a distance of approximately one particle diameter 

from the wall. 

The average coordination numbers (the average number of contacts per particle) for 

each particle size in the four simulations is shown in Figure 4.5. The coordination number is 

defmed as the number of contacts a particle makes with its surrounding particles. For each 

individual simulation, the coordination number is proportional to the surface area of a particle. 

Another interesting point is that the coordination number increases as the number of grain sizes 

increases, especially for the larger particles. This would indicate that by modeling more of the 

fme material tighter packing could be achieved. 

For the remaining simulations it was decided that five particle sizes would be used to 

represent the grain size distribution curve. This provided a realistic looking packing structure, 

while keeping the simulations to a reasonable number of particles. 

4.4 Soil Plowing Simulation 

A soil plowing experiment consisting of the horizontal translation of a vertical wall 

through a uniform Ottawa 20-30 sand was performed. The experiment was configured as a 

plane-strain test whereby motion of the wall was in one plane and the sand was confined 

between rigid glass plates. The DEM simulation was three-dimensional in that, particles were 

free to move out-of-plane to the extent permitted by the boundaries. Comparison between 

simulation and experiment focused on sand deformation, velocity of individual points within the 

mass, and the total horizontal force on the plow during advance. This particular problem was 
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chosen for study because the expected large deformations, development of shear bands and 

slope instability are characteristic of a large class of large deformation problems. 
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Figure 4.1: Treasure Island Grain Size Distribution Curve 

4. 5 Plowing Experiment 

The physical model consisted of a rectangular vessel (300-mm in length x 150 mm in 

height x 8.5 nun in width) with transparent glass sides. However, only a portion of the vessel 

was used, providing test dimensions as shown in Figure 4.6. The plow was attached to the 

underside of a small, four-wheeled trolley, which traveled along two rails. The sand was 

placed in the vessel using a deep-throated funnel. After the sand was placed to the desired 

height, the left end wall of the vessel was removed, thereby allowing the sand to flow out and 

form a slope at the soil's angle of repose. As the plow advances toward this wall, sand can run 

out of the vessel. Thus, a nearly constant slope angle is maintained. The trolley is displaced at 

a constant rate of 2.5 em/sec. 
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Video images of the plowing experiments were recorded in real time and analyzed 

using a computer vision system. An image processing and analysis program called "Particle 

Tracer" [41] semi-automatically obtained the shape of the sand surface and location of the plow 

with time, and the displacement trajectories of selected sand particles during plow advance. 

To characterize the displacement field, individual sand particles are coated with a 

fluorescent dye. The experiment is recorded on video under UV light. The bright fluorescent 

tracer particles can be segmented from the other particles in the digitized images using a simple 

thresholding operation. All pixels with a grayscale value greater than some threshold value are 

marked as foreground regions and their grayscale pixel value is set equal to 255 (white). All 

other pixels are marked as black (grayscale value = 0). The plow was coated with the same 

fluorescent dye as the tracer particles and a white background was used behind the vessel. This 

enables Tracer to also determine the soil surface profile and the location of the plow in each 

unage. 
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Figure 4.2: Probability of Particle Size Occurrence 

Table 4.1: Number of Particles 

Number of Particle Sizes Number of Particles in Sample 

(M) 

1 

2 

5 

10 

28,139 

35,156 

62 ,526 

93,174 
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Figure 4.3: Particle Packing using (a) One Grain Size (b) Five Grain Sizes 
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4.6 Simulation Description 

The simulation consisted of 66,544 particles, which was approximately the number of 

actual particles used in the experiment. The properties used for the simulation are shown in 

Table 4.2. The normal and shear spring stiffness was selected to keep the critical time step 

within feasible computational limits. The values used were eight orders of magnitude less than 

those estimated from elastic properties of the particles (quartz). While the low particle stiffness 

is not suitable for study of particle-scale mechanisms or for dynamic computations where wave 

propagation speeds are important, the results from the soil plowing simulation indicated that 

particle stiffness has limited effect on large flow-like deformation found in the problems under 

investigation. 

Table 4.2: Simulation Properties 

Particle Shape 

Specific Gravity 

Contact Stiffness: 

Normal 

Shear 

Contact Friction Angle 

Particle to Wall Friction 

Coefficient of Restitution 

Plow Advance 

Time Step 

spherical 

2.65 

1.4 kg/m 

0.4 kg/m 

15 degrees 

20 degrees 

0.04 

2.5 em/sec 

2.E-5 sec 

The initial creation of the DEM sample closely followed the procedures used in the 

physical experiment. An initial particle assemblage was obtained by randomly creating 

particles in accordance with Equation (4.1) using five particle sizes. Table 4.3 shows the 

particle diameters used and their probability of occurrence. The particles were then randomly 

selected for placement on a lattice with spacing between centers large enough to minimize 

initial Interparticle forces. The particles were then "rained" into the simulated rigid-wall 

container. The sample creation simulation continues until the particles achieve static 

equilibrium. The lateral constraint is then removed from the left end of the simulated test box 

causing particles to run out, creating a natural slope. 

To reduce the size of data files and to depict discrete particle data as continuum field 

variables (e.g., density, velocity and velocity gradients, and stresses), data were mapped to a 

grid as weighted averages using the smoothing technique described in the Chapter 3. After 

smoothed averages are computed for each grid location; data visualization is accomplished 

using standard fmite element post processing software. 
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Percent Passing: 

10 

30 

50 

70 

90 

Table 4.3 :Discrete Ottawa 20-30 Grain Size Distribution 

Particle Diameter 

.63 mm 

.66 mm 

.70mm 

.72 mm 

.75 mm 

... 

Probability of Occurrence 

25.90 

22.52 

18.88 

17.35 

15.35 

4. 7 Results and Comparisons between Experiment and Simulation 

The locations of the tracer particles at the beginning of the experiment, at 10 mm of 

plow displacement, and at 20 mm of displacement are shown in Figure 4 .7. The development 

of a soil mound ahead of the advancing plow is observed. A comparison of the trajectories of 

tracer particles numbered 1, 2, 20 and 21 (as identified in Figure 4. 7) to the closest particle in 

the DEM simulation for the first 20 mm of plowing is shown in Figure 4.8. 

The simulated particles and tracer particles follow a similar trajectory. However, the 

simulated particles have a smaller net displacement than the real soil particles, particularly in 

the vertical direction. This is in part due to the softness of the simulated particles. If the 

particles had greater stiffness, they would tend to move over each other rather than compress 

between each other. Analysis of contact information at 10 mm of plow movement indicated 

that 46% of the contacts of the total simulation had penetrations greater than 1 % of the particle 

diameter and 0. 8% of contacts had penetrations greater than 5% of the particle diameter. The 

highest penetrations occurred near the plow face. 

Figure 4. 9 shows the horizontal and vertical particle velocity components for several 

simulated-observed particle pairs located in the plow zone over the first 20-mm of plow 

displacement. This plot demonstrates that the DEM particles are typically moving with a 

velocity magnitude that is approximately 5 mm/s slower than the observed tracer particles. 

Figures 4.10 and 4.11 reveal the shape of the plowed material at 10 mm and 20-mm 

plow displacement. Since the individual particles are too numerous to show, the DEM particle 

data was smoothed. A color spectrum is used to represent the mass densities. The color map 

ranges from yellow , which represents relatively low density, to red, which represents the areas 

of highest density. The green fringe around the perimeter results from the inclusion of the void 

space outside the slope in the averaging. Figures 4.10a and 4 . lla show that the simulation 

indicates a zone of high densification just in front of the plow tip. 

49 



2.2 em 

1.0 em 

0.85 em rigid base 

1.0cm 

-

Figure 4.6: The Plowing Problem 
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The contour lines shown on the interior of the slope in Figures 4.10 and 4 . 11 are 

contours of particle velocity magnitude in mm/s. A comparison of the experiment and 

simulation results reveals that the complex deformation patterns observed in the experiments in 

the vicinity of the plow are captured well by the simulation. As the plow moves into the soil, a 

zone of intense shearing forms at the tip of the plow and propagates diagonally upward to form 

a shear band. This zone of shearing moves laterally with the plow, forming a moving velocity 

discontinuity. The location of the shear band is identified by the closely spaced velocity 

contours . In the region to the left and below the 10 mm/s contour, the particles are essentially 

stationary. In the region to the right and above the 23.5 mm/s contour, sand is moving as a 

deforming plug ahead of the advancing plow. The location of the experimental contours is 

virtually identical to those obtained from the DEM simulations, indicating that the DEM model 

has predicted the location, width, and the motion of particles in the advancing velocity 

discontinuity well. 

Plow force comparisons were made between experiment of the Ottawa 20-30 sand and 

the DEM simulation. An additional plowing experiment using glass beads was also used to 

compare plow forces . The glass beads had particle sizes similar to the Ottawa 20-30 sand and 

the DEM simulation. Figure 4 .12 shows the resulting plowing forces from the simulation and 

the two experiments. The Ottawa 20-30 sand had the highest plowing force, while the glass 

bead experiment provided the lowest plowing force . The low plowing force obtained during 

the glass bead plowing experiment is attributed to the glass bead's great ability to roll compared 

to the Ottawa 20-30 sand. One interesting observation is that glass beads behave quite 

differently from the Ottawa 20-30 sand. Even though the Ottawa 20-30 sand is considered 

well-rounded sand, it appears that it does not have the same particle rolling characteristics as 

the glass beads. The simulation plowing force was less than that of the Ottawa 20-30 sand. 

This was attributed to low stiffness of the particles in the simulation. 

The DEM simulation particle data was smoothed to compute the spatial velocity 

gradient tensor to examine zones of shearing and rotation within the simulation. Figure 4.12 

shows the D
12 

term of the rate deformation tensor at 1 and 2 em of plowing. The rate 

deformation tensor was computed from the spatial velocity gradient and is defmed as: 

(4 .2) 

This figure shows that a zone of high shear is occurring just in front of the plow tip. Figure 

4 .14 shows the w
12 

term of the spin tensor. The spin tensor is also computed from the spatial 

velocity gradient and is defmed as: 

w .. = .!_ (L .. - L .. ) 
I) 2 I) )1 

(4.3) 
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It is interesting to note that even though individual particle rotations were prevented, the 

particulate system still had macroscopic rotations. 

A fmal observation should be made regarding the shape of the slope face. In the 

experiments the slope face was linear, while in the DEM simulation it was slightly concave 

downward. This can be attributed largely to the fact that particle rotation was suppressed in the 

simulation. This suggests that simulations involving surface slope failures such as avalanches 

or hopper flow should include particle rotation. 

4.8 Trap Door Simulations 

4.8.1 Description of Experiment 

The trap door experiment consisted of filling a narrow box of dimensions 8.5mm thick 

by 50.8 mm wide by 89.3 mm high as shown in Figure 4 .15 with 15 grams of dry Ottawa 20-

30 sand. An experiment was also performed using glass beads. A small sliding gate located at 

the bottom of the box was removed, creating a small rectangular opening at the center of the 

base. This particular problem was chosen for study because the large deformations, 

development of shear bands, and slope instability are created by gravity flow, which differs 

from the failure mechanisms in the plowing simulations. Additionally, the trap door simulation 

creates zones where high velocity gradients occur with a relatively low density of particles. 

The trap door simulation allows for the evaluation of the smoothed system ability to capture 

these sharp changes in the velocity field in sparse particle systems. 

4.8.2 Comparison of Results 
r 

The simulation consisted of 33,270 particles, which represented 15 grams of Ottawa 

20-30 sand. The soil and interface properties in the trap door simulations were the same as in 

the plowing simulations except that the particle and wall friction angles were varied to evaluate 

their impact on the results. All simulations were run to at least one second of real-time. The 

simulation in which the interparticle friction was 25 degrees and the particle-wall friction was 

22 degrees , which had the fastest flow rate, was taken out until material had flowed through the 

box. During the Ottawa 20-30-sand experiment, flow ceased at 2 .6 seconds, while in the glass 

beads experiment flow ceased at 4. 3 seconds. Inspection of the tracer data revealed that the 

glass beads had more horizontal movements than the Ottawa 20-30 sand and the angle of repose 

was much flatter than that of the Ottawa 20-30 sand. In all cases the DEM simulation's flow 

rate was significantly slower than that of the actual Ottawa 20-30 sand or the glass beads. Flow 

in the DEM simulation ceased at 5.8 seconds. This was expected because by preventing 

particle rotations in the simulation the overall particulate structure was more stable and flow 

though the trap door was very difficult to maintain. Figure 4 .16 shows the surface profile from 

the experiments and the D EM simulation at two seconds. Clearly the simulation did not flow at 

the rate of the Ottawa 20-30 sand or the glass beads. However, the pattern of flow for the 

simulation was similar to the Ottawa 20-30 sand . Figures 4.17 and 4.18 show the evolution of 

52 

l 



the D12 of the rate deformation tensor. This shows horizontal movements towards the trap 

door along the top surface. Additionally, there is a zone of high horizontal acceleration just 

above the trap door opening. 

4.8.3 Conclusions 

A comparison was made between laboratory experiments involving very large 

discontinuous deformations in sand and numerical simulations using a large-scale DEM 

computation. The magnitude of the simulation provides a unique opportunity to assess the 

validity of the DEM based on experimental results. The simulation captures the behavior of a 

particulate "continuum" while the small-scale test permits a one-to-one correspondence between 

particle gradation in the simulation and the test. The agreement between the experimental and 

simulated particle motions in the plowing experiment indicates that many details not captured 

by the simplistic particle interaction model may not be relevant in statistically large assemblies. 

These simulations represent the present limiting scale at which DEM can be used on a 

one-to-one basis. Even with improved computing hardware and algorithms, simulation capacity 

can be increased by only factors of 10 to 100. Such increases still do not translate into 

appreciably larger physical experiments. Yet it has been demonstrated that a middle ground 

does exist between computationally feasible DEM simulations and small-scale experiments that 

are applicable to engineering scale problems. 
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CHAPTER V 

Large Deformation Cons~itutive Law 

In Chapter 3, an averaging process using the concept of an implied averaging volume 

was described. This averaging technique is a methodology for obtaining continuum properties 

of a discrete system. In this chapter the descriptive averaging process is applied to the particle 

data from the soil plowing simulation described in Chapter 4. From this analysis a large 

deformation constitutive law for the smoothed continuum is developed based on a statistical 

description of the DEM particulate system. 

5. 1 Governing Equations for Smoothed Particle System 

By viewing the particulate system as a continuum, the equation of motion for any 

material point within the continuum is written as: 

acr .. av 
_.;;_IJ = -pb + p I 

ax I at 
(5.1) 

J 

where pb 
1 

is the distributed body forces (e.g. , gravity). 

In a DEM simulation, forces that result from local particle contacts control the particle 

movement. In a smoothed representation, the motion of the particles does not necessarily obey 

the equation of motion. Rather the spatial average of the contact forces satisfies the equation of 

motion. Using the method of weighted residuals to average the equation of motion over a 

region, the following equation holds: 

r ( ) acr .. av JRM x- x' __;;_u + pb. - p 
1 

ax) I at 
dy=O (5.2) 

where M(x- x') is a positive weighting function that weights the influence of a particle, at 

location x , as a function of its distance from the averaging point x' . 

By rearranging parts of the equation and applying integration by parts [55] to the stress 

gradient, the equation may be written as: 

f -aM cr. dx'= f M(x- x') - pb
1 
+ p avi dx'+ f Mer ij n 1dS (5.3) 

JR a , u JR at s 
XJ 

This form of the equation is advantageous because the stress does not have to be continuous. 

The integration by parts produces the surface integral , which can be viewed as the traction 
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boundary condition satisfied in a weighted sense. For the remainder of this discussion it will 

be assumed that sampling is being taken away from a boundary. Applying the mean-value 

theorem to the right-hand side of Equation (5.3) yields: 

"" av.-
M(x-x') -ph; + p 1 dV 

· at 
(5.4) 

..... -

where dV represents the volume of the region. If the region is small, the value of the integral 

can be approximated as the product of the average velocity gradient and the volume of the 

region: 

"" av.-
M (x - x ') - pb; + p 1 ~ V. 

at 
'- -

A similar procedure can be perfonned to the left-hand side of equation (5.3) to yield: 

"" av -
cr .. aM =M(x-y') -pb.+p-

1} ax' I at 
J - -

Equation (5.6) implies that the equation of motion for the system can be satisfied, on the 

average, by using a sampling of the particle interactions in view of 

(5.5) 

(5.6) 

(5 .7) 

In the DEM simulations, the average particle stress is computed by summing the k 

force vectors, /;, around the particle 

contact 

(5.8) 

where l is the average distance between particle centers that are in contact, V is the volume of 

the particle, and n j is the contact nonnal vector. 

If the coordination number, C, is known then Equation (5.8) can be written as 

cr = ]_C/;n . 
I} v I ) 

(5 .9) 

where /;n 1 is the average force vector acting on the particle. 
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Equation (5.9) implies that the macroscopic behavior of the discrete system could be 

approximated from a sampling of the contacts. This observation suggests that it could be 

possible to replace the highly detailed discrete particle system with a simpler model that 

represented an average particle. The average particle would maintain the same average 

properties of the total discrete system. 

The development of the smoothed particle constitutive law requires that a statistical 

description of the coordination number and the J; n j be developed. 

5.2 Analysis of OEM Plowing Simulation 

5.2.1 Material Points 

Using the plowing simulation described in Chapter 4, four material points were 

established around the plow face to monitor particle contact information during the plowing. 

The material point was defined as a point in space where descriptive averaging of the 

surrounding particle data was performed. A sampling radius of 2 mm was used. The material 

point moved with the average velocity field as computed for the surrounding particles. The 

velocity of a material point is determined using Equation (3.13). These material points provide 

a time history of each state variable (i.e. stress, strain) as related to the initial configuration of 

the material. Results from the plowing simulation were used to examine the effects of sampling 

size on calculation of state variables following the procedure of Chapter 3. Figure 5.1 shows 

the initial and final location of the four material points during the first 5-mm of plowing. Each 

point is labeled based on its initial coordinates in the x andy direction. The points were labeled 

using the notation of xxyy. Where xx is the initial location of the point in mm in the x direction 

and yy is the initial location in y. The four points are 9811, 9310, 9515, 9505. 

Point 9310 was also placed in the shear zone, but farther away from the blade. Point 

9515 was placed above the shear zone, in the region where motions were predominantly rigid

body-motions. Point 9505 was placed below the shear zone and was established as a point that 

had little or no movement associated with it. Each of these four sampling points exhibited 

significantly different loading characteristics, and it was expected that they would provide the 

range of information required to develop a generalized macroscopic model of the granular 

system. 

Table 5.1: Sampling Sizes for Ottawa 20-30 

Sampling Radius, h Approximate 

(mm) 

1 

2 

3 

5 

Number of Particles in Sample 

30 

250 

820 

3800 
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5.2.2 Sample Size 

Only material point 9811 was used to demonstrate the effects of sampling size. Four 

characteristic kernel lengths were used in this examination. The four sampling radii and 

approximate number of particles in the samples are shown in Table 5 .1. 

Lagrangian strain was computed for the material point by methods described in Section 

3.2.4, and the Cauchy stress was computed using Equation (3.40). Figure 5.2 shows the 

change in the Jacobian determinant, which is a measure of relative volume change, as a 

function of shear strain E12 , for the four sampling sizes over the first 5 mm of plowing. The 

first observation is that the shear strain decreased as the sampling sized increased. This can be 

explained by observing that, as shown in Figure 5.3 , for a condition of an abrupt shearing face , 

the change in horizontal velocity with respect to the vertical axis will decrease as the vertical 

length is increased. This illustrates the point that if the sampling size is set too large, localized 

failure phenomenon will be lost. The other interesting observation from Figure 5.2 is that all 

cases except the largest sampling size show the volume contracting. The three smaller 

sampling sizes all showed the same trend of volume contraction with increased shear strain. 

The largest sampling size differed from the others in that after an initial volume contraction the 

volume began to expand. It is concluded that, at the largest sampling size, the dilation zone 

above the shear zone is influencing the results. Some of the contraction is from the 

compression of the soft particles. It is expected that the particle compression would be fairly 

constant along the face of the plow. So it is expected that the effects of sampling size in this 

region would be significantly affected by particle compression. 

Figure 5.4 plots the change in Cauchy shear stress, a 12 , as a function of Lagrangian 

shear strain. As expected, the maximum shear stress increased as the sampling size decreased. 

The two middle-sampling sizes have similar trends. 

It is not the intent of Figure 5.4 to suggest that there is a relationship between the 

Cauchy shear stress and the Lagrangian shear strain. As shown in Figure 5.5 the Cauchy stress 

element is measured from the spatial coordinate system, while the Lagrangian shear strain is 

measured from the material coordinate system, which deforms in the view of a spatial observer. 

The use of the Lagrangian shear strain in Figure 5 .4 is simply a convenient parameter to 

measure the progress of the system. 

5.2.3 Distribution of Particle Contacts and Forces 

By obtaining the spatial velocity gradient, Lu, as described in Chapter 3, the average 

deformation field can be developed for a location within the granular media. Figure 5.6 shows 

the distortion of a unit square centered around Point 9811 during the first 5-mm of plowing. It 

can be seen that the material at Point 9811 is compressing in the horizontal direction, extending 

in the vertical direction, and shearing. 
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Sampling the contact data provides meaningful macroscopic information about the 

behavior of the granular media under extremely large deformation. Figure 5. 7 shows the 

distribution of contact normal forces for all the contacts in the sampling region of Point 9811 at 

5mm of plowing. From this figure , it can be concluded that the force distribution for the 

granular material exhibits a large, random component. This should be expected because the 

granular material does not move with affine motions; but, in fact its motions are nonaffme and, 

for a region to exhibit a shear , particles must slide and move over each other. 

To provide a statistical view of the data, the data were sorted in equally spaced bins, 

based on contact angles. Thirty-degree contact angle bins were arbitrarily selected for sampling 

the particle contact data, as shown in Figure 5. 8. 

Figure 5. 9 plots the probability of occurrence of normal contact forces sorted by 

contact angle increment bins for plowing at 5 mm. By examining the normal contact force in 

terms of the bins , a trend from the force data begins to appear as shown in Figure 5. 9. The 

area under each of these curves would represent the average force for that particular bin of 

contact. Figure 5.10 shows the force data from Figure 5.9 in percentiles. It clearly illustrates 

that the largest average normal forces are occurring in the 0 to 30-degree contact region. 

Figure 5 .11 shows the average contact force for each contact angle increment bin 

during plowing. From this figure, it is seen that the average force data quantitatively follows 

the trend of the smoothed deformations shown in Figure 5.6 in that the higher average forces 

are occurring in the horizontal direction where the maximum compression is occurring. 

5.2.4 Estimate of Coordination Number 

Several researchers have developed relationships between the coordination number and 

void ratio, based on experimental data. Chang et al. [10] presented several of these 

relationships . Figure 5.12 presents the coordination number as a function of void ratio for the 

results obtained from DEM simulation. Additionally, experimental data points from other 

researchers [30], [38], and [54] , presented by Chang are shown in Figure 5.12. In general, the 

data obtained from the Discrete Element Model was similar to that obtained from experimental 

data . The DEM data tended to have a lower coordination number than that of the experimental 

data . 

Analysis of the DEM has suggested that the mean stress may be a better predictor of the 

coordination number. Figure 5. 13 shows the relationship of average coordination number with 

the mean stress of various material points during the plowing DEM simulation. The material 

points were selected in the regions just in front of the plow. For this simulation, the average 

coordination number can be predicted reasonably well by the mean stress of the material point. 

The data from the four sampling points shown in Figure 5.13 was fitted with both linear and 

non-linear regression. The linear regression yielded the best fit. 

c = 6.41 - 0.00021 (} 
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where <J < 0 for compression. It is expected that the relationship between coordination 

number and mean stress would be a function of the soil grain size distribution and the initial 

porosity. Therefore, Equation 5 .10 is only valid for this specific problem and should not be 

used as a general relationship. However for the plowing problem, Equation 5.10 predicted the 

average coordination number within 3.5 percent of the measured coordination number. 

In the implementation of this relationship , certain limits are placed on the equation. 

Obviously , the coordination number cannot be negative and a lower value of 6.4 was set for the 

coordination number. There are physical considerations why the coordination number cannot 

continue to increase with linear stress and an upper limit. Under the loading conditions of the 

plow experiment, the average coordination number in the D EM simulation never exceeded 7. 5 , 

however experimental data from Oda [39] suggest the coordination number can go much higher 
than 7.5. 

5. 2. 5 Average Normal Vector 

An examination of the distribution of contact angles within the plowing simulation 

revealed that the contact angles are uniformly distributed, although the forces being transmitted 

are not. Figure 5.14 shows the distribution of contact angles at different amounts of plowing 

for the material point described in the previous section. What is interesting from this figure is 

that the distribution of contact angles remains essentially uniform even over large strains. If the 

granular material moved with affme motions, it would be expected that there would develop a 

preferred contact angle; however, this is not the case. This observation has been presented by 

other DEM simulations, in particular Ng [37] who performed a two-dimensional shearing test 

in which the ratio of the principal fabric tensor components, n 11 I n22
, reached an upper limit of 

1.2. This upper limit of 1.2 in a two-dimensional case would be the equivalent of having the 

principal fabric tensor components equal to 0.45 and 0.55, these values correspond to 

distortional strain of about 5 percent if it was attributed to affine deformation. The results from 

the plowing simulation yielded a ratio of the principal fabric tensor to be less than 1.2. 

However, it should be pointed out that the plowing simulation was a three-dimensional 

simulation, using five different particle sizes, and so it was easier for the particles to arrange 

themselves in a more random fashion than the two-dimensional simulation of Ng. The ultimate 

observation of both simulations is, however, that granular material will tend to reorient its 

contacts such that the distribution of contacts remains fairly uniform with direction. If the 

contact angles were to favor a specific orientation, the granular material itself would have to 

deform like rubber. However, because the granular material consists of essentially rigid 

objects, when shearing occurs and voids are formed, material will fill the voids and the uniform 

distribution of contacts is maintained. Thus, the fabric tensor varies in accordance with 

smoothed deformation at small distortions, but reaches a limiting value at a few percent strains . 
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5.3 Development of the Average Particle 

Based on the fact that force data are derived when contact forces are averaged over a fixed 

contact angle space as shown in Figure 5.9, and that the distribution of contact angles is 

uniformly distributed during the simulation, one representation of the average granular system 

could be that of a spoke system as shown in Figure 5.15. If the sampling of the DEM particles is 

sufficiently large, it follows that an average particle could be represented as having equally 

spaced contacts as represented by the spoke model. The forces at the contacts can be defined 

from the deformation that occurs as a result of the smoothed velocity field as computed by the 

spatial velocity gradient. The smoothed velocity field for the average particle can be computed 

from the estimate of the current strain rate as described by Equation (3.25). The relative 

incremental displacement for a contact direction is computed as: 

(5.11) 

where n 
1 

is the contact vector in the initial (material) configuration and l is an average distance 

between centers of particle contact pairs. 
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The normal displacement acting along the direction of the contact is determined by: 

(5.12) 

and the incremental shear displacement is the difference between the relative and normal 

displacement: 

s: s _ s:r _ s:n 
VI -VI VI. (5 .13) 

The updated normal and shear contact forces for the current time, t , are 

f
n(r ) _ jn(r- 1) k r5n 

I - I + n I (5.14) 

and 

f s(r) = js(r- 1) + K r5 s 
I I s 1 · (5.15) 

A dry granular material does not allow tension forces, so the normal force must be 

checked for tension. If the normal force is found to be in tension, both the normal and shear 

forces for the contact are set to zero. If the normal force is found to be in compression, the 

shear force is evaluated against the friction limit: 

(5.16) 

If the shear force is set equal to the friction limit if shear force is greater than the frictional 

limit. 

5.4 Evaluation of the Smoothed Model 

Displacement data obtained from sampling the DEM results at the four material points 

were used to derive the smoothed system to compare the predicted stress of the smoothed model 

with measured stress from the DEM simulation. 

Figure 5.16 compares the probability of contact angles of the D EM simulation and the 

data of the smoothed particle model, using 180 spokes, after 5 mm of plowing. Clearly, the 

smoothed model does not maintain the same contact angle distribution as the real granular 

material. This is because the smoothed model is only modeling the average displacements (i.e. 

modeling the granular material as an affine motion system). 
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The fact that the granular system does not follow affine motions can also be observed 

by taking a closer look at the average normal forces. Each contact force was sorted into contact 

angle increments as was shown in Figure 5. 8. The normal force data was lumped into six bins 

based on contact angle. The average force was computed for each of the bins. This was done 

to get a statistical view of the data. Figures 5. 17 to 5. 20 plots the average of the six average 

forces and the maximum and minimum value of the average forces for the four material points. 

What is of real interest is the fact that the minimum force does not go to zero. This fact could 

also be implied from figure 5.14, which showed a nearly uniform distribution of contact angles . 

The uniform distribution of contact angles would imply that the minimum values of average l 

force in any region must be greater than zero for all regions because for a contact to occur there 

must be a force. However, if the system moved with affine motion, then average forces could 

go to zero when a region lends toward tension. Figures 5.21 to 5.24 plot the ratio of the 

maximum average force to the average force and the minimum average force to the average 

force. Even though the forces in the system are increasing with plow displacement, these two 

ratios seem to reach some limit as the system goes through its deformations. This could imply 

that the contact forces are being redistributed uniformly and proportionately in angle space as 

the granular system is deformed. 

From the previous observations, it is apparent that there should be some mechanism 

that accounts for the forces and contact angles generated from the non-affme motions. One way 

of modeling the effect of the non-affine motions would be to treat this system as a convection

diffusion system in which the physical properties being modeled are obtained from breaking the 

model into two parts based on average motion, plus a component that is a result of the deviation 

from the average motions. This type of approach is used to model many other systems, such as 

the change in pollution concentration in groundwater flow [5] . 

A good analogy of a convection-diffusion system could be drawn by using, as an 

example, the velocity of people in a shopping mall. The interaction of the people in the mall is 

similar to the particle interaction of the discrete element code, in that people avoid coming 

closer together, since people tend to maintain a minimum separation distance. The crowd 

would flow through walkways with an organized motion; but at a closer look, the random 

movements to avoid each other's space would be apparent. Consider if you were sitting on a 

bench in the shopping mall , acting as a spatial observation point, and you had a way of 

instantaneously sampling the velocity of each person passing you in the region . You could 

develop a spatial velocity gradient for your immediate area. If you wished to predict the 

location of a person over time, you could apply the average velocity obtained from your sample 

and integrate over time to estimate the location of the individual . Obviously, after a length of 

time, the accuracy of the estimate would degrade because no one is really travelling at the 

average velocity. The movements to avoid each person's space would create deviations from 

the average motion. Likewise, in the particle system, the use of only the smoothed velocity of 

the system will provide an increasingly poorer estimate of the current condition of the system 

with time. 
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The following presentation of the convection-diffusion system was de\ eloped from a 

presentation by Bear [5]. In general the convection-diffusion system describes the change in the 

value of a parameter of interest by dividing the change into two pans. The first part is described 

by an average motion, A, and the second part by a uniformly distributed random component, B. 

For a given time step the probability that the change in the quantity is greater than A+B or less 

than A-B is zero. Within the region A-B to A+B the probability of the change of the quantit} 

being x is defined as p(x) = B I 2. Because the random component is distributed uniformly 

around A. The expected value of change for a time step is A and the standard deviation would 

be a 
2 

= B
2 

I 3. After a large number of time steps the probability of change of the value can be 

described by a normal distribution: 
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(x-EV)2 

p(x)= ~ 2 exp 2s 2 

2rcS 

where EV = TA,S
2 = TB

2 
/3,T is the number of time steps. 

. ... 

............ 
····· 

.... 
······ . ...... . 

(5.17) 

Now looking at the one-dimensional convection-diffusion equation that is described as: 

(5.18) 

2 

where - V :: is the change associated with the average flow of the system , D ~~ is the 

change associated with the random component of the system. 

The solution to Equation (5 .18) is 

c 1 _ (x- vt? 
- = exp 4Dt 

co .J 4rcDt 
(5.19) 
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A comparison of Equation (5 .19) and (5 .17) shows that both solutions are of the same 
form and that 

EV=Vt (5.20) 

, 
s- = 2Dr (5. 21) 

To compute the value of the quantity that results from the diffusion process, a one

dimensional discrete version of Equation (5.18) can is used: 

- 2 0 + 
A De - c +c 
L.lC = ~! 

!J.x2 
(5.22) 

where ~C the change in the property as a result of diffusion. c 
0 

represents the smooth value 

of the property at the point of interest. c- and c+ represent the smooth value property at points 

just in front of and just in back of the point of interest. 

The diffusion coefficient, D , is obtained from plotting the standard deviation of the 

quantity of interest with time as shown in Equation ( 5. 21). Particle forces are carried on 

contacts that have certain a certain orientation or contact angle. Without diffusion, the change 

in contact angles would result only from the smoothed or affine motions. In order to capture 

the change in contact angle that results from the non-affme motions, the deviation of the true 

contact angle as sampled from the DEM simulation from the contact angle resulting from 

smoothed deformation was measured. 

Because the deviations in forces tend to be a function of the strain of the system, the 

time variable in Equation (5.21) must contain more than just a temporal measurement of the 

system. This situation is similar to the concept of intrinsic time has been used in endochronic 

theory to better describe the state of system [51]. Intrinsic time is defmed as a monotonically 

increasing scalar of strain and time. The time intergrated magnitude of the rate of deformation 

tensor was used at the intrinsic time variable for this system. Figure 5.25 show the relationship 

between the standard deviation of the average contact angle and the time intergrated magnitude 

of the rate of deformation tensor, D u . In general, the deviation of the contact angle increases 

with an increase of the magnitude of the rate of deformation tensor. In view of Equation 

(5.21). This would imply that the diffusion model is a good analogy for describing the random 

component of forces of the granular system. The slope of a line passing through the data points 

in Figure (5.25) represents the diffusion coefficient for the system. 
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By adding the diffusion to the smoothed system, the smoothed system shows more 

realistic behavior. In Figure 5 .26, the ratio of the maximum average force to the average force 

and the minimum average force to the average force for the DEM simulation, plots smoothed 

system without diffusion and smoothed system with diffusion. Clearly the addition of the 

diffusion component has made the force ratio of the smoothed system behave more like that of 

the DEM simulation. Figure 5.27 compares the cumulative probability of occurrence of contact 

angle of the 12 spoke smoothed system with diffusion, a 180 spoke smoothed system without 

diffusion, and the DEM simulation. From this plot, it is observed that the smoothed system now 

maintains a contact angle distribution similar to that of the real granular system. 

Figure (5.28) to (5.31) are the results from the DEM simulation and the smoothed 

system for shear stress to shear strain for the four sampling points. The smoothed system has 

good agreement with the results of the DEM simulation. For both points 9811 and 9310, the 

smoothed system produces a yield stress that is similar to the DEM simulation. For point 9515 

which is a point at which yielding has not occurred, the smoothed system matches the increase 

of shear stress with shear strain. Even the smoothed system has good agreement at point 9505 

with the DEM simulation even though this point has been subjected to only small strain. 

Figure (5.32) to (5.39) compare the p-q plots of the DEM simulation and the smoothed 

system simulation. p is defined as: 

(5 .23) 
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and 

0"1 -o-3 
q = . (5.24) 

2 
It is expected that the worst fit when comparing the DEM to the smoothed system 

would be in the p-q plots because the simulations are strain driven. Therefore, the quality of the 

model predictions is based on the ability to replicate stress. The shape of the plot for point 

9811 is predicted although there are differences in detail. For point 9310, both DEMand the 

smoothed system drift up to the correct q in about the correct range of p. For point 9515, 

the stresses are both over-predicted; although the ratio q 1 p is correct. Hence the good 

prediction of stress ratio. This is at a low stress range and error is probably magnified. Point 

9505 has a good prediction, especially considering the small strain. This is a very different 

stress path, yet was predicted well. In general, it is doubtful that any constitutive model could 

have done as well. The results are especially amazing considering that the parameters come 

from micro-measurements. 

Figures 5.36 to 5.39 compare the development of the stress ratio for the DEM 

simulation and the Smoothed system simulation. The stress ratio from the smoothed system 

compared very well with the measured results from the DEM simulation. 

Based on these results, it appears that the smoothed model captures most of the 

significant microscopic statistics and macroscopic mechanical behavior obtained from the DEM 

simulation. The sampling points selected for evaluating the model represented a wide variant in 

imposed strain history, but in each case the smoothed system provided the correct trend. 
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Chapter VI 

Smo'othed Particle System 

The objective of this chapter is to describe one method in which the smoothed particle 

model can be implemented for solving engineering problems. While it would be a fairly easy 

task to implement the constitutive law developed in Chapter 5 into a fmite difference or fmite 

element model, these numerical techniques do not allow for proper representation of the 

discontinuous soil deformations associated with large deformation problems. The new 

constitutive law was integrated into a numerical method similar to the particle-in-the-cell 

method used in smoothed particle hydrodynamic codes as described by Hockney and Eastwood 

[24]. The smoothed particle system consists of two parts, particles and a fixed grid, as shown 

in Figure 6 .1. The particles are considered to be material points and store information about 

the current state of the system (i.e. density, stress). A fixed grid is placed over the problem 

space. The nodes of the grid are used as collection points where the particles are sampled to 

develop smoothed velocity and displacements of the system. These smoothed velocities and 

displacements are obtained by performing a spatial interpolation of the velocities and 

displacements of the surrounding particles as described in the descriptive averaging section of 

Chapter 3. The smoothed displacement field is applied back to the particles using a similar 

spatial interpolation to obtain the spatial velocity gradient tensor for the particle. The spatial 

velocity gradient tensor is used to update the stress acting at the material point. 

Particles do not interact with the other particles directly but exchange state information 

with nodes of the fixed grid. The particles derive their motions from interpolation of the 

surrounding nodal velocities. The updated stress on the particle, which is used to update the 

forces acting on the nodes, is defined by a constitutive relationship that is derived from the 

contact information obtained from DEM simulations. 

6. 1 Development of the Smoothed Particle System 

To illustrate the evolution of the smoothed particle system, a one-particle example is 

presented. In this example, only gravity is acting on the particle. For this example, the 

interpolation function will be defined as ¢/ , where a capital superscript indicates node number 

and a lower case superscript indicates particle number. A lower case subscript indicates 

direction. 
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Figure 6.1: Smoothed Particle System 
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In this example, a single particle is passing through a grid defmed by four nodes as 

shown in Figure 6.2. A bi-linear interpolation function is used to determine the contribution of 

the particle attributes on the nodes. The four interpolation factors can be written in terms of the 

cell size, h, which defines the smo9thing length scale for the problem. The four interpolation 

factors are: 

(6.1) 

(6.2) 

(6.3) 

and 

(6.4) 

Note that the interpolation function is written so that the sum of the interpolation factors 

for a particle is one: 

(6.5) 

This ensures that particle quantities such as mass are conserved when transferred to the nodes. 

The derivatives of the interpolation function with respect to space are: 

8f/ _ 1 [ h k 1 ---- +y 
ax h2 (6.6) 

8¢2 = _1 [h- k l 
ax h 2 Y 

(6.7) 

8¢3 k 
y 

(6.8) --
ax h2 ' 

8¢4 k 

-
y 

(6.9) - --
ax h2 ' 
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8¢
1 

1 k 

8y =11[-h+x l (6.10) 

8¢2 k 
X 

=--- (6.11) 
ay h2 

a¢3 k 
X 

-- (6.12) 
ay h2 

and 
4 

a¢ =-1 ~-xk] (6.13) 
ay h2 

Note: 

4 a¢1 4 a¢1 
L =L =o 
/-1 ~ 1=1 ay 

(6.14) 

The forces on the particle due to gravity, g, are 

(6.15) 

and 

f
k k 

Y =-m g (6.16) 

This force is moved to the node as follows: 

(6.17) 

The convective momentum rate is allocated to the nodes as the product of the 

momentum of the particle and the gradient of the interpolation function with respect to time 

1 k;~,1( k k) 
p, = p, r.p X y (6.18) 

where 

k k 1 k y 1 4 ( 

P i = m _L¢ x y ~ i (6.19) 

1=1 

(6.20) 
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The mass is lumped at the nodes: 

(6.21) 

I 
I n-- 1 

Pn+ 2 = P 2 + -P!J.f 
I I M I 

(6.22) 

The velocity is thus 

I 1 I n+- n+-
v. 2 =-P2 

I M I 

(6.23) 

and the node displacement is 

I 
n n+-

d . = v . 2 !J.t. 
I I 

(6.24) 

The new location of the particles is interpolated from the nodal values of d; 

4 

d;k = L¢/d:. (6.25) 
/ =1 

6.2 Plow Simulation 

To demonstrate the application of the smoothed particle system, a plowing experiment 

similar to the one in Chapter 4 was performed. The material properties used in Chapter 5 to 

calibrate the smoothed particle model were used in this simulation. The simulation consisted of 

placing 2200 smoothed particles into a two-dimensional box with dimensions of 100 mm in the 

horizontal direction and 22 mm in the vertical direction. The plow moved at a velocity of 25 

mm per second at a depth of 10 mm. The grid had a node spacing of 5 mm. Figure 6.3 shows 

the displacements of the smoothed particle at 5 mm, 10mm, and 20 mm of plowing. The colors 

in Figure 6.3 represent the horizontal particle velocities. The color map ranges from blue, 

which represents zero velocity to red, which represents a velocity of 25 mm/second. This 

figure can be compared to the results of the laboratory plowing experiment, Figures 4. 7 and 

4.10 in Chapter 4. From this figure , similarities can be seen between the smoothed particle 

system and the granular material. In general, the horizontal and vertical motion of the 

smoothed particles is similar to that of the real granular material; however, because of the 

coarseness of the computational grid, there tends to be far more smoothing of displacements in 

the smoothed particle system and the sharp shear band zone that formed in the soil experiments 

does not form in the smoothed particle system. The same experiment was performed using a 

node spacing of 2.5 mm. Figure 6.4 shows the particle locations at 5 and 10 mm of plowing, 

when using the smaller grid. As expected, as the computational grid is refmed, the smoothed 

particle system will behave more like the real granular material. Figure 6.5 shows an enlarged 
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view of both the simulations . The vectors shown in this figure represent the amount of panicle 

displacement relative to the particle's original position. By examining the region just below the 

plow, it can be clearly seen that there is more smearing of the displacements at the larger grid 

size. While the smaller grid size produces more realistic results, it should be pointed out that 

the critical time step for the system becomes smaller as the size of the grid is reduced . 
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Chapter VII 

Summary and Conclusions 

In Chapter 1, four research goals were established to develop a constitutive law for 

large deformation of granular material. The first goal was to develop a three dimensional 

discrete element model and improve computational efficiency of the discrete element model to 

allow for large simulations. The need for large particle simulations was in order to develop an 

ability to model laboratory experiments on a one-to-one basis so that the discrete element model 

could be evaluated against real soils. The second goal was to demonstrate that simulation of 

laboratory experiments by the discrete element model yields results comparable to real soils. 

Once established that the discrete element model provided a reasonable model of the real 

granular material, a third goal of establishing an averaging scheme to convert properties local to 

the particles (e.g. mass, momentum) into continuum attributes (e.g . density, velocity gradients) 

was met. From this averaging scheme a new constitutive law was developed to model large 

deformation of granular material. The fourth goal was to devise a computational procedure for 

modeling prototype-scale behavior using sparse particle systems for which computations of field 

scale problems can be performed on existing computer systems. The computational procedure 

used a particle scheme to ensure proper representation of the discontinuous soil deformations 

associated with large deformation problems. 

7. 1 Significant Findings 

a) DEM comparison with Soil Experiments- A comparison was made between 

laboratory experiments involving very large discontinuous deformations in sand and numerical 

simulations, using a large-scale DEM computation. The magnitude of the simulation provides a 

unique opportunity to assess the validity of the DEM, based on experimental results. The 

simulation captures the behavior of a particulate "continuum" while the small-scale test permits 

a one-to-one correspondence between particle gradation in the simulation and the test. The 

agreement between the experimental and simulated particle motions in the plowing experiment 

indicates that many fine-grained details not captured by the simplistic particle interaction model 

may not be relevant in statistically large assemblies. 

b) Continuum representation of a discrete system - An averaging process using the 

concept of an implied averaging volume was developed for obtaining continuum properties of a 

discrete system. Effects of sampling size were quantified, which lead to the conclusion that a 

significant sampling size (number of particles in the sample) is required to obtain meaningful 

macroscopic properties of the granular media. 

c) Micro-Mechanical Modeling of Granular Media- The analysis began with 

consideration of a smoothing of the DEM quantities which amounts to application of a weighted 

residual approximation of the difference equations governing the DEM simulations. The 

smoothing process eliminates spatial detail and only the statistical descriptions of particle 

interactions are needed to evaluate the equations of motion for the smoothed system. The key 
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to a continuum theory for granular media, therefore, is to relate the statistics of particle 

interactions to the kinematics of the smoothed system. This analysis implies that the 

macroscopic behavior of the discrete system could be approximated from a sampling of the 

contacts. This observation suggests that it could be possible to replace the highly detailed 

discrete particle system with a simpler model that represented an average particle. The average 

particle would maintain the same average properties of the total discrete system. It is 

concluded that without a micro-mechanical approach based on physical measurements, a 

satisfactory theory would be difficult to develop. 

d) Non-Affine Motions- The evolution of contact properties is not readily determined 

from averaged particle movements because of non-affine components of particle interaction. A 

diffusion component was added to the smoothed model to account for the non-affme motions 

that are present in the granular media. The addition of the diffusion component made the 

statistics of the smoothed system behaves more like that of the DEM simulation. 

7. 2 Need for Future Research 

The research presented in this dissertation was limited to dry, uniform, granular 

materials. Additional research should be conducted to quantify the effects that particle shape 

and grain size distribution has on the smoothed particle system. The smoothed particle system 

should be evaluated against geotechnical problems different from the plowing problem, to 

verify its application to more general problems. As computational capabilities improve, 

research should be conducted to model fme grained, clay particles. 

Additionally, work should be conducted to include pore fluid into the system to allow 

for more realistic modeling of in-situ soil conditions. One of the predominant disadvantages 

with the traditional discrete element method is the inability to easily model a pore fluid. The 

inclusion of the pore fluid into the smoothed particle system should be comparable to a coupled 

deformation-fluid flow model derived from Biot's consolidation theory, because the smoothed 

particle system is defined as a continuum. 
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APPENDIX A 

Dimensional Analysis of Particle System 

A.1 Development of rc -Numbers 

A rc -number is a dimensionless number that is developed from a collection of key 

parameters that describe a physical process of interest. The rc -number is used to identify 

proper scaling relationships for maintaining similitude between a prototype model and the full

scale system. This section describes a method for determining rc -numbers for a system and 

has been adapted from the presentation of Freitag [18]. 

The system being evaluated can be described by a set of physical parameters, 

~ p2 ,- · . pn, the fundamental dimenSiOnS are d 1 , d 2 , • • • d r SO that , dimensionally: 
' ' 

(A.l) 

where the symbol D means "dimensional equal to" and the ers are the components indicating 

the multiplicity of each dimension in the parameter. 

For example, the parameter mass, m, is dimensionally equal to 

(A.2) 

where F, L, and T represent the dimensions force, length, and time. 

The rc -number is developed by combining the parameters in such a way as to yield a 

dimensionless number. 

AI 



;r=P./1 p;l Pt) (A.3) 

To obtain a dimensional relationship, the sum of the exponents of each dimension must 

be zero . Thus , 

+ + 

+ + e2n xn 

+ + 

where the number of dimensions , r , is less than the number of parameters, n. 

0 

0 

0 

(A.4) 

The values of the e ij are known from the nature of the parameters, but the x; must be 

found. The set of equations representing the relations among the unknowns x; is governed by 

rules of matrix algebra. The coefficients of the X; from a matrix of particular rank, with the 

columns representing the constitution of each parameter and the rows, the frequency of each 

dimension as indicated. 

Pt P 2 Pn 

(A.5) 

There are n-r more unknowns than equations, so the solution consists of expressions for r of the 

unknowns, X;, in terms of the other n-r unknowns. To ensure that the matrix solution used 

here will provide the maximum number of linearly independent solutions, the equations and the 

unknowns must be arranged to obtain a non-zero determinant in the upper left corner of the 

matrix. Standard matrix manipulation is used to obtain an r x r identity submatrix, as shown 

below: 

PJ P 2 PJ Pr+J Pr+2 Pn 

d l 1 0 0 c l.r+l c l,r+2 c ln 

d 2 0 1 0 c 2,r+l c 2,r+2 c 2n (A.6) 

d3 0 0 1 c3,r+l c 3,r+2 c 3n 

0 0 

A2 



Each row of the solution matrix yields an expression of one of the r parameters in terms of the 

remaining (n-r) parameters. The solution can been obtained by means of elementary 

simultaneous equations to yield the following expressions. 

c l, r+l x r+l 

c 2,r+lxr+l 

+ 

+ 

cl .r+2 x r+2 

c2,r+2xr+2 

+ 

+ 

(A.7) 

+ 

Assigning the values x,+1 = 1 and all others, x,+2 , ... xn = o for the first solution, it 

is found from Equation A. 7 that XI =. cl +I' x2 = c 2 2 ' ... X = c I . Similarly if X I = 0 ,r. ,r+ r r ,r+ . ' r+ 

and x,+2 = 1' all xr+2 to x, =0, it is found that XI = cl r+2 x2 = c2 r+2 ... X = c 2 . This , , , r r ,r+ 

process can be continued until all (n-r)x terms from x, to xn have successively been assigned 

the value of 1. These results can be arranged in matrix form. 

XI x2 x3 xr+l xr+2 xn 

PI P2 P 3 Pr+l Pr+2 Pn 

1l'l cl ,r+l c2,r+l c3,r+l 1 0 0 

1l'2 cl,r +2 c2,r+2 0 1 0 (A.8) 

1l'l cl ,r+3 c 2,r+3 0 0 0 
. . . 

1l' (n-r) cln c 2,n 0 0 1 
' 

The submatrix on the right is an (n-r) identity matrix. This submatrix has a nonzero 

determinant, so the rank of the matrix is n-r, which is equal to the number of rows. 

Consequently, the rows in the matrix are linearly independent, and the rows constitute a 

fundamental system of solutions. The numerical values in each row are the set of exponents of 

the corresponding parameters that make up the 1r term, thus 

1l' = p Cl,r+m P C2.r+m P CJ.r+m •.. p 
m I 2 3 r+m 

(A.9) 

where 1 < m < n - r . 

By inspection, the equation of 1r terms (Equation A. 9) can be written from the matrix 

of solutions (Equation A. 7). The matrix of the coefficients in their first r columns of Equation 

A.9 is simply the transpose of the r x (n-r) submatrix on the right of Equation A.7. Note, 

however, that the signs of all coefficients must change at the same time to be equivalent to the 
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operation represented by Equation A.8. This matrix is then simply augmented by the (n-r) x 

(n-r) identity to yield the form shown as Equation A.9. 

Application of 1r -Theorem to the Soil Particle System 

Eight parameters were chosen to describe the soil particle system. These parameters 

included stress, gravitational constant, time, density, mass, particle stiffness, particle viscous 

damping coefficient, and particle diameter. 

These 8 parameters can be recorded with their dimensions in matrix form as follows: 

(j g T r m k c d 

F 1 

L -2 

0 

1 

-2 

0 

0 

1 

1 

-3 

0 

1 

-1 

2 

1 

-1 

0 

1 

-1 

1 

0 

1 

0 

(A.lO) 

T 0 

The determinant of the matrix is non-zero, so the rank of the matrix is three. 

Therefore, eight parameters minus the rank of three yield five 1r terms that will describe the 

system. By using the method described in the previous section, the five 1r terms can be 

derived as: 

(j g T r m k c d 

1!1 -1 1 2 1 0 0 0 0 

1!2 -1 -1 -4 0 1 0 0 0 

1!3 -1 -1 -2 0 0 1 0 0 (A.11) 

1!4 -1 -1 -3 0 0 0 1 0 

1rs 0 -1 -2 0 0 0 0 1 

Thus, 

m k C d 
4'1!3 = 2'1!4= 3'1!5= 2 

agT agT agT gT 
(A.12) 

Use of 1r -numbers for Scaling Relationships 

Because a 1r number is dimensionless, it can be combined with other 1r numbers to 

produce other dimensionless relationships among the parameters. For example, dividing 1r 
3 

by 

1r 2 yields: 

A4 



(A.13) 

which by rearranging the terms will produce the form of the equation for the critical time step 

of the system. 

T=~ (A.l4) 

Another interesting relationship occurs by dividing rc 5 by rc 3 to get 

k (A.l5) 1'C =-
da 

This equation can be combined with the parameter strain, 5 , which is a dimensionless number, 

to develop a stress-strain dimensional relationship. 

rck 
a=-5 (A.l6) 

d 

where rck could be defined as a Young's modulus for the media. This indicates that for a 

d 
given material, i.e. quartz, the contact spring constant must vary with the radius of the particle. 

Additionally, because the mass of a particle is proportional to the cube of the particle radius, 

equation A.14 implies that the critical time step will become smaller as smaller particles are 

used. 

A typical use of rc -numbers in geotechnical engineering is in the development of 

centrifuge scaling laws. In a centrifuge test, the prototype model is subject to a large 

gravitational force. This change, a, is represented by 

a= g protype 

g fullscale 

(A.17) 
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Table A.1: Scaling Relationships for Centrifuge Test 

Quantit:y Full Scale Centrifugal Model a a g' s 

Length, d 1 lla 

Contact stiffness, k 1 lla 

Viscous damping,c 1 1/ a 
2 

Mass of particle 1 lla 
3 

Unit weight 1 a 

Mass density 1 1 

Time 1 lla 

Stress 1 1 

Strain 1 1 

The objective of the centrifuge scaling laws is to maintain stress similitude between the 

prototype and the full-scale system (i.e., a P =a fs ) . The Table A.l summarizes the scaling 

relationship for the particle system to a centrifugal test. 

The dimensional analysis was originally performed to determine if scaling laws could 

be used to increase the critical time step while maintaining stress similitude. However, the 

results of the dimensional analysis indicate that scaling laws do not provide any advantage to 

modeling the system. 
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