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Summary

A discrete element approach was used in the simulation of rock fracture. The numerical synthetic
material was made of rigid circular particles or cylinders that have interaction through normal and
shear springs. The cylinders were bonded to each other at the contact points to withstand the
applied loads. To characterize the microscopic properties of this synthetic material, a dimensional
analysis approach was presented. It was shown that the dimensionless parameters and graphs
obtained were useful tools for fast and efficient calibration of a synthetic material. This calibration
method was employed for finding a numerical model for Pennsylvania Blue Sandstone. The
numerical model could mimic many deformational and failure characteristics of the sandstone
in both conventional and some non-conventional stress paths.

Keywords: Rock fracture, discrete element method, dimensional analysis, calibration.

List of Symbols

D specimen width and specimen diameter
E Young’s modulus
E0 apparent Young’s modulus
kn normal stiffness of a contact
ks shear stiffness of a contact
nb normal bond of a contact
p maximum applied load in a Brazilian test and average of maximum and minimum

principal stresses
q half of difference between maximum and minimum principal stresses



1. Introduction

The issue of rock deformation and fracture has been studied intensively by researchers

in the past. Two general paths are usually followed to investigate rock fracture, a

continuum model and a discrete model. In the continuum model, different techniques

are implemented; the most common ones are softening plasticity and damage me-

chanics models. In the softening approach, rock friction angle or cohesion can be

considered to evolve by an invariant of plastic strain or plastic work (Vermeer and De

Borst, 1984), while in the damage model, rock stiffness is reduced with deformation

(De Borst, 2002). In the continuum framework, the geomaterial failure and localiza-

tion of deformation can be studied as a bifurcation phenomenon as well (Rudnicki and

Rice, 1975; Vardoulakis and Sulem, 1995).

Crack propagation in rock features a complex behavior that usually needs to be

studied numerically. The difficulty with the numerical rock softening and damage

analysis is the dependency of the failure load on the mesh resolution. For example,

it is well known that in the finite element analysis of rock softening, by reducing the

mesh size, the dissipated energy in the fracture zone or shear band reduces which is

not physically meaningful (Bazant and Planas, 1998). To remedy this difficulty, non-

local continuum (Bazant and Pijaudier-Cabot, 1988), Cosserat continuum (De Borst

and Muhlhaus, 1991) and gradient plasticity techniques (De Borst and Muhlhaus,

1992) have been proposed in the literature.

Numerical continuum methods based on micromechanics and flaw distribution

have been proposed as well. In a multi-laminate model (Pande and Xiong, 1982), dis-

crete failure planes are considered in otherwise a continuum system. The original

multi-laminate model later on was renamed a microplane model in that a geometric

damage tensor was introduced (Carol et al., 1991). In a microplane model, a non-local

averaging technique needs to be implemented to avoid the sensitivity of the results to

mesh resolution. A displacement discontinuity technique was used by Van de Steen

et al. (2003) to model rock fracture. This technique was successfully implemented in

simulating rock spalling around an underground excavation, although no comment

qu uniaxial compressive strength
R cylinder radius
Rave average radius of cylinders
Rmax maximum radius of cylinders
Rmin minimum radius of cylinders
sb shear bond of a contact
t specimen length in a Brazilian test
�"axial axial strain increment
�"lateral lateral strain increment
��axial axial stress increment
� friction angle
� friction coefficient of a contact
�0 genesis pressure
�1 axial stress and maximum principal stress
�3 confining pressure and minimum principal stress
�t Brazilian tensile strength
� Poisson’s ratio
�0 apparent Poisson’s ratio
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was presented regarding calibration of the model. Fractures can be studied as math-

ematical cracks as well. In this case, linear fracture mechanics or cohesive crack

models (Bazant and Planas, 1998) can be used, although extension of these models

to biaxial compressive loading is not straightforward.

In the discrete element approach of rock fracture, the interaction of particles is con-

sidered explicitly in the model. This provides an embedded internal length in the for-

mulation of the problem that prevents the numerical difficulties observed in the classical

local continuum softening models. The application of this technique in geomechanics was

initially proposed by Cundall and Strack (1979) and later on extended and implemented

in the PFC computer programs (Itasca, 1999). With this technique, crack propagation,

rock softening and dilation, anisotropic rock behavior in damaged zone, cyclic energy

dissipation, spontaneous emission of acoustic energy and Coulomb failure envelope can

be reproduced. Nevertheless, this powerful technique has a few shortcomings. Firstly, it

needs calibration, i.e. some micro-mechanical properties must be specified to result in a

synthetic material with desired macro-mechanical properties such as Young’s modulus,

Poisson’s ratio, tensile strength, and failure envelope. For a simple contact bond model

implemented in this paper, the micro-mechanical properties for interaction of two

circular particles or cylinders are normal and shear spring stiffnesses (kn, ks), normal

and shear bonds (nb, sb) to glue the particles in contact and Coulomb friction coefficient

(�) which is activated when the bond between any two particles is broken. Therefore,

these five parameters must be obtained during the calibration step. The calibration can

be performed by using a trial and error approach in that extensive effort is needed to

acquire appropriate micro-parameters to result in macroscopic properties similar to

those of a specific rock. A more efficient method was employed by Huang (1999) for

calibration of a circular particle interaction (CPI) model in that a dimensional approach

was established and some dimensionless parameters were introduced.

The second problem with a CPI model is the difficulty of calibrating it for the

failure envelope. In general, a CPI model shows a friction angle which is smaller than

that for a hard rock (Potyondy and Cundall, 2001). To increase the friction angle of a

particle assemblage, non-circular particles can be used (Ting et al., 1993), but this

requires additional computational time to detect contact of adjacent particles; contact

detection of circular particles is much faster compared to that of other particle shapes.

The third difficulty of a CPI model is ratio of unconfined compressive strength to

tensile strength which is usually lower than that of a rock. Fakhimi (2004) proposed a

slightly overlapped circular particle interaction (SOCPI) model to resolve the above

second and third problems. The calibration issue of a SOCPI material that is based on

the dimensional analysis is addressed in this paper. The calibration graphs introduced

were used to develop a synthetic model for Pennsylvania Blue Sandstone. Several

physical and numerical tests are reported to verify the validity of the numerical model.

All the numerical analyses in this paper were conducted using CA2 computer

program which was developed by the first author (Fakhimi, 1998). CA2 is a hybrid

finite difference-discrete element code for large deformation static or dynamic de-

formation of solid materials. The first step in discrete element modeling of rock, using

CA2, is sample preparation. This step involves with generation of walls that define

the domain of analysis. The walls in CA2 are not rigid but are discretized to smaller

elements and are used to confine the cylinders. Next, the cylinders with uniformly

Dimensional Analysis in Calibration of a Discrete Element Model 195



distributed radii are generated and inflated by increasing the cylinders radii. An

explicit algorithm is used to obtain the equilibrium configuration of this particle

assembly. At this stage of analysis, a contact bond model with no friction and bond

at the contact points is assumed for the interaction of cylinders. After equilibrium, the

induced stress in the surrounding walls is examined. By changing the number of cy-

linders, the induced stress can be modified. This stress is called genesis pressure (�0)

and its role is to create a small overlap between cylinders in contact. This small

overlap is responsible for obtaining more realistic friction angle and ratio of compres-

sive to tensile strength of the synthetic material (Fakhimi, 2004). The last step in

sample preparation is to initialize the normal and shear contact stresses to zero and to

introduce normal and shear bonds and friction between the cylinders in contact. More

details about sample preparation are given in Fakhimi (2004).

2. Calibration Charts

Calibration of a synthetic model made of rigid circular cylinders is a tedious task if it

is undertaken by using a trial and error approach. A much more convenient and

efficient method is to introduce some calibration curves using a dimensional analysis.

In this paper, a synthetic material was intended to be calibrated for Young’s modulus,

Poisson’s ratio, failure envelope and tensile strength. A SOCPI model is calibrated by

assigning appropriate parameters including normal and shear spring constants (kn, ks),

normal and shear bonds (nb, sb), friction coefficient (�), genesis pressure (�0), average

cylinders radius (R) and specimen width (D).

The parameters that dictate the elastic properties of a SOCPI material are kn, ks, �0,

R and D. These five parameters have two independent dimensions, i.e. force (F) and

length (L). Hence, considering the p theorem in dimensional analysis (Sedov, 1993),

5� 2¼ 3 dimensionless parameters are involved in describing the elastic deformation

of the synthetic material, i.e.

E0 ¼ kn f ðR=D; ks=kn; �0=knÞ; ð1aÞ

�0 ¼ gðR=D; ks=kn; �0=knÞ; ð1bÞ
where f and g are dimensionless functions and E0 and �0 are apparent Young’s modulus

and Poisson’s ratio of the synthetic material, defined in a uniaxial test as:

E0 ¼ ��axial=�"axial ð2aÞ

�0 ¼ ��"lateral=�"axial: ð2bÞ
If a numerical experiment is considered as a biaxial plane strain test, true Young’s

modulus and Poisson’s ratio of synthetic material can be obtained from the following

equations:

� ¼ �0=ð1 þ �0Þ; ð3aÞ

E ¼ E0ð1 � �2Þ: ð3bÞ
Several numerical uniaxial tests were conducted on the synthetic material with

R=D¼ 0.013 and different ks=kn and �0=kn values, using CA2 computer program.
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The numerical uniaxial test set up together with the synthetic specimen is shown in

Fig. 1. The upper and lower platens or walls are made of finite difference grid and are

frictionless. The upper wall is fixed vertically while the lower one was moved with a

constant velocity to compress the specimen. Two small and very flexible walls were glued

to the lateral sides of the specimen. These walls were like measurement devices to ac-

Fig. 1. Numerical unconfined compressive test set-up

Fig. 2. Elastic constants of synthetic material versus ks=kn for different �0=kn, a normalized apparent
Young’s modulus, b apparent Poisson’s ratio
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quire average lateral deformation of the middle of the specimen and consequently the

Poisson’s ratio. The results of the numerical analyses are shown in Fig. 2a and b. Para-

metric studies and also the work by Potyondy and Cundall (2001) show that E0 and �0

are almost independent of R=D values provided that this ratio is kept small enough.

Therefore, by introducing the macroscopic parameters E0 and �0 and assuming a value

for �0=kn, normal and shear spring constants can be estimated from Fig. 2a and b.

The uniaxial strength of the synthetic material (qu) was obtained by conducting

several numerical tests. This parameter is a function of �0, kn, ks, R, D, nb, sb, and �.

These eight parameters have two dimensions. Hence, dimensionless unconfined com-

pressive strength can be expressed as:

quR=nb ¼ f1ð�0=kn; ks=kn; knR=nb; nb=sb;R=D; �Þ; ð4Þ
where f1 is a dimensionless function. Numerical analyses demonstrate that qu is a

weak function of � and kn R=nb (Villegas, 2004). In addition, it has been shown that

the biaxial compressive strength of a synthetic material made of circular cylinders is

not a function of R=D value, provided that R=D is kept a small number (Potyondy and

Fig. 3. Dimensionless uniaxial strength versus ks=kn for a �0=kn¼ 0.007 and b �0=kn¼ 0.08
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Cundall, 2001). Thus, only three dimensionless parameters namely, �0=kn, ks=kn and

nb=sb were needed to consider. By conducting uniaxial tests on the synthetic materials

with R=D¼ 0.013 (Rmin¼ 0.44 mm and Rmax¼ 0.58 mm with a uniform random dis-

tribution of cylinders radii), �¼ 0.5, kn¼ 50 GPa, and nb¼ 20,000 N=m, two charts,

each for a specific value of �0=kn (0.007 and 0.08) were obtained. Figure 3a and b

show these charts where the dimensionless uniaxial strength is plotted versus ks=kn for

different nb=sb values. Similar charts for �0=kn¼ 0.04 and 0.1 are reported in Villegas

(2004). Comparison of these figures verifies that the dimensionless unconfined com-

pressive strength of synthetic material increases as higher values of genesis pressure is

used. This should be expected, as with a higher genesis pressure, the number of con-

tact points per unit area of the specimen increases which results in a stronger speci-

men. It is interesting to observe the effect of ks=kn parameter on the specimen strength.

Figure 3 indicate that by reducing the ks=kn parameter to a value less than 0.5, the

dimensionless strength decreases. The crack pattern, in the synthetic material is also

affected by the ks=kn ratio. This is demonstrated by the crack pattern for the synthetic

specimens with different ks=kn value (Fig. 4). A crack in CA2 is a line perpendicular to

the line connecting centers of cylinders with broken bond. It is evident from Fig. 4 that

for a small ks=kn value, a diffuse crack pattern is obtained, in contrast to a shear

banding when a greater value of ks=kn is used. The reason for this observation is that

by increasing ks value, greater microscopic shear stresses and hence shear cracks are

developed in the specimen with the consequence of shear banding. In addition, it can

be shown that a synthetic specimen with a small ks=kn value, features a substantial

amount of hardening in its stress-strain diagram, while a greater value of ks=kn, results

in a more brittle behavior (Villegas, 2004).

Several numerical biaxial tests were conducted to evaluate failure envelope of

synthetic material. Strength of synthetic material (�1) is a function of �0, R, D, �, ks,

Fig. 4. Crack pattern in the damaged specimen with a ks=kn¼ 0.05, b ks=kn¼ 0.55, and c ks=kn¼ 1.5
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kn, nb, sb, and the confining pressure (�3). Similar to uniaxial strength, �1 is a weak

function of � and knR=nb. Therefore, the biaxial dimensionless strength can be

written as:

�1R=nb ¼ g1ð�3R=nb; ks=kn; �0=kn; nb=sbÞ; ð5Þ
where g1 is a dimensionless function. The normalized failure envelopes for dif-

ferent values of �0=kn are shown in Fig. 5a–c. In this series of numerical anal-

Fig. 5. Normalized failure envelopes for a �0=kn¼ 0.007, b �0=kn¼ 0.04, and c �0=kn¼ 0.08
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yses, the following parameters were fixed: R=D¼ 0.013 (with Rmin¼ 0.44 mm and

Rmax ¼ 0.58 mm), �¼ 0.5, kn¼ 50 GPa, ks¼ 27.5 GPa and nb¼ 20,000 N=m. Different

values of nb=sb (0.05, 0.1, 0.2, 0.3, 0.4, 0.5) were used in the analyses. Figure 5

indicate that by increasing the genesis pressure, specimens with higher strength are

obtained. In addition, it is noticed that with larger �0=kn values together with smaller

values of nb=sb parameter, curvature of failure envelope similar to that of a rock can be

simulated. The slope of failure envelope in a �1, �3 space is equal to tan2(45þ�=2) in

that � is the friction angle. Inspection of the curves in Fig. 5 for higher �0=kn and

smaller nb=sb values show that friction angles of 60� or more can be simulated. This

has become feasible due to the application of non-zero genesis pressure.

To investigate the role of microscopic friction coefficient (�) on the failure envelope,

two sets of biaxial tests with �0=kn¼ 0.08, ks=kn¼ 0.55, nb=sb¼ 0.2, kn R=nb¼ 1269,

and R=D¼ 0.013 were conducted. For the first set of biaxial tests, a friction coefficient

of 0.5 was used while for the second set, � was 0.8. Figure 6 shows the peak and

residual failure envelopes for these two synthetic materials. This figure demonstrates

that while � has a small effect on the peak failure envelope, its role on the residual

strength is negligible. Consequently, a great percentage of the induced friction, in the

numerical model, is due to the shear displacement along the developed irregular failure

surface and to a much less extent the microscopic friction angle (�) plays a role.

Some numerical Brazilian tests were performed to evaluate tensile strength of

synthetic material. The numerical test set up for the Brazilian test is shown in

Fig. 6. Normalized peak and residual failure envelopes for two different friction coefficients

Fig. 7. Numerical Brazilian test set-up
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Fig. 7. The upper platen is fixed in the vertical direction while the lower platen was

moved with a constant velocity of 0.2� 10�8 m=step in the upward direction. Both

upper and lower platens were discretized to the smaller finite elements. Two series of

numerical Brazilian tests were conducted. In the first series, for specific values of

�0=kn, the tensile strength was obtained by changing ks=kn and nb=sb parameters. The

tensile strength was obtained from the following equation (Goodman, 1989):

�t ¼ 2p=�Dt; ð6Þ

where p is the maximum applied load, D is the specimen diameter and t is its length

that is equal to unity in the numerical tests. Figure 8a and b show the dimensionless

tensile strength (�t R=nb) versus ks=kn parameter for �0=kn¼ 0.1and 0.04, respectively.

Similar to the observation with the unconfined compressive strength, it is evident that

increase in genesis pressure results in higher tensile strength. The reason for the

observed maximum points of dimensionless tensile strength as shown in Fig. 8a is

not clear to the authors. One possible explanation is that by increasing nb=sb parameter

with higher values of �0=kn, the intensity of micro shear cracks are increased in the

model that results in change of the trend of the failure load.

Fig. 8. Dimensionless Brazilian tensile strength versus ks=kn for a �0=kn¼ 0.1 and b �0=kn¼ 0.04
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In the second series of Brazilian tests, the size effect was investigated. Figure 9

show the ratio of unconfined compressive strength to tensile strength verses R=D for

�0=kn of 0.04, 0.08 and 0.1. Since unconfined compressive strength appears to be

independent of R=D, it is realized that �t reduces by decreasing R=D value, for a fixed

nb=R. This means that for a numerical model with fixed average cylinder radius (R), by

Fig. 9. Ratio of unconfined compressive strength to Brazilian tensile strength versus specimen resolution for
a �0=kn¼ 0.04, b �0=kn¼ 0.08, and c �0=kn¼ 0.1
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increasing the specimen size (D), the tensile strength decreases. This size effect has

already been reported by Potyondy and Cundall (2001) and Huang (1999) for a CPI

model and is confirmed here for a SOCPI material. Notice that specimens with higher

genesis pressure and lower nb=sb values demonstrate more intensive size effect. The

reason for the observed size effect in a numerical Brazilian test goes back to the

dependence of fracture toughness of the synthetic material to the specimen resolution;

by increasing the cylinders radii for a fixed nb=R, the fracture toughness increases

(Potyondy and Cundall, 2001). Figure 10a and b demonstrate qu=�t parameter versus

R=D for different ks=kn values. These two graphs are important for the calibration

procedure as is shown in this paper. An important observation here is that by introdu-

cing a non-zero genesis pressure, a qu=�t value of more than 25 can be obtained. This

ratio is usually around 5 for a CPI model (Huang, 1999), which is very low compare to

those for rocks. Therefore, a SOCPI model is capable of simulating realistic compres-

sive to tensile strength ratio.

3. Calibration Procedures

To examine the usefulness of the calibration charts, an effort was made to develop a

synthetic material similar to Pennsylvania Blue Sandstone. The mechanical properties

Fig. 10. Ratio of unconfined compressive strength to Brazilian tensile strength versus specimen resolution
for different ks=kn values. a �0=kn¼ 0.1, nb=sb¼ 0.1, b �0=kn¼ 0.08, nb=sb¼ 0.2
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of this rock were obtained by performing laboratory uniaxial, triaxial and Brazilian

tests. This sandstone has a Young’s modulus (E) of 27 GPa, a Poisson’s ratio (�) of

0.15, a tensile strength (�t) of 9.9 MPa, and an unconfined compressive strength (qu) of

122 MPa. Four steps were employed to calibrate a synthetic material similar to the

sandstone as explained in the following:

a) The first step was to search among dimensionless or normalized failure envelopes

that are shown in Fig. 5. In Fig. 11, the normalized failure envelope of the sand-

stone together with those of synthetic materials for �0=kn¼ 0.08 is shown. This

figure confirmed that a curve with nb=sb¼ 0.2 had a good match with the failure

envelope of sandstone. Hence, �0=kn¼ 0.08 and nb=sb¼ 0.2 were selected for the

synthetic material.

b) Equations 3a and 3b together with E¼ 27 GPa and �¼ 0.15 were used to obtain the

apparent Young’s modulus and Poisson’s ratio of the sandstone as: E0 ¼ 28 GPa and

�0 ¼ 0.18. With �0 ¼ 0.18 and �0=kn¼ 0.08, ks=kn¼ 0.42 was found from Fig. 2b.

Next, E0=kn¼ 0.66 was acquired from Fig. 2a, with ks=kn¼ 0.42 and �0=kn¼ 0.08.

Therefore, the values of kn¼ 42.4 GPa and ks ¼ 17.8 GPa were obtained. Finally,

by considering �0=kn¼ 0.08 and kn¼ 42.4 GPa, a genesis pressure of 3.4 GPa was

calculated.

c) Laboratory experiments showed that the ratio of unconfined compressive strength

to tensile strength of sandstone was 12. This value together with nb=sb¼ 0.2,

�0=kn¼ 0.08, and ks=kn¼ 0.42 were used in Fig. 10b to obtain an R=D equal to

0.013. With a specimen width of D¼ 40 mm and R=D¼ 0.013, the average cylin-

ders radius of 0.52 mm was calculated.

d) The last step was to acquire the normal and shear bonds of the synthetic material.

An approximate value of R=nb was obtained through step (a), when the failure

envelope was selected. In fact, R=nb was the scaling factor in plotting the sandstone

failure envelope in Fig. 11. A more accurate estimate of R=nb value that incorpo-

rates the effect of ks=kn parameter is obtained by using Fig. 3b. With �0=kn¼ 0.08,

nb=sb¼ 0.2 and ks=kn¼ 0.42, a quR=nb equal to 5 was acquired from Fig. 3b.

Inserting R¼ 0.52 mm and qu¼ 122 MPa in the quR=nb¼ 5, a normal bond of

nb¼ 12,664 N=m was obtained which together with nb=sb¼ 0.2, resulted in a shear

Fig. 11. Normalized failure envelopes for �0=kn¼ 0.08 together with the normalized failure envelope of
Pennsylvania Blue Sandstone
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bond of sb¼ 63,320 N=m. Finally, a reasonable friction coefficient of �¼ 0.5 was

assumed for the synthetic material.

In conclusion, the parameters obtained through the above calibration steps were:

�0¼ 3.4 GPa, kn¼ 42.4 GPa, ks¼ 17.8 GPa, nb¼ 12,664 N=m, sb¼ 63,320 N=m,

Rave¼ 0.5 mm and �¼ 0.5.

4. Numerical Experiments on the Synthetic Material

The synthetic material with the microscopic parameters obtained in the previous

section should have mechanical properties similar to Pennsylvania Blue Sandstone.

To verify that, rectangular synthetic specimens 40 mm� 80 mm in dimension for

biaxial tests and circular specimens 40 mm in diameter were created using CA2

computer program. The uniaxial test result on the synthetic specimen is demonstrated

in Fig. 12 that shows the axial stress-axial strain and axial stress-lateral strain curves.

This figure compares well with that of laboratory uniaxial test on the sandstone

(Fig. 13). It is interesting to realize that by development of microcracks at an axial

Fig. 12. Axial stress-axial strain and axial stress-lateral strain curves of the synthetic material in a numerical
uniaxial test

Fig. 13. Axial stress-axial strain and axial stress-lateral strain curves of the sandstone in a physical
uniaxial test
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stress of about 60% of unconfined compressive strength, dilatation emerges as is

clearly visible in axial stress-lateral strain curves of both physical and numerical

specimens. From the initial slopes of the curves in Fig. 12, Young’s modulus and

Poisson’s ratio of the synthetic material was calculated to be E¼ 27.2 GPa and

�¼ 0.145 that are in good agreement with those for the sandstone. The damaged

numerical specimen at the end of the uniaxial test is shown in Fig. 14. In this figure,

damaged contacts of the cylinders are shown with lighter color; the synthetic speci-

men shows both shear banding and axial splitting at the end of numerical test.

Some numerical biaxial tests with confining pressure of �3¼ 5, 10, 15, 20 MPa

were conducted as well. Figure 15 shows the stress-strain curves for these biaxial tests

from which the peak and residual failure envelopes can be deduced. These failure

envelopes together with those for the sandstone are shown in Fig. 16 with great

agreement. This figure confirms that the curvature of failure envelope has been simu-

lated accurately.

For the numerical Brazilian test, a set up demonstrated in Fig. 7 was employed,

and a tensile strength of �t¼ 9.9 MPa was inferred that is in excellent agreement with

that of the physical experiment. The damaged synthetic Brazilian specimen (Fig. 17)

Fig. 14. Damaged specimen in a numerical uniaxial test

Fig. 15. Principal stress difference (�1��3) versus axial strain in numerical biaxial tests with different
confining pressures
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indicates the development of a macroscopic tensile crack along the vertical diameter

that is consistent with physical observation.

In addition to the triaxial and Brazilian laboratory tests, two non-conventional tri-

axial tests were conducted on the Pennsylvania Blue Sandstone to investigate the

effect of two different stress paths on the rock strength. For S2 sample of sandstone,

a triaxial test was conducted. The initial confining stress was 25 MPa and subse-

quently, an axial stress of 175 MPa was applied and kept constant. The confining stress

was then reduced gradually until the sample failure. The sample failed at a confining

stress of 10 MPa. The final state of stress is shown in Fig. 18 together with the failure

envelope. In this figure, p and q are defined as:

p ¼ ð�1 þ �3Þ=2; ð7aÞ

q ¼ ð�1 � �3Þ=2: ð7bÞ
For the second physical experiment, sample S5, a confining stress of 10 MPa was ap-

plied initially and followed by an axial stress of 150 MPa. The confining stress was

then increased to 20 MPa and kept constant while the axial stress was increased until

the sample failure. The sample failed at an axial stress of 218 MPa. From Fig. 18, it is

Fig. 16. Peak and residual failure envelopes of the sandstone and the synthetic material

Fig. 17. Developed cracks in the numerical Brazilian test
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clear that samples S2 and S5 that were subjected to stress paths different from that in a

triaxial compression test, show strengths that are relatively consistent with the pre-

diction obtained by the conventional failure criterion.

To approximately simulate these two stress paths, two numerical biaxial tests

were conducted. In a biaxial test, the stress path is not the same as that in a triaxial

test, but the effect of intermediate principal stress is usually small and it is ignored

here. For the synthetic sample S2b, an initial lateral pressure of 25 MPa was fol-

lowed by an axial stress of 175 MPa. Thereafter, the axial stress was kept constant

while the lateral pressure was gradually reduced until sample failure. For the syn-

thetic sample S5b, a confining pressure of 10 MPa was initially applied and followed

by an axial stress of 150 MPa. The confining pressure was then increased to 20 MPa

and kept constant while the axial stress gradually increased until the sample failure.

The stress paths and failure points are shown in Fig. 19 together with the failure

envelope of the synthetic material. It is clear that the failure points are in close

agreement with the convential failure envelope. Besides, comparison of Figs. 18 and

19 indicates that the calibrated synthetic material has been capable of simulating the

failure of sandstone reasonably well, even when some non-conventional stress paths

were followed.

Fig. 18. Stress paths followed for S2 and S5 samples of the sandstone

Fig. 19. Stress paths followed for S2b and S5b samples of the synthetic material
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5. Conclusion

Dimensional analysis was employed to establish a fast and efficient tool for calibration

of synthetic materials made of bonded circular particles. Several dimensionless param-

eters and graphs were presented. Careful examination of these graphs shows that the

applied genesis pressure during sample preparation is an important factor in dictating

the deformation and strength properties of a synthetic material. By using high genesis

pressure that induces small overlap of circular cylinders, more realistic friction angle,

failure envelope and tensile strength can be simulated that was not possible previously

by using circular cylinders with zero genesis pressure.

A synthetic material similar to Pennsylvania Blue Sandstone was developed using the

proposed systematic approach for sample calibration. Numerical experiments showed

that this model could mimic some of the deformation and failure characteristics of the

sandstone closely. For example, the peak and residual failure envelopes and their curva-

ture were simulated accurately. In addition, two non-conventional stress paths were

applied to both physical and numerical specimens that showed results in close agreement.

In summary, it was shown that the numerical model together with the calibration charts

offer a robust and useful tool in simulating many aspects of rock mechanical behavior.
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