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Abstract — While frequency response analysis (FRA) technique 

has been successfully used to assess the mechanical integrity of 

active parts within power transformers, it still exhibits some 

drawbacks including its inability to detect incipient and minor 

winding deformations and the requirement for an expert to analyze 

the results. Although several papers have investigated the impact of 

various faults on the transformer FRA signature, no attempt was 

made to automate and improve the fault detection accuracy of the 

current technique. The main contribution of this paper is the 

presentation of a new approach for FRA technique through 

incorporating the magnitude and phase angle plots that can be 

measured using any commercial frequency response analyzer into 

one polar plot. In contrary with the current industry practice that 

only relies on the magnitude of the measured FRA signature for 

fault identification and quantification, the proposed polar plot that 

comprises more features than the magnitude plot will facilitate the 

use of digital image processing (DIP) techniques to improve the 

detection accuracy, standardize and automate the FRA 

interpretation process. In this regard, 3D models for two 3-phase 

power transformers of different ratings, sizes and windings 

structures are modelled using finite element analysis (FEA) 

technique to simulate various levels of axial displacement (AD) and 

disk space variation (DSV) at different locations of the transformer 

windings. Impact of minor fault levels on the proposed polar plot 

signature is investigated through the application of various DIP 

techniques. Simulation results are validated through practical 

measurements on a scaled-down transformer. Results show that the 

proposed polar plot along with DIP technique is able to detect 

minor fault levels of AD and DSV with high accuracy. 

Index Terms – Transformer frequency response analysis, Digital 

image processing, Axial displacement, Disk space variation. 

I. INTRODUCTION 

OWER transformer is one of the key assets in the electricity 

grid that should be carefully monitored in order to maintain 

the reliability of transmission and distribution networks. Among 

the condition monitoring and fault diagnosis techniques 

currently used by industry to assess the health condition of 

power transformer, frequency response analysis (FRA) has been 

widely accepted as a reliable tool to detect internal transformer 

mechanical deformations that could result due to short circuit 
faults or transformer oil combustible gas explosions [1, 2].  The 

FRA technique was developed based on the fact that all 

transformer elements including active parts and insulation 

system can be modelled as a cascaded network of resistive and 

inductive/capacitive reactance components [3]. As these 

components are frequency dependent, its value will change in a 

unique way due to any particular variation in the physical 

structure of the transformer[4]. FRA can detect this change 

thorough taking the investigated transformer out-of-service and 

applying a sweep frequency voltage of low amplitude to one 

terminal of a transformer winding and measuring the response 

across the other terminal of the winding with reference to the 

earthed tank [5]. The measured FRA signature is provided as a 

magnitude and phase angle plots of the winding impedance, 
admittance, or transfer function (Vout/Vinput in dB) in a wide 

frequency range. While the FRA measurement is standardized 

since the development of various commercial analysers, 

interpretation of FRA signature still requires a highly 

specialized personal as there is no interpretation code published 

and widely accepted yet [6]. This may lead to inconsistent 

interpretation for the same FRA signature. Furthermore, current 

FRA technique is not able to detect incipient and minor winding 

deformations within power transformers. Although a 

transformer can continue work normally with such minor 

winding deformation, it is essential to detect and take 

appropriate maintenance action at early stage due to the 
progressive nature of such faults to avoid any catastrophic 

failure to the asset [3]. While many papers investigating the 

impact of various winding deformations on the conventional 

FRA magnitude plot can be found in the literature, no attempt 

has been made to improve its accuracy to detect incipient and 

minor deformations [5, 7]. A few studies have been conducted 

in order to ease the interpretation process of the transformer 

FRA signature through calculating various statistical indicators 

such as correlation coefficient, standard deviation and the 

absolute sum of logarithmic error [8, 9]. The correlation 

coefficient however, may lead to a wrong correlation between 
the two investigated signatures under certain circumstances and 

is considered as inadequate parameter for FRA interpretation 

[9]. On the other hand, standard deviation fails to reflect the 

information scattered around the low magnitudes of the FRA 

signature and only the peaks differences of the two investigated 

signatures will dominate the calculated value which may result 

in a wrong interpretation outcome [10, 11]. The absolute sum of 

logarithmic error (ASLE) was introduced to realize a full 

logarithmic scaled comparison between two FRA signatures 

[12]. However the reliability of using ASLE indictor in FRA 

interpretation has not been accepted yet and it requires further 

investigation [13]. The key contribution of this paper lies in 
introducing a new FRA signature for power transformers based 

on the incorporation of the magnitude and phase angle plots of 

the measured signal into one polar plot that involves more 

features than the conventional magnitude plot which is currently 

used for fault identification. Also, the paper is aimed at utilizing 

the rapid advancement in digital image processing (DIP) 

techniques to standardize, automate and enhance the accuracy of 

the FRA interpretation process. The feasibility of the proposed 

approach is assessed through the detection of minor fault levels 

of winding axial displacement (AD) and disk space variation 

(DSV) faults simulated using finite element analysis (FEA) 
technique on two 3-phase transformer models of different 

ratings (10kVA and 40MVA), sizes and winding structures. 
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Simulation results are validated through practical laboratory 
measurements on a scaled-down transformer.  

II. POWER TRANSFORMER MODELLING USING FEA  

FEA is a computerized technique developed to model 

complicated systems within multi-fields environment to emulate 
real system operation [14, 15]. Two 3-phase delta-wye 

transformers of ratings 10kVA and 40MVA that have different 

physical dimensions and winding structures are modelled using 

FEA. The physical dimensions of the two transformers under 

investigation are illustrated in Fig. 1. The 10kVA transformer 

(oil natural, air natural (ONAN)-cooled, 11.55/0.412kV) 

windings are designed in rectangular shape where the high 

voltage (HV) winding comprises 6 disks with 1134 turns per 

disk, while the low voltage (LV) winding is modelled as a 

continuous layer of 140 turns. On the other hand, the windings 

of the 40MVA transformer (ONAN-cooled, 110/6.6kV) are 

structured in a circular form. HV winding consists of 10 disks 
with 1200 turns per disk and the LV winding is made of a 

singular layer of 200 turns. The insulation system of both 

transformers is implemented using Kraft paper and mineral oil 

[16]. 

 

 
Fig.  1.  Transformer schematic diagrams: (a) 10kVA and, (b) 40MVA 

The 3D models of both transformers are solved in magneto-

static, electro-static and eddy current solvers using Maxwell 

equations to extract the inductance, capacitance and resistance 

matrices of the relevant transformer components which are 

listed in Table A-I in the Appendix. The methodology used in 

the calculations is explained in depth in [17, 18].  

III. PROPOSED FRA POLAR PLOT SIGNATURE  

The conventional FRA signatures of the two transformer models 

are obtained by connecting a low-amplitude AC voltage source 

(10 V) of a variable frequency (Vin) at one terminal of the 

transformer winding, and measuring the response signal at the 

other terminal of the same winding (Vout) while other phases are 

left open circuited. The transfer function (TF) of each phase 

within the HV and LV windings of the two transformers is 

calculated in a wide frequency range (up to 1 MHz) and plotted 

as magnitude (in dB) and phase angle (in degrees) as shown in 

Figs. 2 and 3, respectively. At low frequency range and due to 

the fact that flux penetration to the core is significant within this 
range, the signature is characterized by the transformer 

inductive components while at higher frequency range the 

distributed capacitive components tend to shunt the winding 

inductance as can be shown in the phase angle that fluctuates 

between ±90º. The FRA signature should be measured for new 

transformers prior commencement into service to compare any 

future signature with. Any variation in the FRA signature 

indicates a fault within the transformer. If the finger print is not 

available for old transformers, comparing the transformer FRA 
signature with the signature of sister transformer is to be 

adopted. Phase to phase comparison may also be used to detect 
any variations. 

 

 
Fig. 2. Healthy FRA signature of the 10kVA transformer: (a) magnitude and (b) 

phase angle 
 

 
 

 
Fig. 3. Healthy FRA signature of the 40MVA transformer: (a) magnitude and (b) 

phase angle 

As can be seen in Figs. 3 and 4, the 3-phase FRA signatures of 

the LV and HV windings are identical except for the middle 

limb (phase B) that tends to the left in the frequency range less 

than 10 kHz which is attributed to the slight difference in the 
magnetic flux of the middle limb compared to the other two 

limbs (phases A and C). Although the FRA signature trend of 

the 10kVA and 40MVA transformers is similar, slight 

differences in the resonance peaks of the two transformers can 

be noticed, which may be attributed to the difference in 

transformer ratings, sizes and windings structures. In spite of the 

fact that all commercial frequency response analysers provide 

the FRA signature as magnitude and phase angle, only 

magnitude plot is currently used to detect various mechanical 
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faults within the transformer. The new FRA signature proposed 

in this paper relies on incorporating the magnitude and phase 

angle of the measured FRA signature in one polar plot as shown 

in Fig. 4. The proposed polar plot comprises most of the features 

of the measured signal and can facilitate the application of DIP 
techniques. Each point on the polar plot involves three specific 

details about the measured FRA signature; the magnitude 𝓻 

which is measured from the origin, the phase angle  θ that is 

measured with respect to the x-axis at a particular frequency 

value f which varies from 10 Hz to 1 MHz [19, 20]. In Fig. 4 (a), 

any point ai on the polar plot signature is a function of (fi, 𝓻i, θi). 

 
Fig. 4. Healthy transformer polar plot signatures: (a) 10kVA and  

(b) 40MVA  

Fig. 4 reveals that the polar plot signatures of each winding 

within the 10kVA and 40MVA transformers are almost identical 

in their geometrical structures. However, the polar plot 

signatures of the HV windings are characterized by larger entire 

area and longer contour than that of the LV windings which may 
be attributed to the difference in winding design and equivalent 

electrical parameters as can be observed from Table A-I in the 

Appendix. 

 
IV. DIGITAL IMAGE PROCESSING TECHNIQUES 

Digital image processing (DIP) aims at improving the 

interpretation of pictorial information based on developed 

computer algorithms [21]. The digital image [A] is represented 

by a two-dimensional matrix (M×N) which consists of finite 

number of digital values (pixels). Any point on the proposed 

polar plot is represented as {a(i, j)}, where |a| represents the 

image intensity at a point which has spatial location of (i,j) with 

respect to the (X,Y) coordinates.  

 
Fig. 5. Flow chart of the proposed DIP technique 

An image can be well-described through some unique features 

such as geometric dimensions, invariant moment and texture 

analysis that could be extracted from the image using DIP 

techniques [21-24]. To increase the accuracy of the proposed 

DIP technique, the aforementioned three features are extracted 

from the proposed polar plot as per the flow chart in Fig. 5. The 

proposed DIP technique can be built within commercial 

frequency response analysers to extract the polar plot data and 
analyze it. The pre-processing stage is aimed at adjusting image 

dimension size, colour format and extension type to ease 

sensing the image in electronic systems [21]. Segmentation 

process is used to divide the image into several parts to 

eliminate unwanted effects, such as image noise and background 

and to obtain the required object within the image using edge 

detection algorithm such as the improved Canny edge detector 

[25, 26]. The detected FRA polar plot is manipulated to extract 

four geometric dimensions features and 11 combined features of 

invariant moment and texture analysis techniques [22, 23]. The 

extracted features are analyzed to calculate three unique metrics; 

city-block distance (CBD), root mean square (RMS) and image 
Euclidean distance (IED) [27]. Similar to conventional FRA 

process, the three metrics are to be calculated for new 

transformers and considered as a reference dataset for future 

comparison. The classification stage shown in Fig. 5 is aimed at 

identifying fault type, level and location within the investigated 

transformer through comparing polar plot extracted features 

with the reference dataset [27]. 

The geometric dimension technique extracts four features from 

the polar plot image including entire area (g1), outer contour 

perimeter (g2), centroid coordinates (g3), and the length of minor 

and major axes of the outer contour (g4) based on the equations 
listed in Table A-II in the Appendix [21]. 

The invariant-moment is a powerful DIP technique as the seven 

extracted features using this technique are independent on the 

image scale, rotation or translation [23]. The seven features of 

the invariant moment technique are measured based on order 

moment (mpq), central moment (μpq) and normalized moment 

(𝜼pq) of the image function f(x,y) as detailed in [23]. The 

formulas used in calculating invariant moment features are listed 

in Table A-III in the Appendix. 

Texture analysis technique can provide information about the 

intensity of the investigated polar plot signature. Four texture 
features are extracted from the processed image including, 

correlation feature (𝜏1) that measures the correlation between the 

pixel and its neighbors over the entire image, homogeneity 

feature (𝜏2) which measures the spatial closeness of the image 

distribution elements to the diagonal elements, contrast feature 

(𝜏3) that calculates the contrast between pixel and its neighbor 

over the entire image, and energy feature (𝜏4) which measures 

entire image uniformity [22]. Table A-IV in the Appendix lists 

the equations of the texture analysis technique.  

The proposed polar plot along with the above DIP techniques 

are applied to detect minor fault levels of transformer windings 
axial displacement and disk space variation as will be elaborated 

below.  
V. DETECTION OF AD AND DSV  

Transformer winding AD may be resulted due to the imbalanced 

magnetic forces between the HV and LV windings due to short 

circuit faults [2, 3, 5]. Due to the progressive nature of AD, 

incipient fault levels should be detected and a remedial action 

should be taken as soon as possible to avoid any further 

consequences. Fig. 6 shows a schematic diagram for the AD 

fault within phase A of the HV and LV windings of both 

(a) (b) 



 4 

investigated transformers while Fig. 7 shows the configuration 

for DSV fault within the HV winding of both transformers. 

The FRA polar plot signatures of the healthy HV and LV 

windings of the two investigated transformers (Fig. 4) are 

manipulated using the developed DIP techniques to extract four 
geometric dimensions features and 11 combined features of the 

invariant moment and textures analysis techniques as listed in 

Tables I and II, respectively. The 4 geometric dimension 

features are used to calculate CBD metric while the 11 

combined features are used to calculate the other two metrics; 

RMS and IED as below. 𝐶𝐵𝐷 = ∑ |𝑓𝑎𝑢𝑙𝑡𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖|4𝑖=1           (1)                                  

                          𝑅𝑀𝑆 = √ 111 ∑ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖211𝑖=1                            (2) 

  𝐼𝐸𝐷 = √∑ (𝑓𝑎𝑢𝑙𝑡𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 − ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖 )211𝑖=1                   (3) 

 
Fig. 6. Front view of healthy and axial displacement fault conditions of HV and 

LV windings: (a) 10kVA and (b) 40MVA  

 

Fig. 7. Front view of health and disk space variation fault conditions of HV 

winding: (a) 10kVA and (b) 40MVA  

TABLE I 

Geometric dimension features of healthy HV and LV windings 

Feature 
10kVA transformer 40MVA transformer 

HV LV HV LV 

g1 30443 9600 66091 47692 

g2 878.70 493.15 1837.44 1473.07 

g3 
X-axis 358.85 339.95 673.65 673.10 

Y-axis 289.88 289.91 612.83 560.22 

g4 
Major 374.85 221.58 834.53 642.54 

Minor 109.41 59.24 199.37 127.23 

TABLE II 

The 11 extracted features for healthy HV and LV windings  

Feature 
10kVA transformer 40MVA transformer 

HV LV HV LV 

In
v

a
ri

a
n

t 
m

o
m

e
n

t  Φ1 0.2929 0.4745 0.6207 0.8109 

Φ2 0.0000 0.0000 0.0000 0.0000 

Φ3 0.0016 0.0017 0.0070 0.0072 

Φ4 -0.0054 -0.0077 -0.0320 -0.0377 

Φ5 0.6358 1.7363 3.1864 5.2993 

Φ6 0.0975 0.4392 1.0943 2.3430 

Φ7 0.5423 1.4437 2.5769 4.3172 

T
e
x

tu
re

 

a
n

a
ly

si
s 𝜏1 0.0779 0.0611 0.0573 0.0521 𝜏2 1.9611 1.9694 1.9714 1.9740 𝜏3 1.8222 1.8588 1.8664 1.8789 𝜏4 0.4876 0.5075 0.5295 0.5301 

RMS 0.863598 1.091791 1.538326 2.345671 

As shown in Table I, the 4 extracted features representing the 

physical dimensions of the investigated polar plot of the HV 

winding are higher than the corresponding features of the LV 

winding within both transformers. On other hand, Tables II 

shows that the 11 combined features of the HV winding are less 

than the corresponding features of the LV winding, except for 

features 𝜏1 and Φ2 that always equals zero and hence is omitted 

from upcoming calculations. Tables II and III indicate that all 

features of the 40MVA transformer are higher than the 

corresponding features of the 10kVA transformer. 
 

 
 

 
Fig. 8. Impact of AD on the 10kVA FRA signature: (a) LV and (b) HV 

Based on previous studies [7, 17, 18], transformer windings 

mechanical deformations are considered minor if the fault level 

is within the range 1% to 5% whereas above 5% the fault is 
considered at moderate or major level.     

A. Case study 1: 10kVA transformer  

1. Axial displacement fault 
   Five minor levels (1% to 5%) of AD fault within phase A of the 

HV and LV windings of the 10kVA transformer are simulated 
using FEA. The level of AD fault is defined as: 

        % 𝐴𝐷 𝐹𝑎𝑢𝑙𝑡 𝑙𝑒𝑣𝑒𝑙 = 𝐴𝑥𝑖𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ (𝛥𝐻)𝑊𝑖𝑛𝑑𝑖𝑛𝑔 ℎ𝑒𝑖𝑔ℎ𝑡 (𝐻) × 100%       (4)  

The impact of 1% to 5% of AD faults on the conventional FRA 

signature (magnitude of the winding transfer function) of the 
10kVA transformer HV and LV windings is shown in Fig. 8 

which reveals the difficulty to detect such minor faults using 

conventional FRA approach. In order to overcome this 

drawback, the proposed FRA polar plot signatures for the same 

fault levels are obtained as shown in Fig. 9 that are analyzed 

using the developed DIP techniques to extract various image 

features as given in Tables III and IV. 
 

(a) 
(b) 

(a) (b) 

(a) 

(b) 

(b) (a) 
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Fig. 9. Impact of AD on the 10kVA polar plot signature: (a) LV and (b) HV 

TABLE III 

Geometric dimension features of 10kVA transformer AD fault 

Feature 
Fault level (HV winding) 

1% 2% 3% 4% 5% 

g1 30514 30534 30548 30557 30568 
g2 881.06 881.15 881.27 881.39 881.48 

g3 
X-axis 361.21 361.75 362.34 362.83 363.24 

Y-axis 291.03 291.14 291.26 291.35 291.46 

g4 
Major 377.13 377.84 378.26 378.92 379.73 

Minor 110.32 110.37 110.41 110.49 110.55 
CBD 80.06 101.56 116.85 127.29 139.77 

Feature 
Fault level (LV winding) 

1% 2% 3% 4% 5% 

g1 9784 9813 9846 9886 9916 
g2 494.71 495.08 495.66 496.29 496.71 

g3 
X-axis 340.07 340.25 340.38 340.46 340.68 

Y-axis 291.21 291.84 292.06 292.52 292.93 

g4 
Major 222.03 222.31 222.45 222.67 222.89 

Minor 60.76 60.92 61.09 61.21 61.34 

CBD 188.94 219.56 253.8 295.31 326.71 

TABLE IV  

The 11 extracted features of 10kVA transformer AD fault 

Feature 
Fault level (HV winding) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.2684 0.2651 0.2627 0.2594 0.2563 

3(Φ3) 0.0018 0.0022 0.0023 0.0024 0.0025 

4(Φ4) -0.0083 -0.0085 -0.0087 -0.0088 -0.0089 

5(Φ5) 0.6195 0.6186 0.6172 0.6161 0.6153 

6(Φ6) 0.0948 0.0934 0.0921 0.0913 0.0905 

7(Φ7) 0.5481 0.5483 0.5485 0.5487 0.5489 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0824 0.0829 0.0835 0.0838 0.0844 

9(𝜏2) 1.9282 1.9275 1.9261 1.9253 1.9226 

10(𝜏3) 1.7895 1.7883 1.7872 1.7864 1.7851 

11(𝜏4) 0.4683 0.4675 0.4655 0.4646 0.4631 

RMS 0.848081 0.847514 0.846757 0.846234 0.845222 

IED 0.058820 0.061957 0.065626 0.068768 0.073257 

Feature 
Fault level (LV winding) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.4679 0.4661 0.4572 0.4537 0.4513 

3(Φ3) 0.0018 0.0020 0.0021 0.0022 0.0023 

4(Φ4) -0.0078 -0.0079 -0.0081 -0.0082 -0.0084 

5(Φ5) 1.6813 1.6673 1.6446 1.6371 1.6257 

6(Φ6) 0.4182 0.4172 0.4158 0.4143 0.4127 

7(Φ7) 1.4529 1.4545 1.4572 1.4584 1.4595 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0621 0.0624 0.0629 0.0631 0.0634 

9(𝜏2) 1.9689 1.9673 1.9666 1.9651 1.9637 

10(𝜏3) 1.8568 1.8557 1.8535 1.8522 1.8513 

11(𝜏4) 0.5058 0.5043 0.5022 0.5010 0.5004 

RMS 1.083577 1.081200 1.077424 1.075844 1.073861 

IED 0.060020 0.073880 0.097497 0.105916 0.117762 

Table III reveals that the four geometric dimension features are 

increasing with the increase in fault level. On the other hand, 

Table IV shows that while features 1, 5, 6, 9, 10 and 11 decrease 
with the increase in fault level, features 3, 4, 7, and 8 are 

increasing, and feature 2 (omitted from the Table) is maintained 

at constant zero level.  

The CBD, RMS and IED are calculated based on the extracted 

features and are depicted in Fig. 10. As can be seen in the 

figure, the CBD and IED metrics are increasing while the RMS 

metric is decreasing with the increase in the AD level, which 

can be used to quantify the fault level. Also, Fig. 10 shows the 

proposed threshold limits for the three metrics in which a minor 

AD is considered if at least one of the three metrics lies between 

its designated minimum and maximum limits. If any metric 
exceeds its designated maximum limit, a major AD may be 

reported. All calculated metrics should be less than the 

minimum limit to report insignificant fault level.  

 
Fig. 10. CBD, RMS and IED trends for 10kVA AD fault: (a) LV and (b) HV 

2. Disk space variation fault 

A disk space variation fault is simulated at different locations 

within phase A of the HV winding; top (disk1), middle (disk 3) 

and bottom (disk 6) with five minor fault levels (1% to 5%). 
The disk space variation fault level is defined as:    

  % 𝐷𝑆𝑉 𝐹𝑎𝑢𝑙𝑡 𝑙𝑒𝑣𝑒𝑙 = 𝐷𝑖𝑠𝑘 𝑠𝑝𝑎𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝛥ℎ)𝐷𝑖𝑠𝑘 ℎ𝑒𝑖𝑔ℎ𝑡 (ℎ) × 100%        (5)  

The impact of the investigated DSV fault levels within the top, 

middle and bottom locations of the HV winding on the 

conventional FRA signature is shown in Fig. 11. Similar to the 

AD case study, minor DSV are extremely hard to be identified 
and quantified using conventional FRA signature. 

 
Fig. 11. Impact of DSV on 10kVA HV winding conventional FRA signature 

  
(b) (a) (c) 

(a) (b) 
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Fig. 12. Impact of DSV on 10kVA HV winding polar plot signature: (a) top, (b) 

middle and (c) bottom 

The impacts of DSV fault of the same levels and locations on 

the proposed polar plot signature are obtained as shown in Fig. 

12 that are processed using the developed DIP techniques to 

extract the geometric dimension features and the 11 combined 

features of invariant moment and texture analysis techniques, as 

listed in Tables V and VI, respectively.  
TABLE V 

Geometric dimension features of 10kVA transformer HV winding DSV fault  

Feature 
Fault level (Top disk) 

1% 2% 3% 4% 5% 

g1 30450 30453 30455 30457 30458 
g2 879.02 879.04 879.05 879.06 879.08 

g3 
X-axis 358.92 358.94 358.95 358.97 358.98 

Y-axis 290.02 290.03 290.05 290.07 290.08 

g4 
Major 375.14 375.16 375.17 375.19 375.2 

Minor 109.42 109.43 109.45 109.47 109.48 
CBD 7.83 10.91 12.98 15.07 16.13 

Feature 
Fault level (Middle disk) 

1% 2% 3% 4% 5% 

g1 30462 30464 30465 30467 30469 
g2 879.13 879.14 879.16 879.18 879.19 

g3 
X-axis 359.02 359.03 359.05 359.06 359.08 

Y-axis 290.10 290.13 290.15 290.17 290.19 

g4 
Major 375.23 375.25 375.26 375.28 375.29 

Minor 109.51 109.52 109.54 109.56 109.58 
CBD 20.3 22.38 23.47 25.56 27.64 

Feature 
Fault level (Bottom disk) 

1% 2% 3% 4% 5% 

g1 30471 30473 30475 30478 30479 
g2 879.23 879.24 879.25 879.27 879.29 

g3 
X-axis 359.11 359.12 359.15 359.17 359.19 

Y-axis 290.22 290.24 290.25 290.28 290.29 

g4 
Major 375.31 375.33 375.35 375.37 375.38 

Minor 109.60 109.62 109.64 109.66 109.69 
CBD 29.78 31.86 33.95 37.06 38.15 

TABLE VI  

The 11 extracted features of 10kVA transformer HV winding DSV fault  

Feature 
Fault level (Top disk) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.2921 0.2919 0.2918 0.2917 0.2916 

3(Φ3) 0.0017 0.0019 0.0021 0.0022 0.0023 

4(Φ4) -0.0052 -0.0055 -0.0056 -0.0058 -0.0059 

5(Φ5) 0.6357 0.6356 0.6355 0.6354 0.6353 

6(Φ6) 0.0978 0.0976 0.0975 0.0973 0.0972 

7(Φ7) 0.5424 0.5426 0.5428 0.5429 0.5431 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0781 0.0783 0.0784 0.0786 0.0788 

9(𝜏2) 1.9608 1.9607 1.9605 1.9603 1.9602 

10(𝜏3) 1.8220 1.8219 1.8217 1.8216 1.8215 

11(𝜏4) 0.4863 0.4859 0.4855 0.4847 0.4842 

RMS 0.86340959 0.86334767 0.86324911 0.863143 0.863081 

IED 0.00163095 0.002130728 0.002666458 0.003524 0.004133 

Feature 
Fault level (Middle disk) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.2897 0.2892 0.2886 0.2881 0.2877 

3(Φ3) 0.0025 0.0026 0.0027 0.0028 0.0029 

4(Φ4) -0.0061 -0.0062 -0.0064 -0.0065 -0.0066 

5(Φ5) 0.6348 0.6346 0.6345 0.6344 0.6341 

6(Φ6) 0.0969 0.0968 0.0966 0.0965 0.0963 

7(Φ7) 0.5434 0.5436 0.5437 0.5439 0.5442 

e  a

8(𝜏1) 0.0793 0.0794 0.0797 0.0798 0.0799 

9(𝜏2) 1.9598 1.9596 1.9595 1.9593 1.9592 

10(𝜏3) 1.8212 1.821 1.8208 1.8206 1.8202 

11(𝜏4) 0.4839 0.4837 0.4836 0.4834 0.4832 

RMS 0.862852 0.862745 0.862662 0.862562 0.862438 

IED 0.005696 0.006332 0.006994 0.007633 0.008311 

Feature 
Fault level (Bottom disk) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.2865 0.2854 0.2837 0.2831 0.2819 

3(Φ3) 0.0031 0.0032 0.0034 0.0035 0.0036 

4(Φ4) -0.0068 -0.0069 -0.0071 -0.0072 -0.0074 

5(Φ5) 0.6337 0.6335 0.6334 0.6332 0.6330 

6(Φ6) 0.0957 0.0956 0.0954 0.0952 0.0951 

7(Φ7) 0.5446 0.5447 0.5449 0.5452 0.5453 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0803 0.0805 0.0806 0.0809 0.0811 

9(𝜏2) 1.9587 1.9586 1.9584 1.9582 1.9581 

10(𝜏3) 1.8197 1.8196 1.8194 1.8193 1.8191 

11(𝜏4) 0.4829 0.4827 0.4826 0.4824 0.4821 

RMS 0.862181 0.862091 0.861959 0.861875 0.861758 

IED 0.009898 0.010932 0.012455 0.013274 0.014516 

These tables indicate that the extracted features of this case 

study are characterized by a similar trend to that of the AD fault 

where the CBD and IED are increasing while the RMS metric is 

decreasing with the increase in DSV fault level. 

Results also show that the value of the CBD and IED metrics is 

increasing, while RMS is decreasing when the fault moves 
toward the bottom of the winding as shown in Fig. 13 which 

also shows the proposed threshold limits that could be used to 

identify the location and quantify the level of minor DSV faults. 

Fig. 13 reveals the ability of the proposed approach to identify 

the DSV fault location within the HV winding without 

overlapping among the obtained metrics trends. Although 

results of the DIP technique show the same trend for the two 

investigated fault types (AD and DSV), it can be observed that 

for the same fault level, the value of the CBD and IED is higher 

in case of DSV than that of the AD while the RMS value is less 

for DSV fault. This could be used as a key to distinguish the two 
types of faults. 

 

Fig. 13.  CBD, RMS, and IED for DSV at different locations of the 10kVA HV 

winding 

B. Case study 2: 40MVA transformer 

The impact of the transformer rating, size and winding structure 

on the proposed technique is investigated by simulating the 
same fault levels and locations studied above on the 40MVA 

transformer. 

1. Axial displacement  fault 

AD fault with five minor levels (1% to 5%) is simulated using 

FEA on phase A of the HV and LV windings of the 40MVA 

transformer and the FRA signature is obtained for each fault 

level and compared with the transformer healthy signature 

(magnitude of the TF) that is shown in Fig. 3 (a). Similar to the 
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previous case study, the impact of minor AD fault levels within 

the LV and HV windings of the 40MVA are found to be 

extremely hard to detect using the current conventional FRA 

interpretation approach. The proposed polar plots are obtained 

and analyzed using the developed DIP techniques for all 
investigated fault levels to extract 15 features of the polar plot 

image, as given in Tables VII and VIII. As can be noticed in 

these tables, the trend of the extracted features of the 

investigated AD fault levels is similar to that of the 10kVA 

transformer however; the extracted features are larger in case of 

the 40MVA transformer. The threshold minimum and maximum 

levels of the three calculated metrics are illustrated in Fig. 14 

which shows that while the CBD and IED metrics are increasing 
with the increase in fault level, the RMS metric is decreasing. 

TABLE VII 

Geometric dimension features of 40MVA transformer AD fault 

Feature 
Fault level (HV winding) 

1% 2% 3% 4% 5% 

g1 67226 67432 67588 67694 67791 
g2 1895.09 1895.28 1895.37 1895.64 1895.75 

g3 
X-axis 745.34 746.52 747.67 748.28 749.73 

Y-axis 622.76 623.86 624.37 625.18 626.59 

g4 
Major 846.28 846.46 846.69 847.22 847.57 

Minor 210.14 210.39 210.58 210.74 210.96 
CBD 1296.79 1505.69 1663.86 1772.24 1872.78 

Feature 
Fault level (LV winding) 

1% 2% 3% 4% 5% 

g1 48854 48886 48917 48967 48993 

g2 1476.13 1476.32 1476.48 1476.67 1476.92 

g3 
X-axis 675.07 675.48 675.83 676.27 676.85 

Y-axis 565.41 565.52 565.63 565.77 565.94 

g4 
Major 645.34 646.27 647.15 648.52 649.86 

Minor 129.16 129.37 129.46 129.71 129.83 

CBD 1176.95 1210.8 1243.39 1295.78 1324.24 

TABLE VIII  

The 11 extracted features of 40MVA transformer AD fault 

Feature 
Fault level (HV winding) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.5992 0.5974 0.5958 0.5931 0.5907 

3(Φ3) 0.0124 0.0176 0.0226 0.0289 0.0319 

4(Φ4) -0.0458 -0.0468 -0.0473 -0.0482 -0.0494 

5(Φ5) 3.1684 3.1675 3.1664 3.1652 3.1638 

6(Φ6) 1.0895 1.0884 1.0876 1.0861 1.0838 

7(Φ7) 2.5952 2.5968 2.5976 2.5985 2.5992 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0643 0.0657 0.0662 0.0673 0.0684 

9(𝜏2) 1.9624 1.9622 1.9617 1.9611 1.9605 

10(𝜏3) 1.8625 1.8621 1.8618 1.8615 1.8611 

11(𝜏4) 0.5121 0.5118 0.5116 0.5114 0.5111 

RMS 1.534702 1.534581 1.534301 1.533930 1.533434 

IED 0.042565 0.046361 0.049857 0.055179 0.059580 

Feature 
Fault level/ LV winding 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.8076 0.8012 0.7986 0.7932 0.7907 

3(Φ3) 0.0157 0.0189 0.0208 0.0235 0.0276 

4(Φ4) -0.0414 -0.0422 -0.0445 -0.0457 -0.0467 

5(Φ5) 5.2764 5.2742 5.2731 5.2722 5.2708 

6(Φ6) 2.3386 2.3375 2.3364 2.3342 2.3321 

7(Φ7) 4.3237 4.3256 4.3282 4.3327 4.3358 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0559 0.0589 0.0612 0.0656 0.0687 

9(𝜏2) 1.9592 1.9581 1.9573 1.9555 1.9524 

10(𝜏3) 1.8679 1.8663 1.8658 1.8631 1.8617 

11(𝜏4) 0.5287 0.5276 0.5252 0.5245 0.5231 

RMS 2.340710 2.340067 2.339962 2.339837 2.339454 

IED 0.032238 0.038028 0.042318 0.050006 0.057177 

2. Disk space variation  fault 

 DSV with minor fault levels are simulated within various 

locations including top (disk 1), middle (disk 5) and bottom 

(disk 10) of the 40MVA transformer HV winding. Polar plots 

are obtained and analyzed using the developed DIP techniques. 

Extracted features for this case study are given in Tables IX and 

X. The three metrics, CBD, RMS and IED, are calculated to 

identify the threshold minimum and maximum limits for each 

level/location of DSV fault within the HV winding as shown in 

Fig. 15 which reveals the ability of the proposed approach to 

detect DSV fault level and location without overlapping among 
the proposed limits. Similar to the analysis of the DSV fault for 

the 10kVA transformer, the same trend for the calculated 

metrics is observed for each level and location with larger 

values in case of the 40MVA transformer.  

It is worth mentioning that, in case of overlapped values in any 

of the calculated metrics, the DSV fault location can be still 

identified within the top, bottom or middle section of the 

winding. The error in identifying the exact faulty disk within the 

winding will be very small as the height of each section is 

relatively small (14.14 cm in case of 10 kVA transformer and 
40cm in case of 40 MVA transformer). 
 

 
Fig. 14. CBD, RMS and IED trends for 40MVA AD: (a) LV and (b) HV 

TABLE IX 

Geometric dimension features of 40MVA transformer HV winding DSV fault  

Feature 
Fault level (Top disk) 

1% 2% 3% 4% 5% 

g1 66101 66103 66105 66106 66108 

g2 1838.21 1838.74 1839.17 1839.58 1839.93 

g3 
X-axis 674.82 675.82 676.82 677.82 678.82 

Y-axis 613.01 613.24 613.35 613.63 613.75 

g4 
Major 835.11 835.56 835.87 836.24 836.86 

Minor 200.04 200.28 200.37 200.45 200.52 

CBD 13.37 17.82 21.76 24.9 29.06 

Feature 
Fault level (Middle disk) 

1% 2% 3% 4% 5% 

g1 66110 66113 66116 66117 66119 
g2 1840.03 1840.57 1840.86 1842.12 1842.78 

g3 
X-axis 680.65 681.65 682.65 683.65 684.65 

Y-axis 614.14 614.26 614.43 614.57 614.82 

g4 
Major 837.19 837.77 838.05 838.63 838.97 

Minor 200.63 200.83 201.12 201.47 201.69 
CBD 33.82 39.26 44.29 48.62 53.09 

Feature 
Fault level (Bottom disk) 

1% 2% 3% 4% 5% 

g1 66122 66124 66125 66128 66129 

g2 1843.1 1843.64 1844.89 1844.07 1844.62 

g3 
X-axis 691.65 692.65 694.65 695.65 698.65 

Y-axis 615.13 615.32 615.46 615.68 615.91 

g4 
Major 839.07 839.18 839.34 839.49 839.82 

Minor 201.73 201.96 202.17 202.23 202.55 

CBD 63.86 67.93 72.69 76.3 81.73 

 

(b) (a) 
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Fig. 15.  CBD, RMS and IED for DSV at different locations of the 40MVA HV 

winding 

TABLE X  

The 11 extracted features of 40MVA transformer HV winding DSV fault   

Feature 
Fault level (Top disk) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.6205 0.6204 0.6203 0.6202 0.6201 

3(Φ3) 0.0072 0.0073 0.0074 0.0075 0.0076 

4(Φ4) -0.0351 -0.0352 -0.0353 -0.0355 -0.0356 

5(Φ5) 3.1859 3.1858 3.1856 3.1854 3.1853 

6(Φ6) 1.0938 1.0937 1.0935 1.0933 1.0931 

7(Φ7) 2.5772 2.5774 2.5775 2.5776 2.5778 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0575 0.0576 0.0577 0.0578 0.0579 

9(𝜏2) 1.9712 1.9711 1.9709 1.9708 1.9707 

10(𝜏3) 1.8662 1.8661 1.866 1.8659 1.8658 

11(𝜏4) 0.5293 0.5292 0.5291 0.529 0.5289 

RMS 1.538193 1.538169 1.538093 1.538029 1.537999 

IED 0.003231 0.003428 0.003685 0.004044 0.004326 

Feature 
Fault level (Middle disk) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.6199 0.6198 0.6197 0.6196 0.6195 

3(Φ3) 0.0081 0.0082 0.0084 0.0085 0.0087 

4(Φ4) -0.0362 -0.0363 -0.0364 -0.0366 -0.0368 

5(Φ5) 3.1848 3.1847 3.1845 3.1844 3.1842 

6(Φ6) 1.0928 1.0926 1.0925 1.0924 1.0922 

7(Φ7) 2.5782 2.5784 2.5785 2.5787 2.5789 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0581 0.0583 0.0584 0.0586 0.0587 

9(𝜏2) 1.9699 1.9698 1.9696 1.9695 1.9693 

10(𝜏3) 1.8656 1.8655 1.8654 1.8653 1.8652 

11(𝜏4) 0.5287 0.5286 0.5284 0.5283 0.5282 

RMS 1.53782 1.53779 1.537718 1.537695 1.537635 

IED 0.005492 0.005827 0.006196 0.006589 0.007080 

Feature 
Fault level (Bottom disk) 

1% 2% 3% 4% 5% 

In
v

ar
ia

n
t 

m
o

m
en

t  

1(Φ1) 0.6188 0.6187 0.6186 0.6184 0.6182 

3(Φ3) 0.0093 0.0095 0.0096 0.0097 0.0098 

4(Φ4) -0.0372 -0.0374 -0.0375 -0.0376 -0.0377 

5(Φ5) 3.1839 3.1838 3.1837 3.1835 3.1834 

6(Φ6) 1.0917 1.0916 1.0915 1.0914 1.0912 

7(Φ7) 2.5793 2.5795 2.5796 2.5797 2.5799 

T
ex

tu
re

 

an
al

y
si

s 8(𝜏1) 0.0592 0.0593 0.0594 0.0596 0.0597 

9(𝜏2) 1.9688 1.9686 1.9685 1.9684 1.9683 

10(𝜏3) 1.8649 1.8648 1.8647 1.8645 1.8644 

11(𝜏4) 0.5279 0.5278 0.5276 0.5275 0.5273 

RMS 1.537483 1.537448 1.537407 1.537335 1.537298 

IED 0.008360 0.008804 0.009119 0.009513 0.009920 

C. Case study 3: Combined AD and DSV faults  

In this case study, the impact of a combined fault comprising 

AD and DSV faults when simultaneously occur within the HV 

winding on the proposed approach is investigated.  

TABLE XI 

DIP metrics of HV winding 5% AD, DSV and a combined AD and DSV 

(middle disk)   

Metric 
10kVA 40MVA 

AD DSV AD+DSV AD DSV AD+DSV 

CBD 139.77 27.64 483.37 1872.78 53.09 2359.12 

RMS 0.845222 0.862438 0.807062 1.533434 1.537635 1.528061 

IED 0.073257 0.008311 0.211304 0.059580 0.007080 0.226625 

 

 
Fig. 16.  CBD, RMS and IED for DSV, AD and combination of AD and DSV at 

5% fault level within the middle disc of the HV winding: (a)10kVA and 

(b)40MVA 

FEA is used to simulate 5% AD level along with 5% DSV at the 

middle disk of the HV winding of both transformers. The polar 

plot signatures for the 10kVA and 40MVA transformers are 

obtained and processed using the developed DIP code to extract 

the 15 image features. These features are characterized by a 

similar trend as the previous cases and are used to calculate the 

three proposed metrics (listed in Table XI). It can be observed 

that the change in the CBD, RMS and IED parameters is 
significant when compared with the impact of each individual 

fault as shown in Fig. 16. 

D. Case study 4: Practical validation 

To investigate the practical feasibility of the proposed approach 

and validate the above simulation results, a practical 5% AD 

fault is implemented on phase A of the LV winding of a scaled-

down three phase delta-wye 7kVA, 440/55V, 50Hz dry type 

transformer. The FRA polar plot signature is measured through 

commercial frequency response analyzer for both healthy and 

faulty winding conditions. The hardware transformer model is 

also simulated using FEA to compare the practical and 
simulation results. The obtained polar plots using practical 

measurement and simulation analysis are processed using the 

DIP code to extract the proposed 15 image features which are 

used to calculate the three metrics. The trend of the three metrics 

CBD, RMS and IED is found to be similar to that of the 10kVA 

and 40MVA transformers with change in magnitudes as can be 
observed in Table XII.   

TABLE XII 

CBD, RMS and IED metrics for 5% AD on phase A of the 7kVA LV winding   

Feature Practical Simulation 

CBD 9.22 9.25 

RMS 2.913263 3.100786 

IED 0.001959 0.002415 

VI.  COMPARISON BETWEEN THE PROPOSED AND 
STATISTICAL-BASED TECHNIQUES 

As mentioned in the introduction section, interpretation of FRA 

magnitude signature based on calculating some statistical 

parameters such as correlation coefficient (CC) and absolute sum 
of logarithmic error (ASLE) are not reliable as stated in several 

publications in the literatures [7-12]. To prove this claim, the 

FRA magnitude signature of the 10kVA transformer, phase-A 

HV winding is processed to calculate the CC and ASLE based on 

the following equations:  

(a) 

 

(b) 
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      CC=
∑ 𝑋𝑖𝑌𝑖𝑛=1√∑ [𝑋𝑖]2𝑛𝑖=1 ∑ [𝑌𝑖]2𝑛𝑖=1                   (6) 

      ASLE=
∑ 𝑌𝑖−𝑛=1 𝑋𝑖𝑛                            (7) 

where: Xi and Yi are the ith elements of the reference and healthy 

signatures, respectively, whereas n is the total number of selected 

points in the frequency response signature.  

TABLE XIII 

CC and ASLE for AD fault within the HV winding of the 10kVA transformer 

Fault level CC ASLE CBD RMS IED 

1% 0.985 0.037 80.06 0.848081 0.058820 

2% 0.864 1.212 101.56 0.847514 0.061957 

3% 0.983 0.745 116.85 0.846757 0.065626 

4% 0.698 1.629 127.29 0.846234 0.068768 

5% 0.798 0.092 139.77 0.845222 0.073257 

Table XIII shows the calculated statistical indicators (CC and 

ASLE) along with the DIP metrics (CBD, RMS and IED) of the 
AD faults for five levels (1% to 5%). While Table XIII shows a 

CC between the healthy and faulty signatures less than 1 (perfect 

correlation) for all fault levels, results are not consistent with the 

fault level e.g. 5% fault level reveals higher CC than the 4% fault 

level. On the other hand, ASLE indicator should be zero when 

the two investigated signatures are perfectly correlated. As can 

be seen in the table, the ASLE indicator is not consistent with the 

fault level either as for fault level 5%, the calculated value is less 

than that for fault levels 2%, 3% and 4%. These results agree 

well with the previously published papers in the literature which 

reveal the inaccuracy of using these indicators in the 
interpretation process of the FRA signatures [11-13]. While these 

statistical indicators can be easily built within commercial 

frequency response analysers, fault identification and 

quantification based on these techniques is not reliable and is 

extremely hard. In contrary with the CC and ASLE indicators, 

the automated image features-based indicators; CBD, RMS and 

IED metrics reveal a consistent trend with the fault level as can 

be observed in Table XIII. Table XIV summarizes the 

advantageous of the proposed DIP-based technique over existing 
conventional and statistical FRA interpretation techniques. 

TABLE XIV 

Comparison of the proposed and current FRA interpretation approaches  

Characteristics 
Conventional FRA 

approach 

Statistical FRA 

approach 

Proposed DIP-

based approach 

FRA format 
FRA magnitude 

signature 

FRA magnitude 

signature 

FRA magnitude 

and phase angle  

signatures 

Interpretation 

process 
Visual inspection 

Calculation of 

various 

statistical 

parameters 

Extraction of 

image features 

Accuracy 

   Inconsistent;  

depends on      

personnel level of 

expertise 

  Low; depends on 

the calculated 

indicators 

High; depends 

on the extracted 

image features 

Fault 

quantification 

/location 

Hard to quantify 

fault level and 

identify its 

location 

Hard to quantify 

fault level and 

identify its 

location 

Fault level / 

location can 

be quantified / 

identified 

Minor fault 

detection 
Undetectable Undetectable Detectable 

Method Manual Automatic Automatic 

VII. IMPLEMENTATION OF THE PROPOSED 
TECHNIQUE 

The proposed technique can be easily built within any 
commercial frequency response analyzer and the FRA 

measurement along with the interpretation process can be 

automated onsite. Similar to current industry practice for 

conventional FRA technique, the reference dataset for healthy 

transformer can be identified through several options as listed 

below:  

 FRA testing is strongly recommended for new transformers 

prior connecting it to the network and hence reference dataset 

can be easily identified.   It is expected that a pool of reference 

dataset will be readily available for standard power 
transformers in the future.  

 For old transformers, it is not recommended to obtain the 

healthy reference dataset from FRA practical measurement as 

these transformers may have already developed an internal 

fault. In this case, other comparison technique such as 

comparing polar plot image features of identically constructed 

transformers or a transformer phase-to-phase comparison has 
to be adopted for diagnosis. It is expected that all phases within 

the same transformer have almost identical polar plot features 

and any significant deviation among these features can be 
considered as an indication of fault. 

 Alternatively, windings reference polar plot features can be 

obtained through the 3D finite element model of the 
investigated transformer as discussed in this paper. If the 

physical dimension and design data required for FEA are not 

available, polar plot can be obtained from the transformer high 

frequency model. The electrical parameters of this model can 

be estimated based on evolutionary algorithms using non-

physical dimension data such as the magnitude and phase angle 

of the voltage and current that may be acquired from 
transformer nameplate data [28-30].  

VIII. CONCLUSION 

This paper presents a new interpretation approach for power 

transformer frequency response analysis based on polar plot and 

digital image processing techniques. In contrary with the current 

conventional approach that relies on the level of personnel 

expertise which may lead to different conclusions for the same 

FRA signature, the proposed technique can be implemented 

within any commercial frequency response analyzer to automate 

and standardize the whole process. Moreover, the proposed 

technique is able to quantify minor fault levels and identify its 

location which is considered as the main drawback of the 
conventional FRA technique. Digital image processing code is 

developed to extract unique geometric dimensions, invariant 

moment and texture analysis features from the proposed polar 

plot signature. The extracted features are used to calculate three 

metrics; city-block distance, root mean square and the image-

Euclidean distance to determine the threshold minimum and 

maximum levels of axial displacement and disk space variation 

of two transformers of different ratings, sizes and winding 

structures. Simulation results are validated through practical 

application of the proposed approach on a scaled-down 

transformer. While the feasibility of the proposed technique is 
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validated through its applications to detect AD and DSV, the 

approach can be extended to detect other mechanical faults 

within power transformers. 

   
IX. APPENDDIX 

TABLE A-I 

Equivalent circuit parameters for the investigated transformers 

Transformer 

parameters 

10kVA 40MVA 

HV LV HV LV 

Ls [µH],  Rs [Ω] 40, 1 20, 0.5 10, 1 10.5, 0.25 

Csh [𝑝F] 

Gsh [µS] 

2.35 

6.45 

37.27 

260.89 

393.4 

196.7 

127.67 

63.835 

Co [𝑝F] 

Go [µS] 

20 

140 

718 

5026 

61.192 

30.596 

115.53 

57.765 

CHL [𝑝F], GHL [µS] 50, 350 89.283, 44.65 

 

 

 

TABLE A-II 

            Geometrical features equations 

Feature Formula 

Area 
 𝑔1 = ∑ ∑ 𝑎𝐹𝑅𝐴𝑃𝑃(𝑥, 𝑦)𝑌−1𝑦=0𝑋−1𝑥=0                  

 Perimeter  
𝑔2 = {∑ ∑ 𝑎𝐹𝑅𝐴𝑃𝑃(𝑥, 𝑦)𝑌−1𝑦=0𝑋−1𝑥=0     𝑖𝑓 𝑎𝑋𝑜𝑟𝑌(𝑥, 𝑦) = 00                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

Centroid 𝑔3 = {𝑥̅ = 1𝐴𝐹𝑅𝐴_𝑃𝑃  × ∑ ∑ 𝑥 × 𝑎𝐹𝑅𝐴𝑃𝑃(𝑥, 𝑦)𝑌−1𝑦=0𝑋−1𝑥=0𝑦 = 1𝐴𝐹𝑅𝐴_𝑃𝑃  × ∑ ∑ 𝑦 × 𝑎𝐹𝑅𝐴𝑃𝑃(𝑥, 𝑦)𝑌−1𝑦=0𝑋−1𝑥=0   

Axes length 

𝑔4 = { 𝑀𝑎𝑗𝑜𝑟 = 𝑥1 + 𝑥2 𝑀𝑖𝑛𝑜𝑟 = √(𝑥12 + 𝑥22) − 𝑓2 , 

 𝑥1𝑎𝑛𝑑2: The distance from each focus to any point 

                    f : The distance between Foci 

TABLE A-III 

Seven invariant moments 

Feature Formula 

Φ1 𝜼20+𝜼02 

Φ2 (𝜼20-𝜼02)2+4𝜼112 

Φ3 (𝜼30-3𝜼12)2+(3𝜼21-𝜼03)2 

Φ4 (𝜼30+𝜼12)2+(𝜼21+𝜼03)2 

Φ5 
(𝜼30-3𝜼12)(𝜼30+𝜼12)[(𝜼30+𝜼12)2-3(𝜼21+𝜼03)2]+ 

(3𝜼21-𝜼03)(𝜼21+𝜼03)[3(𝜼30+𝜼12)2- (𝜼21+𝜼03)2] 

Φ6 
(𝜼20-𝜼02)[(𝜼30+𝜼12)2-(𝜼21+𝜼03)2]+ 

4𝜼11(𝜼30+𝜼12)(𝜼21+𝜼03) 

Φ7 
(3𝜼21-𝜼03)(𝜼30+𝜼12)[(𝜼30+𝜼12)2-3(𝜼21+𝜼03)2]- 

(𝜼30-3𝜼12)(𝜼21+𝜼03)[3(𝜼30+𝜼12)2- (𝜼21+𝜼03)2] 

TABLE A-IV 

Texture analysis equations 

Feature Formula 𝜏1 
∑ ∑ (x − µx) × (y − µy) × aFRAPP(x, y)Y−1y=0X−1x=0 σxσy  

𝜏2 ∑ ∑ aFRAPP(x,y)1+|x−y|Y−1y=0X−1x=0   

𝜏3 ∑ ∑ (x − y)2 × aFRAPP (x, y)Y−1y=0X−1x=0   

𝜏4 ∑ ∑ aFRAPP2  (x, y)Y−1y=0X−1x=0   
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