

Abstract— Digital devices & computational resources

have limited communication & storage capabilities.
Because of these limitation digital multimedia data need to

compress. For example if there are multiple camera are
connected in a network for communication then images

captured by camera need to compress before
communication to use proper bandwidth & for

synchronized communication. Similarly local computer
system has limited storage capacity & uncompressed

multimedia data required high volume of storage to store.

Hence multimedia data like images, videos need to be
compress for many purpose. Image compression process

use two technique to compress image lossless image
compression & lossy image compression. Lossy Image

compression needs some transformation like DCT, DFT,
KLT, DST etc. Purpose of transformation is to convert the

data into a form where compression is easier. This
transformation will transform the pixels which are

correlated into a representation where they are
decorrelated. The new values are usually smaller on

average than the original values. The net effect is to reduce
the redundancy of representation. In Lossy image

compression input image is divided in to 8*8 blocks & then
each pixel is converted in to its equivalent frequency value

using various transformation like DCT, DST etc. The
present paper deals with the study of transformation of an

8 bit (b/w) image into its frequency domain through
Discrete Sine Transform.

Key Words: DCT, DST, KLT, DFT

1. INTRODUCTION

converted from analog to digital form. Discrete Sine
Transform (DST) converts this digital information into its
equivalent frequency domain by partitioning image pixel
matrix into blocks of size N*N, N depends upon the type of
image. For example if we used a black & white image of 8 bit
then all shading of black & white color can be expressed into
8 bit hence we use N=8, similarly for color image of 24 bit we
can use N=24 but using block size N=24, time complexity
may increase. Hence we operate DST on individual color
component for a color image. Color image consist of 8 bit red
+ 8 bit green + 8 bit blue hence we apply DST on each color
component (Red, Green, Blue) using block size N=8. DST
give best result if block size is 8*8 or 16*16 hence block size
is used in this way that it fulfill the constraint of DST as well
constraint of pixel format of image.

1.1 One-Dimensional DST

If we have one-D sequence of signal value of length N
then its equivalent DST can be expressed as

su uN

1

 f xsin 2x 1(u 1)  1

 
2N



x0  

for u = 0,1,2,…,N −1.

& inverse transformation is defined as

N 1  2x 1(u 1) 

f x ususin 2 
2N



u0  

Where f x is signal value at point x & u is

transform coefficient for value u.

An image basically a 2D signal processed by the human

visual system. The signal representing images are usually in
analog form, but for processing, storage, transmission and
computing by computer application analog images are

Application of Discrete Sine Transform in Image

Processing

Nitesh Agarwal

Department of Computer Science

Jodhpur Institute of Engineering & Technology
Jodhpur, India

Rahul Solanki Dr. A.M. Khan

Department of Mathematics Department Of Mathematics

Jodhpur Institute of Engineering & Technology Jodhpur Institute of Engineering & Technology

Jodhpur, India Jodhpur, India

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

1

  1
for u  N 1

 

(u) 
 N 3 

2

  for u  N 1

 

N

 

It is clear from (1) for u=0,

su  0  0 4

1.2 Two – Dimensional DST

An image is 2-D pixel matrix where each position (i,j)
represents a color value for that particular point or
position. Hence to transform an image into its equivalent
DST matrix we use 2-D DST.

2-D DST can be defined as

 N 1 N 1  2x 1(u 1)  2y 1(v 1)
5

su,vu(v) f x, ysin 
2N

sin 
2N



 x 0 y 0    

for u, v = 0,1,2,…,N −1.

& inverse transformation is defined as

N 1 N 1  2x 1(u 1)  2y 1(v 1)

f x, y

6 u(v)su,vsin 
2N

sin 
2N



u 0 v0    

Where su, v represents frequency value for u, v &

f x, y represents pixel color value at position (x, y).



 1
for u  N 1

 

(u) 
 N 7



2

  for u  N 1

 

N

 



 1
for v  N 1

 

(v) 
 N 8



2

  for v  N 1

 

N

 

2. MAIN RESULTS

2.1 Implementation of DST

This paper describe how a b/w image is convert into
equivalent frequency domain using DST.

Steps involved in this implementation

1. Create pixel matrix of the image & divided it into

blocks of size 8*8

2. Apply FDST (Forward Discrete Sine Transform) on
each 8*8 block of pixel matrix to get equivalent 8*8
DST blocks.

3. To get Original image we apply IDST (Inverse

Discrete Sine Transform) on each 8*8 block DST &
get its equivalent 8*8 IDST block.

4. Using 8*8 IDST blocks we create modified pixel

matrix to get modified image.

5. Now we Find MSE (Mean Squared Error) & PSNR
(Peak Signal To Noise Ratio) to determine quality of
image obtain by IDST. MSE & PSNR calculated by
following formulas

1
H 1 W 1

MSE   [o(x, y)m(x, y)]2 9

 H *W x 0 y 0

PSNR=20*log10 (MAX) - 10*log10 (MSE) (10)

Where H=Height of Image, W= Width of Image,
variable MAX shows max value of a pixel for
example if image is 8 bit then MAX=255.

Quality of image obtain by IDST is depend on MSE &
PSNR value. If as the MSE value increases PSNR
value decreases then we get a bad quality of image by
IDST & if as the MSE value decreases PSNR value
increases we get a batter quality image hence a best
suitable transformation like DCT, DST, DFT is taken
on the basis of this MSE & PSNR value.

2.1.1 Algorithm 1

Get_8*8_blocks (image)

{

n=8, k=0; width=width

of image;

height=height of image;

for (i=0;i < width/n; i++)

{

for (j=0; j < height/n; j++)

{

xpos = i * n;

ypos = j * n;

for (a=0; a < n; a++)

{

for (b=0; b < n; b++)

{ color = color at position(xpos+a, ypos+b);

block[k][a][b]=color-128;

} //end of for loop b

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

2

k=k+1;

} // end of for loop a }

// end of for loop j

} // end of for loop i }// end

of Get_8*8_blocks

} // end of for loop

y } // end of for loop x

dst[i][j][k]=((u) *(v) *sum);

} // end of for loop v

} // end of for loop u

} // end of for loop i

}//end of FDST

2.1.2 Algorithm 2

FDST (block [] [] [])

{ width=width of image, N=8;

height=height of image;

q=(width/8)*(height/8)

for (i=0;i < q; i++)

{ for (u=0; u< N; u++)

{ for (v=0; v < N;

v++) { if (u==N-1) {

(u) =
1

N

 }

else{

(u) =
2

N

}

if (v==N-1){

(v) =
 1

N

 }

else {

(v) =
 2

N

2.1.3 Algorithm 3

IDST(dst [] [] [])

{ width=width of image, N=8;

height=height of image;

q=(width/8)*(height/8)

for (i=0;i < q; i++)

{ for (x=0; x< N; x++) {

for (y=0; y< N; y++)

{

sum=0;

for(u=0;u<N;u++)

{ for(v=0;b<N;v++)

{ if (u==N-1) {

(u) =
1

N

}

else{

(u) =
2

N

}

if (v==N-1){

(v) =
1

N

 } }

 sum=0; else {

for(x=0;x<N;x++)

(v) =
2

{ for(y=0;y<N;y++)

N

{ sum=

sum + block[i][x][y]*

  2x 1(u 1)  *  2 y 1(v 1)  ; }

sin sin


2N

 
2N



    

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

3

 sum= sum + (u) * (v) *dst[i][u][v] *

sin
 2x 1(u 1)  *

sin
 2 y 1(v 1)  ;


2N

 
2N



    

} // end of for loop

v } // end of for loop u

idst[i][j][k]=sum;

} // end of for loop y }

// end of for loop x

} // end of for loop i }

// end of IDST

2.1.4 Algorithm 4

Get_Image(idst [] []

[]) { k=0;

width=width of image;

height=height of image;

for (i=0; i < width; i++) {

for (j=0; j < height; j++) {

xpos = i * n;

ypos = j * n;

for (a=0; a < n; a++)

{ for (b=0; b < n; b++)

{

color=(int)idst[k][a][b];

set color at position (xpos+a, ypos+b);

}// end of loop b

} // end of loop a

k++;

} // end of loop j

} // end of loop i

}// end of Get_Image

2.2 Outputs

1. Convert pixel matrix into blocks of size 8*8

 8*8 8*8
 block 1 block 2

 =

 8*8 8*8
 block 3 block 4

Input Image of size Output blocks of size
16*16 8*8

2. Transform Input image into equivalent DST image

FDST

Input Image of size Output DST Image of
16*16 size 16*16

3. Get modified image from DST image

IDST

Input DCT Image of Output Image of size

size 16*16 16*16

3. MODIFICATION IN ORIGINAL DST

3.1 Using cosine operator rather than sine

There is a difference of π/2 between sine & cosine
operator hence using cosine rather than sine operator in
DST may loss pixel data

 FDST
 Using
 cosine
 operator

Input Image of size Output DST Image of
16*16 size 16*16

 IDST
 Using
 cosine
 operator

Input Image of size Output Image of size
16*16 16*16

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

4

3.2 Change in block size

All shading of black & white image can be expressed in 8
bit of blocks hence we use block size 8*8 to perform DST
on it. But in color image each color value of a pixel can
be expressed into 24 bit of block which contain 8 bit red +
8 bit green + 8 bit blue. To transform a color image into
its equivalent DST format we extract each 8 bit color
component from 24 bit of block & then perform 8*8 DST
on each color component rather than using 24*24 DST for
24 bit block. The main reason is that if use 24*24 DST
rather than 8*8 DST the time complexity of DST is
increases in a very large amount.

For example

For an image of size 48*48

1. If 8*8 DST used

Total no of blocks

q=(48/8)*(48/8)=36 For FDST

for (i=0;i < q; i++) // loop runs 36 times

{ for (u=0; u< 8; u++) // loop runs 36*8 times

{ for (v=0; v < 8; v++)// loop runs 36*8*8 times

{

}

for(x=0;x<8;x++)// loop runs 36*8*8*8 times

{ for(y=0;y<8;y++) // loop runs 36*8*8*8*8
times

{

} // end of for loop

y } // end of for loop x

} // end of for loop v

} // end of for loop u

} // end of for loop i

Total no. of iteration = 36*8*8*8*8= 147456

2. If 24*24 DST used

Total no of blocks

q=(48/24)*(48/24)=4 For FDST

for (i=0;i < q; i++) // loop runs 4 times

{ for (u=0; u< 24; u++) // loop runs 4*24 times

{ for (v=0; v < 24; v++)// loop runs 4*24*24 times

{

}

for(x=0;x<24;x++)// loop runs 4*24*24*24 times

{

for(y=0;y<24;y++) // loop runs 4*24*24*24*24 times

{

} // end of for loop

y } // end of for loop x

} // end of for loop v

} // end of for loop u

} // end of for loop i

Total no. of iteration =4*24*24*24*24= 1327104

Hence 24 * 24 DST required 1327104-147456=1179648
extra iteration to preform DST which increases time
complexity in large amount hence DST used with block
size 8*8.

3.3 MSE & PSNR

Following table gives a comparative analysis of quality of

transformed image using DST, DST with cosine operator &
original DCT.

 MSE PSNR

2D DST 0.38 52.38

2DDST with 2239.17 14.63
cosine

2D DCT 0.28 53.64

Table 1: MSE & PSNR value of input image

after transformation

As the table show 2D DCT has minimum MSE & maximum
PSNR value hence it is best transformation technique & we
cannot use DST with cosine operator in normal way because it
gives an image with high amount of noises in the pixel of
image.

4. CONCLUSION

The result presented in this document shows that
1. It is very easy to implement DST rather than other

transformation on image except DCT.

2. If DST used with cosine operator rather than sin pixel

data may lose.

3. If DST used with block size 24*24 rather than block size

8*8 then time complexity of DST is increases in very
large amount.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

5

REFERENCES

[1] Andrew B. Watson, “Image Compression Using Discrete Cosine
Transform”, NASA Ames Research Centre, 4(1), pp. 81-88, 1994.

[2] Anjali Kapoor and Dr. Renu Dhir, “Image Compression Using Fast 2-
D DCT Technique”, International Journal on
Computer Science and Engineering (IJCSE), vol. 3 pp. 2415-2419, 6
June 2011.

[3] Harley R. Myler and Authur R. Weeks “The Pocket Handbook of
Image Processing Algorithms in C”, ISBN
0-13-642240-3 Prentice Hall P T R Englewood Cliffs, New Jercy
07632

[4] Iain E.G. Richardson “H.264 and MPEG-4 Video Compression: Video
Coding for Next-generation Multimedia”, ISBN 0470848375,
9780470848371, Wiley,2003.

[5] L.Dhang, W. Dong D.Zhang and G.Shi “Two stage image denoising by
principal component analysis with local pixel grouping” Pattern
Recognition, Vol.43, pp1531-1549, 2010.

[6] Maneesha Gupta and Dr.Amit Kumar Garg, “Analysis Of Image
Compression Algorithm Using DCT” International
Journal of Engineering Research and Applications (IJERA), vol.2, pp.
515-521, Jan-Feb 2012.

[7] N.Ahmed, T.Natatarajan, and K.R. Rao, “Discrete Cosine Transform”,
IEEE Transactions on Computers, vol. C-32, pp. 90-93, Jan. 1974.

[8] S. Malini. & R.S. Moni. ”Use of Discrete Sine Transform for A Noval
Image Denoising Technique”. International Journal of Image
Processing(IJIP), Vol, 8, Issue 4, pp. 204-213, 2014.

[9] Swati Dhamija and Priyanka Jain “Comparative Analysis for Discrete
Sine Transform as a suitable method for noise estimation” IJCSI
International Journal of Computer Science Issues, Vol. 8, Issue 5, No
3pp. 162-164, September 2011.

[10] V.P.S.Naidu, “Discrete cosine Transform based Image Fusion”,
Defence Science Journal, Vol.60, No.1, pp.48-54., Jan.2010.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

6

