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Abstract
This paper concerns the measurement and testing of equality of variability of func-
tional data. We apply the distance standard deviation constructed based on distance
correlation, which was recently introduced as ameasure of spread. For functional data,
the distance standard deviation seems tomeasure different kinds of variability, not only
scale differences. Moreover, the distance standard deviation is just one real number,
and for this reason, it is of more practical value than the covariance function, which
is a more difficult object to interpret. For testing equality of variability in two groups,
we propose a permutation method based on centered observations, which controls the
type I error level much better than the standard permutation method. We also consider
the applicability of other correlations to measure the variability of functional data. The
finite sample properties of two-sample tests are investigated in extensive simulation
studies. We also illustrate their use in five real data examples based on various data
sets.
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M. Krzyśko, Ł. Smaga

1 Introduction

Székely et al (2007) and Székely and Rizzo (2009) introduced distance covariance
and correlation into the statistical literature. These quantities are useful for measuring
the association between and testing the independence of multivariate data sets. In
the last few years, there has been great interest in the theory and applications of
distance correlation. Theoretical extensions were investigated in, for example, Berrett
and Samworth (2019), Dueck et al (2015), Fokianos and Pitsillou (2017), Gretton
et al (2005), Gretton et al (2008), Lyons (2013), Pan et al (2018), Székely and Rizzo
(2013, 2014), Zhu et al (2017), and Zhu et al (2020). These papers concern various
issues, such as dependencemeasures, statistical inference, time series analysis, affinely
invariant distance correlation, and metric spaces. Some of the important applications
of distance correlation are feature screening (Li et al 2012), detection of long-range
concerted motions in protein (Roy and Post 2012), and assessment of associations
of familial relationships, lifestyle factors, diseases, and mortality (Kong et al 2012).
An efficient implementation of the statistical inference methods based on distance
covariance is provided by the R packages energy and dcortools (R Core Team 2022;
Rizzo and Székely 2021; Edelmann and Fiedler 2022) and the Python package dcor
(Ramos-Carren̄o, 2022).

Distance covariance is a measure of dependence between two random vectors of
arbitrary dimensions, defined as

dcov2(X,Y) =
∫
Rp+q

‖ϕX,Y(t, s) − ϕX(t)ϕY(s)‖2
cpcq‖t‖1+p‖s‖1+q

dtds,

where ϕX,Y is the joint characteristic function of (X�,Y�)�, ϕX and ϕY are the
characteristic functions of X ∈ R

p and Y ∈ R
q respectively, ‖ · ‖ is the complex

Euclidean norm, and cb = π(1+b)/2/�((1 + b)/2). Using the notation of Edelmann
et al (2020), for a single random vector X, we can define the distance variance as

dvar(X) =
∫
R2p

‖ϕX(t + s) − ϕX(t)ϕX(s)‖2
c2p‖t‖1+p‖s‖1+p

dtds.

Then, the distance standard deviation is defined as the nonnegative square root of
dvar(X). We denote it as dsd(X) or simply dsd. For measuring the amount of depen-
dence, one can use the distance correlation coefficient of the form

R(X,Y) =
{

dcov(X,Y)√
dsd(X)dsd(Y)

, if dsd(X) �= 0, dsd(Y) �= 0,

0, if dsd(X) = 0 or dsd(Y) = 0.

It is well known thatR(X,Y) = 0 is equivalent to the mutual independence of X and
Y. Moreover, R(X,Y) ∈ [0, 1], and for one-dimensional random variables, we have
R(X ,Y ) = 1 if and only if Y is a linear function of X , almost surely. Other coefficients
that are useful for testing the independence of random vectors are the Hilbert-Schmidt
Independence Criterion (HSIC) (Gretton et al 2005, 2008), ball covariance (Pan et al
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2018), mutual information (Berrett and Samworth 2019), and projection correlation
(Zhu et al 2017). In the following sections we will also discuss the applicability of
these to the topic of this paper.

Recently, Edelmann et al (2020) considered the distance standard deviation as
measure of scale, which can be useful especially for heavy-tailed distributions. In the
univariate case, they proved that the distance standard deviation is a measure of spread
in the axiomatic sense of Bickel and Lehmann (2012), i.e., it satisfies the following
conditions:

(C1) dsd(X) ≥ 0,
(C2) dsd(a + bX) = |b|dsd(X) for all a, b ∈ R,
(C3) dsd(X) ≤ dsd(Y ) if for all 0 < α ≤ β < 1,

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α),

where F andG are the cumulative distribution functions of X and Y respectively,
and F−1 and G−1 are the corresponding right-continuous inverses.

The conditions (C1) and (C2) are also satisfied for multivariate data. Edelmann et al
(2020) also constructed a two-sample test for testing equality of distance standard
deviations. In comparison with tests based on the standard deviation and Gini’s mean
difference for comparing scales, the dsd-based test has superior performancewhen the
underlying distributions are heavy-tailed. Moreover, the distance standard deviation is
defined for all random variables with finite first moments, while finite secondmoments
are required for the classical standard deviation. Finally, Edelmann et al (2020) also
showed the applicability of the distance standard deviation in multivariate statistical
quality control, comparing it with the generalized variance.

However, some issues were not directly considered by Edelmann et al (2020). First
of all, they mainly considered the univariate case, except in the application to multi-
variate statistical quality control, where the two-dimensional case was investigated in
the simulation studies. Secondly, their tests were based on the asymptotic distribution
or standard permutation procedure. These approaches have some disadvantages. For
these reasons, this paper considers the application of distance standard deviation to
specific high-dimensional data, namely functional data, and modification of the stan-
dard permutation method. This modified permutation procedure seems to avoid the
problem with the standard approach.

In many practical tasks, great advances in computational and analytical techniques
result in high-dimensional measurements. Such measurements are often observed
repeatedly at different time or space points. For simplicity, we call them time points or
design time points, regardless of what they refer to. Such data are realizations of some
random process. In many applications, it is convenient to treat them not as a sequence
of single measurements taken one after another, but as whole functional entities, e.g.,
functions, curves, surfaces, or images. Such data are called functional data, and their
analysis is referred to as functional data analysis (FDA). This is a relatively new branch
of statistics, which offers a powerful set of methodologies for analyzing complex data
structures. The following books and review papers contain a good overview of the
main FDA methods and their applications: Cuevas (2014), Ferraty and Vieu (2006),
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Horváth and Kokoszka (2012), Ramsay et al (2009), Ramsay and Silverman (2002),
Ramsay and Silverman (2005), Jacques and Preda (2014), Wang et al (2015), Zhang
(2013). The parametric and nonparametric methods concern change point detection,
classification, cluster analysis, dimension reduction, hypothesis testing, regression
analysis, and times series analysis. Some examples of functional data are as follows:
temperature or precipitation in a given location over some time, environmental diurnal
ozone and NOx cycles, monitoring of water quality, cash flows in finance, fetal heart
rate monitoring, and the angle formed at the right elbow between the upper and lower
arms of a driver measured three times for each of 20 locations within a test car. Other
specific examples are presented in Sect. 4.

In this paper, we consider measurement of the variability of functional data. There
are many studies on testing the equality of mean functions for two or several groups
(see, for example, Górecki and Smaga 2019; Zhang 2013, and the references therein).
The mean function is quite easy to visualize and interpret. However, what parameter
can be used to distinguish between groups of functional observations when the mean
functions cannot be found to be significantly different? Naturally, there is a covari-
ance function, which describes the dependence structure of functional data. The test
procedures proposed by Guo et al (2018) and Guo et al (2019), among others, verify
the equality of several covariance functions. However, the covariance function is more
difficult to interpret. Moreover, it is a function, while practitioners like to have just
one real number, which is much easier to interpret. For these reasons, we apply the
distance standard deviation for measuring and testing the equality of variability of
functional data. In contrast to the covariance function, the interpretation of distance
standard deviation is easy, namely the larger the distance standard deviation the larger
variability. This is confirmed in simulation studies and real data examples of Sects. 3-4.
In practice, the functional observation has the form of a time series, which can be inter-
preted as a multidimensional random vector, perhaps with highly correlated variables.
For such data, the distance standard deviation is correctly defined and the statistical
methods dedicated to it can be used. In particular, we study the testing of hypotheses
about the equality of variability of two groups of functional data. We consider the
tests proposed by Edelmann et al (2020), but due to their disadvantages, we propose
a new permutation method based on centered observations. The results of intensive
simulation studies and real data examples suggest that the new tests based on the dis-
tance standard deviation exhibit good performance. In this way, we extend the results
of Edelmann et al (2020) and show their applicability to comparing the variability of
functional data. We also attempted to construct “new” standard deviations based on
HSIC, ball covariance, mutual information, and projection correlation, but this is not
a clear issue, as will also be discussed in the following sections.

The remainder of the paper is organized as follows. In Sect. 2, we present the
methodology. In particular, we consider the estimation of distance standard deviation,
statistical tests for its equality in the two-sample problem, and the new permutation
method. Section3 presents an investigation of the finite sample properties of tests
applied to functional data in simulation studies. In Sect. 4, we consider five different
real data examples for illustrative purposes. Section5 concludes the paper.
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2 Methodology

In this section, we formulate the problem, statistical hypotheses, and test procedures
which can be used for testing the equality of variability of functional data.

Let X1 and X2 be two independent random processes defined on the interval [a, b],
where a, b ∈ R and a < b. These processes represent functional variables. We wish to
test the equality of variability of the processes X1 and X2. The question arises of how
to define the variability of functional variables. In this paper, we propose to use the
distance standard deviation. Assume that we have two independent random samples
drawn from these variables. Denote them by

X11, . . . , X1n1 and X21, . . . , X2n2 .

In practice, they are observed in a discrete way at certain design time points. Let

Xi jk = Xi j (tk)

for the design time points tk ∈ [a, b], i = 1, 2, j = 1, . . . , ni , k = 1, . . . , K . Thus,
we have two random samples

Xi j = (Xi j1, . . . , Xi jK )�

from certain random vectors X1 and X2 in the space R
K , which can be high-

dimensional. For testing the variability of the processes X1 and X2, we propose to
test the following null hypothesis:

H0 : dsd(X1) = dsd(X2). (1)

For this purpose, we use the test statistic of Edelmann et al (2020) and a new permu-
tation method, which are described in detail below. Therefore, we consider a simple
procedurewhich applies the test for randomvectors to discrete functional observations.

Remark 1 Note that inmanyFDAmethods, the discrete functional data are transformed
to continuous functions of time using some smoothing method. For the purposes
of this paper, we also considered smoothing by the basis representation (Ramsay
and Silverman 2005, Chapter 3). However, because the results were equally good as
those for the approach presented below, we decided not to use smoothing. Therefore,
although we use discrete functional data as multivariate observations, we can consider
the functional nature of functional data. For example, in case of missing values or
measurement errors, we can use smoothing to solve this problem, and then apply our
methods to coefficients of basis representation or recalculated values of functional
data in appropriate design time points.

Before we present the testing procedure, let us notice possible applications of ver-
ifying the null hypothesis (1). One of them was already mentioned in the introduction
(Sect. 1), namely the application in the multivariate statistical quality control by Edel-
mann et al (2020). The other one is the detection of significant differences between two
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populations when the mean functions are the same. The distribution does not have to
be different in mean only. On the other hand, many tests for equality of mean functions
assume that the variability is the same. In particular, equality of covariance functions
is a common such assumption. As we show in simulation studies (see Sect. 3), the
tests verifying the null hypothesis (1) can be useful for testing equality of variability
being alternatives to the tests for equality of covariance functions. Finally, an impor-
tant application is an issue of data integration, i.e., we investigate if two samples are
part of the same larger dataset, or if they should be treated as originating from two
different sources. When the tests for location (mean function) as well as for variability
(distance standard deviation) do not reject the null hypotheses, one can conclude (with
a certain amount of uncertainty) that the data from two samples can be combined into
one. On the other hand, in case of rejecting one of the hypotheses, we suspect that the
data should be separated.

LetXs
i = (Xi1, . . . ,Xini ) be a sample from the random vectorXi , i = 1, 2. For the

estimation of distance standard deviation, we recall that Székely et al (2007) showed
that if X′

i and X
′′
i are independent copies of the random vector Xi , i = 1, 2, such that

E‖Xi‖2 < ∞, then

dsd(Xi ) =
(
E

(
‖Xi − X′

i‖2
)

+ (
E‖Xi − X′

i‖
)2 − 2E

(‖Xi − X′
i‖‖Xi − X′′

i ‖
))1/2

.

Hence, the estimator of dsd(Xi ) is given by

d̂sd(Xs
i ) =

⎛
⎝ 1

ni (ni − 3)

ni∑
p=1

ni∑
q=1

‖Xi p − Xiq‖2

+ 1

ni (ni − 1)(ni − 2)(ni − 3)

⎛
⎝ ni∑

p=1

ni∑
q=1

‖Xi p − Xiq‖
⎞
⎠

2

− 2

ni (ni − 2)(ni − 3)

ni∑
p=1

ni∑
q=1

ni∑
r=1

‖Xi p − Xiq‖‖Xi p − Xir‖
⎞
⎠

1/2

.

Note that (̂dsd(Xs
i ))

2 is the unbiased estimator of dvar(Xi ).
For testing the null hypothesis (1), we use the following test statistic of Edelmann

et al (2020):

T =
√

n1n2
n1 + n2

d̂sd(Xs
1) − d̂sd(Xs

2)√
n1σ̂ 2(Xs

1)+n2σ̂ 2(Xs
2)

n1+n2

,

where

σ̂ 2(Xs
i ) = (ni − 1)

ni∑
p=1

⎛
⎝̂dsd(Xs

i,−p) − 1

ni

ni∑
q=1

d̂sd(Xs
i,−q)

⎞
⎠

2

123



Application of distance standard deviation...

is the jackknife estimator for the variance of the asymptotic distribution of
n1/2i (̂dsd(Xs

i ) − dsd(Xi )), i = 1, 2. Here Xs
i,−p denotes the sample Xs

i without

the pth observation. The estimator σ̂ 2(Xs
i ) is weakly consistent (Arvesen 1969, The-

orem 9). The test statistic T can be used for two-sided as well as one-sided alternative
hypotheses.

To construct a test based on the statistic T , one has to approximate its null distri-
bution. The first idea is to use the asymptotic distribution of T . Edelmann et al (2020)
proved that this distribution is a normal one. Thus, they constructed an asymptotic test
based on the normal approximation. In the one-dimensional case, this test performed
quite well, but for small sample sizes, it may have a problem with control of the type
I error level. Examining this approach, we observed that the asymptotic test often
has a conservative character, resulting in a loss of power for the multivariate case. A
comparison of the asymptotic dsd test with corresponding permutation procedures is
presented in the supplementary online material. Its results indicate that for small or
moderate sample sizes, the asymptotic testing procedure may lose some power against
the permutation approaches. Nevertheless, for larger samples, the asymptotic test may
be a good alternative to permutation tests, since the normal approximation should be
good enough to appropriately control the type I error level and it does not require
extensive computation. Since we take into account small and moderate samples, we
do not consider the asymptotic test further in this paper. To avoid the problem with
the asymptotic test, Edelmann et al (2020) proposed to use a permutation approach.
Some recent developments relating to this approach can be found in Arboretti et al
(2021), Du and Wang (2020) and Corain et al (2014). In the univariate case, the per-
mutation test avoids the problems of the asymptotic test, but it needs a more restrictive
assumption. Namely, the permutation method requires that both distributions share
a common location parameter. Then the permutation distribution of the test statistic
T is the same as the distribution of T , and the standard permutation test has good
properties. Of course, sharing a common location parameter is not always the case,
and then these distributions are not them same. In such case, we will see in Sect. 3
that the standard permutation test is too liberal or conservative in many cases. For this
reason, we propose a simple modification to the classical permutation approach. We
apply the permutation method, but to the centered data. Then the expected values are
equal to zero, and hence we can expect better finite sample behavior. This is shown in
the simulation studies in Sect. 3. The new permutation procedure is as follows:

1. Center the original data, i.e., Xc
i j = Xi j − X̄i , i = 1, 2, j = 1, . . . , ni , where

X̄i = n−1
i

∑ni
j=1Xi j . We will call these observations centered data.

2. Compute T for centered data Xc
i j , i = 1, 2, j = 1, . . . , ni . Denote the value

obtained by Tobs .
3. Create a permutation sample from the centered data in the following way: From all

observations Xc
i j , i = 1, 2, j = 1, . . . , ni , select randomly without replacement

n1 observations for the first new sample; then the remainder of the observations is
the second new sample.

4. Repeat step 3 a large number of times, e.g. B = 1,000, and obtain B independent
permutation samples Xc,l

i j , i = 1, 2, j = 1, . . . , ni , l = 1, . . . , B.
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5. For each permutation sample, compute the value of the test statistic T . Denote
these values by Tl , l = 1, . . . , B.

6. The final p-value of the permutation test for a two-sided alternative hypothesis is
defined by

2min

{
B−1

B∑
l=1

I (Tl > Tobs), 1 − B−1
B∑

l=1

I (Tl > Tobs)

}
,

where I (A) stands for the usual indicator function on a set A.

For convenience, the above test procedure will be called the centered permutation test.
When we apply steps 2–6 to the original data, we have the standard permutation test.

Finally, let us comment on possible “new” standard deviations. Since the distance
standard deviation is constructed based on the distance correlation, which is a depen-
dence measure, one can consider defining a “standard deviation” based on other such
measures. As we mentioned above, we consider the HSIC, ball covariance, mutual
information, and projection correlation. Assume that we consider the HSIC with the
Gaussian or Laplace kernels and themedianmethod of selecting the bandwidth param-
eter (Gretton et al 2009). Unfortunately, none of these cases is generally as satisfactory
as the distance standard deviation was. First of all, the ball covariance gives the ball
standard deviation, which is constant and thus of no use at all in the sense of measuring
variability. All of the other “standard deviations” satisfy the condition (C1) of Bickel
and Lehmann (2012), but not the condition (C2). In fact, we have τ(a+ bX) = τ(X),
where τ may be any of the three “standard deviations”. Thus, we have invariance under
location transformation, but these values cannot be applied to test scale differences.
However, for functional data, variability seems to be a more general concept than just
scale, and so it is interesting to investigate this. For this reason, we will consider tests
based on projection standard deviation in the next sections. We use it for illustration,
since the results for HSIC were poor, while the mutual information standard devia-
tion leads to numerical problems that prevent its application in many cases (data not
shown).

Let us briefly describe the projection correlation and standard deviation. They are
based on the fact that the independence of random vectors X1 and X2 is equivalent to
the independence ofU = α�X1 and V = β�X2 for all unit vectors α and β. Assume
that FU ,V (u, v) is the joint distribution of (U , V ), while FU (u) and FV (v) are the
marginal distributions of U and V respectively. Then, given α and β, U and V are
independent if and only if

FU ,V (u, v) − FU (u)FV (v) = cov(I (α�X1 ≤ u), I (β�X2 ≤ v)) = 0.

Thus, the independence of X1 and X2 can be tested based on the following equality:

∫ ∫ ∫
cov2(I (α�X1 ≤ u), I (β�X2 ≤ v))dFU ,V (u, v)dαdβ = 0.

123



Application of distance standard deviation...

After some analytical transformations, the squared projection covariance between X1
and X2 is defined as follows:

pcov2(X1,X2) =

E

(
arccos

{
(X11 − X13)

�(X14 − X13)

‖X11 − X13‖‖X14 − X13‖
}
arccos

{
(X21 − X23)

�(X24 − X23)

‖X21 − X23‖‖X24 − X23‖
})

+ E

(
arccos

{
(X11 − X13)

�(X14 − X13)

‖X11 − X13‖‖X14 − X13‖
}
arccos

{
(X22 − X23)

�(X25 − X23)

‖X22 − X23‖‖X25 − X23‖
})

− 2E

(
arccos

{
(X11 − X13)

�(X14 − X13)

‖X11 − X13‖‖X14 − X13‖
}
arccos

{
(X22 − X23)

�(X24 − X23)

‖X22 − X23‖‖X24 − X23‖
})

.

Then, the projection correlation between X1 and X2 is the square root of

pcor2(X1,X2) = pcov2(X1,X2)

pcov(X1,X1)pcov(X2,X2)
,

when pcov(Xi ,Xi ) > 0 for i = 1, 2, and 0 otherwise. The projection correlation
belongs to [0, 1], and is equal to zero if and only if the random vectors are independent.
We define the projection standard deviation by

psd(Xi ) = √
pcov(Xi ,Xi ), i = 1, 2.

Its estimator is as follows:

p̂sd
2
(Xi ) =

1

n3i

ni∑
j,k,l=1

arccos2
{

(Xi j − Xik)
�(Xil − Xik)

‖Xi j − Xik‖‖Xil − Xik‖

}

+ 1

n5i

ni∑
j,k,l,m,n=1

arccos

{
(Xi j − Xik)

�(Xil − Xik)

‖Xi j − Xik‖‖Xil − Xik‖

}
arccos

{
(Xim − Xik)

�(Xin − Xik)

‖Xim − Xik‖‖Xin − Xik‖
}

− 2
1

n4i

ni∑
j,k,l,m=1

arccos

{
(Xi j − Xik)

�(Xil − Xik)

‖Xi j − Xik‖‖Xil − Xik‖

}
arccos

{
(Xim − Xik)

�(Xil − Xik)

‖Xim − Xik‖‖Xil − Xik‖
}

.

For this estimator there is amuchmore computationally effective form, similarly as for
the distance standard deviation (Zhu et al 2017, page833). To test the null hypothesis
H0 : psd(X1) = psd(X2), we use tests analogous to the permutation procedures
based on the T statistic.

3 Simulation study

In this section, we conduct simulation studies to investigate the type I error level and
power of the considered tests. For this purpose, we study different scenarios involving
the variability of functional data.
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In the supplementary online material, we present additional simulation studies, in
which we compare the new dsd and psd tests with the testing procedures by Guo
et al (2018, 2019) for testing the equality of covariance functions in several samples,
which was suggested by the referee. Although the tests verify different hypotheses,
it is possible to compare them as they concern variability of the functional data, but
probably in a different way. These simulations conclude that the dsd and psd tests
can be powerful alternatives to the tests by Guo et al (2018, 2019) in terms of testing
the global variability of functional data.

3.1 Simulation setup

For generating simulated data, we consider a model constructed based on those con-
sidered in Guo et al (2019), Kraus and Panareto (2012), and Zhang and Liang (2013).
To generate discrete functional samples, we use the following model:

xi j (t) = hi (t)(ηi (t) + vi j (t)), (2)

where t ∈ [0, 1], i = 1, 2, j = 1, . . . , ni . We assume that the functions xi j (t) are
observed at fifty design time points tr = (r − 1)/49 for r = 1, . . . , 50. We set
ni = 25, 40 for i = 1, 2.

For the group mean functions, we consider two scenarios. In the first one, we have
the same mean functions, i.e., ηi (t) = 1 + 2.3t + 3.4t2 + 1.5t3 for i = 1, 2. The
second scenario has different mean functions: η1(t) = 1 + 2.3t + 3.4t2 + 1.5t3 and
η2(t) = cos(2.3π t) + 3.4t sin(1.5π t).

We consider

vi j (t) =
m∑
l=1

λ
1/2
il yi jlψil(t),

where λil > 0, yi jl are independent random variables with mean 0 and variance 1,
and ψ1l(t) = φl(t) for l = 1, . . . ,m, while ψ2l(t) = φl(t) for l = 1, 3, 4, . . . ,m,
and ψ22(t) = φ2(t) + ω, where φ1(t) = 1, φ2r (t) = √

2 sin(2πr t) and φ2r+1(t) =√
2 cos(2πr t), r = 1, . . . , (m − 1)/2, are the orthonormal basis functions, and ω is

some constant. We set m = 11.
We consider two distributions of the i.i.d. random variables yi jl . Namely, the

standard normal distribution and the standardized t-distribution with five degrees of
freedom are used to generate Gaussian and non-Gaussian functional observations.
Note that this t-distribution has nearly the heaviest tails among the t-distributions
with finite first four moments.

The other parameters of the general model (2) are specified in the following par-
ticular models:

Model 0We consider λil = 1.5ρl ,ω = 0, and hi (t) = 1 for i = 1, 2, l = 1, . . . ,m,
and t ∈ [0, 1].
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Table 1 Empirical sizes (in %)
of all tests for Model 0

dmf distr n ρ dsds psds dsdc psdc

n N 25 0.1 4.9 5.5 5.3 5.6

0.5 5.2 4.5 5.3 4.8

0.9 4.5 5.0 4.3 5.1

40 0.1 4.9 5.0 5.3 5.2

0.5 5.3 5.8 5.7 6.2

0.9 5.1 4.9 5.3 5.7

t 25 0.1 5.6 3.9 5.7 4.2

0.5 5.9 4.1 6.2 4.2

0.9 5.9 5.5 5.5 5.5

40 0.1 5.0 5.5 5.1 5.4

0.5 5.4 4.9 5.3 5.4

0.9 5.4 4.8 5.9 4.7

y N 25 0.1 18.1 10.5 3.8 4.5

0.5 7.8 8.6 4.8 5.4

0.9 3.9 1.8 5.8 4.2

40 0.1 14.6 9.3 4.9 5.7

0.5 7.0 9.1 5.0 5.6

0.9 4.7 2.1 5.5 4.4

t 25 0.1 16.8 8.3 4.7 4.3

0.5 7.0 9.5 4.4 5.7

0.9 3.8 1.1 4.5 3.5

40 0.1 13.9 9.6 3.7 5.2

0.5 6.7 7.4 5.9 4.9

0.9 4.9 1.6 5.2 5.3

We denote: dmf–different mean functions (n–no, y–yes); distr– dis-
tribution (N–normal, t–t-distribution); n = n1 = n2; dsds , psds
(respectively dsdc , psdc)–standard (respectively centered) permuta-
tion tests

In this model, the variability is the same in both samples, and hence the null hypoth-
esis is true. In the followingmodels, we consider different alternative hypotheses. They
are based on Model 0, but in the second sample:

Model 1 the observations are multiplied by 1.5.
Model 2 h2(t) = g1(t) = sin(1.5t) + 1 or h2(t) = g2(t) = cos(1.5t) + 1.
Model 3 λ2l = λ

1/2
1l for l = 1, 4, 5, . . . ,m, and λ2l = 1.5λ1/21l for l = 2, 3.

Model 4 λ2l = λ
1/2
1l for l = 1, 4, 5, . . . ,m, while λ22 = λ

1/2
13 and λ23 = λ

1/2
12 .

Model 5 ω = 2, 3.

In Model 1, the second sample is obtained simply by scaling the first sample.
Model 2 concerns two cases, where the second sample has greater variability for
greater or smaller t . In Models 3–5, the variability of the second sample is changed
internally. Example trajectories of the generated data are shown in the figures in the
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Table 2 Empirical powers (in
%) of all tests for Model 1

dmf distr n ρ dsds psds dsdc psdc

n N 25 0.1 35.8 6.4 30.1 4.4

0.5 50.7 4.1 52.7 5.6

0.9 95.8 2.7 96.8 4.6

40 0.1 56.8 5.1 50.1 3.7

0.5 71.2 3.5 73.3 4.5

0.9 99.8 4.0 99.8 6.3

t 25 0.1 31.7 6.4 24.5 4.1

0.5 43.1 3.4 45.5 4.2

0.9 87.8 3.4 88.0 4.8

40 0.1 48.7 6.9 43.3 5.6

0.5 60.7 3.1 61.8 3.7

0.9 98.5 3.6 98.6 5.5

y N 25 0.1 57.6 10.1 34.2 4.9

0.5 59.0 7.8 54.0 5.1

0.9 95.3 2.4 97.1 5.2

40 0.1 67.1 9.6 49.1 4.9

0.5 78.2 6.1 74.3 4.7

0.9 99.9 2.0 99.9 4.8

t 25 0.1 52.0 9.8 28.4 3.9

0.5 45.6 7.7 40.5 4.5

0.9 87.9 3.1 89.3 5.5

40 0.1 63.1 9.4 44.0 5.0

0.5 66.7 6.8 61.9 4.6

0.9 97.9 2.1 98.1 4.3

We denote: dmf–different mean functions (n–no, y–yes); distr–
distribution (N–normal, t–t-distribution); n = n1 = n2; dsds , psds
(respectively dsdc , psdc)–standard (respectively centered) permuta-
tion tests

supplementary online material. They suggest that the variability of the second sample
is greater than that of the first sample.

We set ρ = 0.1, 0.5, 0.9 for high, moderate and low correlation of the functional
data (see Guo et al 2019 for explanation).

The p-values of the permutation testswere obtainedusing B = 1000 runs of random
permutations. We reject the null hypothesis when the p-value of a test is smaller than
the nominal significance level α, which is set to 5%. This process is repeated 1000
times. The empirical sizes or powers of the test procedures are then the percentages of
rejections. The simulation studies, as well as the real data examples of Sect. 4, were
conducted using the R programming language (R Core Team 2022). The code is given
in the supplementary materials.
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Table 3 Empirical powers (in
%) of all tests for Model 2

h2 dmf distr n ρ dsds psds dsdc psdc

g1 n N 25 0.1 60.8 8.1 46.0 5.0

0.5 69.8 5.1 70.7 5.0

0.9 99.6 4.5 99.8 8.2

40 0.1 78.1 8.5 69.8 6.6

0.5 88.3 6.2 88.9 6.1

0.9 100.0 5.0 100.0 10.4

t 25 0.1 55.1 8.2 40.1 4.3

0.5 63.3 4.8 63.7 5.0

0.9 97.1 4.1 97.4 7.8

40 0.1 72.3 6.4 60.1 4.3

0.5 83.0 5.3 82.9 5.4

0.9 100.0 5.8 100.0 11.5

y N 25 0.1 70.4 11.2 49.2 6.3

0.5 72.3 7.8 68.2 6.5

0.9 99.9 5.6 99.9 10.0

40 0.1 84.6 8.2 70.7 4.5

0.5 92.7 7.1 91.0 5.3

0.9 100.0 7.1 100.0 12.0

t 25 0.1 61.8 9.5 38.2 5.0

0.5 65.8 8.9 60.8 6.1

0.9 97.1 4.2 97.8 9.6

40 0.1 80.8 8.1 64.8 4.5

0.5 83.3 6.5 80.8 4.5

0.9 99.7 6.3 99.7 12.3

g2 n N 25 0.1 54.8 7.0 51.4 5.3

0.5 70.9 4.7 72.9 5.9

0.9 99.9 6.4 99.9 6.3

40 0.1 77.1 6.1 74.9 4.6

0.5 91.4 4.4 92.9 5.4

0.9 100.0 8.2 100.0 9.9

t 25 0.1 48.4 7.5 44.1 5.0

0.5 62.6 4.2 64.8 4.6

0.9 98.3 6.1 98.3 7.2

40 0.1 68.1 7.0 65.2 6.2

0.5 83.9 6.3 84.7 6.7

0.9 100.0 7.8 100.0 10.2

y N 25 0.1 74.7 10.3 52.4 5.6
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Table 3 continued h2 dmf distr n ρ dsds psds dsdc psdc

0.5 77.5 7.6 72.5 5.0

0.9 100.0 4.0 100.0 6.5

40 0.1 87.8 10.5 76.8 6.3

0.5 94.1 7.6 92.4 6.2

0.9 100.0 6.3 100.0 9.0

t 25 0.1 63.6 11.6 42.0 6.9

0.5 71.3 6.7 66.6 4.7

0.9 98.4 4.9 98.4 6.7

40 0.1 79.8 8.6 65.7 4.8

0.5 86.8 7.2 84.7 6.2

0.9 100.0 6.2 100.0 10.6

We denote: g1(t) = sin(1.5t) + 1 and g2(t) = cos(1.5t) + 1; dmf–
different mean functions (n–no, y–yes); distr–distribution (N–normal,
t–t-distribution); n = n1 = n2; dsds , psds (respectively dsdc , psdc)
standard (respectively centered) permutation tests

3.2 Simulation results

Let us discuss the simulation results for the permutation tests obtained in Models 0–5.
We consider four tests: the standard and centered permutation tests based on distance
and projection standard deviations. We denote them by dsds , psds , dsdc, and psdc, if
needed. The results of the simulation studies are presented in Tables 1, 2, 3, 4, 5 and
6.

The type I error level of the tests was investigated in Model 0, where the null
hypothesis is true. The obtained empirical sizes are given in Table 1. We can observe
that the centered permutation tests based ondistance andprojection standard deviations
control the type I error level very well in all cases. Their empirical sizes always lie
within the 95% binomial confidence interval [3.6%, 6.4%] (Duchesne and Francq
2015). The same holds for the standard permutation tests, but only for the case with the
same mean function. When the mean functions are different, the standard permutation
procedures are far from maintaining the type I error level. For highly and moderately
correlated functional data, they are too liberal, while in the case of small correlation,
they may have a conservative character.

InModel 1 (Table 2), we have a simple difference in the scale of the functional data.
This explains the complete loss of power of the tests based on the projection standard
deviation. Their empirical powers are close to the significance level α = 5% or even
smaller. For the case of different mean functions, the slightly greater empirical powers
of the psds test are due to the too liberal character of this test observed in Model 0. On
the other hand, the test procedures based on the distance standard deviation have much
more acceptable power. This power decreases with an increase in correlation. When
the mean functions are the same, both permutation tests have very similar power for
low andmoderate correlation,with a slight advantage for the centered permutation test.
For high correlation, the dsds test is a few percent more powerful than the dsdc test.
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Table 4 Empirical powers (in
%) of all tests for Model 3

dmf distr n ρ dsds psds dsdc psdc

n N 25 0.1 63.3 98.9 63.0 98.4

0.5 38.5 92.5 37.8 92.7

0.9 39.9 5.9 41.0 5.5

40 0.1 85.6 100.0 85.3 100.0

0.5 54.6 99.3 54.9 99.2

0.9 69.5 5.6 69.5 5.3

t 25 0.1 57.6 97.2 57.9 97.0

0.5 33.9 81.3 34.6 80.9

0.9 32.0 4.8 32.6 5.1

40 0.1 82.7 99.8 82.4 99.9

0.5 49.1 97.8 50.5 97.7

0.9 48.7 6.0 48.6 5.9

y N 25 0.1 78.0 99.3 64.0 98.3

0.5 43.5 93.1 39.2 91.3

0.9 38.8 1.1 45.6 4.4

40 0.1 93.2 100.0 87.4 100.0

0.5 59.5 99.2 56.6 98.8

0.9 61.0 2.8 64.4 5.9

t 25 0.1 75.0 99.2 58.7 97.1

0.5 41.1 84.1 35.9 79.7

0.9 30.5 2.0 33.2 4.7

40 0.1 89.2 100.0 81.5 100.0

0.5 55.2 97.5 51.6 96.4

0.9 46.9 2.9 51.0 6.7

We denote: dmf–different mean functions (n–no, y–yes); distr– dis-
tribution (N–normal, t–t-distribution); n = n1 = n2; dsds , psds
(respectively dsdc , psdc) standard (respectively centered) permuta-
tion tests

Nevertheless, for different mean functions, we can see that the dsds test is too liberal,
and as a result has undesirably large power. Fortunately, the centered permutation test
based on the distance standard deviation has very similar power in the cases when the
mean functions are the same and when they are different.

In Model 2 (Table 3), we have two cases. In the first (respectively second) case, the
much greater variability of the second sample is concentrated for greater (respectively
smaller) values of t , closer to one (respectively zero). Nevertheless, the conclusions
are very similar to those for Model 1. Thus, the psd-based tests have almost no power,
while the dsds test has too much power in the case of different mean functions. The
best is the dsdc test. For this test, at least slightly greater empirical powers occur for
h2 = g2 under high and moderate correlation. For a small correlation (ρ = 0.9) the
power is almost the same.
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Table 5 Empirical powers (in
%) of all tests for Model 4

dmf distr n ρ dsds psds dsdc psdc

n N 25 0.1 54.1 95.9 53.5 95.8

0.5 15.6 95.4 15.6 95.7

0.9 21.8 9.0 22.0 8.7

40 0.1 76.4 99.8 76.5 99.6

0.5 23.5 99.9 23.6 99.8

0.9 30.8 13.2 30.3 13.4

t 25 0.1 48.7 88.4 48.3 88.9

0.5 17.2 88.1 17.2 88.1

0.9 16.3 8.1 16.1 7.5

40 0.1 69.6 99.0 70.7 99.0

0.5 23.9 98.0 23.9 98.1

0.9 23.3 8.8 23.8 8.7

y N 25 0.1 72.5 98.5 53.7 95.5

0.5 19.8 96.9 16.8 94.6

0.9 16.7 3.8 22.1 9.7

40 0.1 88.1 99.9 78.4 99.8

0.5 25.5 99.7 23.1 99.5

0.9 27.7 5.4 33.6 13.9

t 25 0.1 68.6 95.3 50.8 89.7

0.5 22.2 88.7 18.3 86.8

0.9 13.7 3.2 16.4 6.8

40 0.1 80.9 99.3 68.7 98.8

0.5 27.5 99.1 25.0 98.6

0.9 23.7 4.9 25.2 8.8

We denote: dmf–different mean functions (n–no, y–yes); distr– dis-
tribution (N–normal, t–t-distribution); n = n1 = n2; dsds , psds
(respectively dsdc , psdc) standard (respectively centered) permuta-
tion tests

Models 3 and 4 (Tables 4 and 5) alter the λ2l values, which results in greater
variability in the second sample. However, its character seems to be different than in
Models 1 and 2, as can be seen in the simulation results. The conclusions for the dsd-
based tests are very similar to those for the earliermodels, but for the casewith the same
mean functions, the power of both permutation methods is very similar. On the other
hand, we observe much better properties of the test based on the projection standard
deviation for high andmoderate correlation.Namely, both psd-based permutation tests
have similar and high power, which is independent of the equality or inequality of the
mean functions. They are also more powerful than the dsds and dsdc test procedures.
For low correlation, we observe the opposite situation, and the behavior of psd-based
tests is still poor. Nevertheless, these two models show that there is some potential for
the use of the projection standard deviation.
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Table 6 Empirical powers (in
%) of all tests for Model 5

ω dmf distr n ρ dsds psds dsdc psdc

2 n N 25 0.1 11.9 17.6 11.8 16.7

0.5 66.9 77.7 66.9 77.7

0.9 86.3 89.2 86.0 88.4

40 0.1 18.2 25.2 18.0 25.2

0.5 88.9 94.2 89.0 95.0

0.9 97.8 98.9 97.8 98.9

t 25 0.1 12.5 19.2 13.5 19.5

0.5 63.9 75.2 63.3 74.9

0.9 72.7 78.7 72.4 77.8

40 0.1 16.7 28.0 17.2 27.6

0.5 84.9 91.5 85.3 92.0

0.9 93.2 96.7 93.2 96.8

y N 25 0.1 26.4 26.9 10.2 16.3

0.5 74.0 84.0 66.5 77.4

0.9 78.8 81.8 83.5 87.1

40 0.1 32.9 34.9 17.5 26.0

0.5 92.2 96.6 89.4 94.8

0.9 97.4 99.0 98.1 99.4

t 25 0.1 31.5 28.1 13.5 18.1

0.5 71.2 79.2 60.9 71.4

0.9 69.4 72.5 75.8 80.2

40 0.1 34.4 34.8 17.6 26.4

0.5 88.7 95.3 84.8 92.8

0.9 93.0 95.2 94.5 96.9

3 n N 25 0.1 28.8 44.7 29.0 44.3

0.5 94.7 98.5 94.5 98.2

0.9 98.9 99.7 99.2 99.5

40 0.1 47.1 64.7 46.5 64.8

0.5 99.6 100.0 99.7 100.0

0.9 100.0 100.0 100.0 100.0

t 25 0.1 30.9 47.7 31.5 46.6

0.5 90.6 95.1 90.7 94.5

0.9 96.6 96.5 96.4 96.5

40 0.1 48.2 71.5 47.8 71.6

0.5 99.3 99.8 99.5 99.8

0.9 100.0 100.0 99.9 100.0

y N 25 0.1 51.6 57.2 29.7 46.6
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Table 6 continued
ω dmf distr n ρ dsds psds dsdc psdc

0.5 96.1 98.9 94.1 98.0

0.9 98.1 99.6 99.2 99.8

40 0.1 62.9 74.5 45.3 66.0

0.5 99.9 99.9 99.7 99.9

0.9 99.9 100.0 100.0 100.0

t 25 0.1 53.4 60.9 30.9 46.3

0.5 93.3 96.8 89.7 94.8

0.9 93.2 94.9 95.8 97.5

40 0.1 66.3 77.6 47.4 68.8

0.5 99.2 99.9 99.0 99.8

0.9 99.6 100.0 99.6 100.0

We denote: ω = 2, 3 in the second sample; dmf–different mean func-
tions (n–no, y–yes); distr–distribution (N–normal, t - t-distribution);
n = n1 = n2; dsds , psds (respectively dsdc , psdc) standard (respec-
tively centered) permutation tests

This can also be seen in Model 5 (Table 6). Here the tests based on projection
standard deviation outperform those using the distance standard deviation in most
cases. The former tests are also powerful in the case of low correlation. The other
conclusions are the same as for Models 3 and 4. Naturally, the power increases with
an increase in ω (see the figures in the supplementary online material).

Finally, we can observe that the empirical powers for the normal distribution are
usually a few percent greater than those for the t-distribution case. Nevertheless, in
the latter case, the results are still satisfactory.

Let us sumup the above results. The centered permutation tests seem toperformvery
well independent of whether or not the mean functions are the same. This is not true
for the standard permutation method, which may be too liberal for cases with different
means. Thus, we recommend using the centered permutation procedure. The tests
based on distance standard deviation are powerful for all of the variability scenarios
considered in these simulation studies. However, when the variability is internally
caused, the tests based on projection standard deviation may be more powerful. On the
other hand, these tests are of no use at all for various scale changes of functional data.
Thus, the choice between different standard deviations may require some inspection
of the data.

4 Real data application

In this section,we illustrate the use of the standard and centered permutation tests based
on distance and projection standard deviations.We consider five data sets representing
different subject matter, types of variability, numbers of observations, and design time
points. All data sets are presented in Fig. 1. For each data set, we removed the outlying
observations detected by an outliergram as proposed byArribas-Gil and Romo (2014),
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Fig. 1 Trajectories of real data sets considered in Sect. 4

and the equality of mean functions was checked using the tests contained in the R
package fdANOVA (Górecki and Smaga 2018). The results of the FANOVA tests are
presented in the supplementary online material.
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We first consider the aemet data set, available in the R package fda.usc (Febrero-
Bande andOviedode laFuente 2012). This data set contains a series of daily summaries
of 73 Spanish weather stations selected for the period 1980–2009. More precisely,
geographic information is given for each station, alongwith the averages for the period
1980–2009 of daily temperature, daily precipitation, and daily wind speed. The data
are obtained from the Meteorological State Agency of Spain (AEMET), Government
of Spain (http://www.aemet.es/). Here, we consider the data for the mean curve of
the log precipitation (in log mm) in continental Spain. We construct two samples
by dividing the stations into those having an altitude of less than 100ms (the first
sample) and the remainder (the second sample). Then, the samples contain n1 = 20
and n2 = 30 observations. From Fig. 1, it appears that the variability is greater in the
first sample. This is confirmed by the values of the estimators of standard deviations.
Namely, for the first (respectively second) sample, d̂sd and p̂sd are equal to 9.34
and 0.33 (respectively 5.42 and 0.3). However, the amount of difference in variability
does not seem to be evenly distributed: it is greater in the middle of the year than
at its beginning and end. This is similar to the case of Model 2 from the simulation
studies, which may explain why the standard and centered permutation psd-based
tests have p-values equal to 0.784 and 0.832 respectively. Thus, they do not reject
the null hypothesis, perhaps due to loss of power. The dsd-based tests have p-values
of 0.066 and 0.05 and are on the boundary of rejection and non-rejection, suggesting
that they are much more powerful than their competitors based on the projection
standard deviation. The slightly greater p-value of the standard permutation test can
be explained by the fact that the mean functions seem to be significantly different (see
supplementary online material), while the correlation is small, and hence this test is
subject to a loss of power.

The next four data sets are available in the UEA & UCR Time Series Classifi-
cation Repository (Bagnall et al 2022), which contains many real data sets for the
classification of time series. The first of them is the Fish data set, which contains fish
outlines originally used with contour matching in Dah-Jye et al (2008). The outlines
were derived at UCR. Each class is a different species. Here, we consider the first
two classes with n1 = 47 and n2 = 46. We have d̂sd(X1) = 2.47, d̂sd(X2) = 1.55,
p̂sd(X1) = 0.4, and p̂sd(X2) = 0.38, which together with the second row of Fig. 1
suggests that again the variability in the first sample is greater than in the second.More-
over, the charts suggest a simple scale difference, as in Model 1 of the simulations.
Thus, the tests based on the projection standard deviation are likely to lose power, and
this is confirmed by their p-values, which are close to 0.45. On the other hand, the p-
values of the standard and centered permutation dsd-based tests are 0.006 and 0.004
respectively. Thus, these tests reject the null hypothesis, indicating greater variability
for the first species. Very similar results are obtained for the Haptics data set. Those
data are taken from five people entering their pass graph on a touchscreen, and include
the X-axis movement only. Here, the sample sizes, values of estimators and p-values
of the tests are as follows: n1 = 63, n2 = 82, d̂sd(X1) = 5.49, d̂sd(X2) = 3.35,
p̂sd(X1) = 0.3, p̂sd(X2) = 0.29, both dsd-based tests have p-values equal to zero,
while the p-values of the standard and centered permutation tests based on psd are
0.538 and 0.646 respectively.

123

http://www.aemet.es/


Application of distance standard deviation...

Next, we consider theMedicalImages data set, where the variability scenario seems
to be different than in the above examples. In this data set, the observations are his-
tograms of the pixel intensity of medical images, and the classes are different regions
of the human body. For illustrative purposes, we use the second and third classes, with
n1 = 49 and n2 = 64. Row four in Fig. 1 suggests that the difference in variability is
not just in scale. The variability is similar at the beginning and end of the observable
period, while in the middle, the variability seems to be greater in the second sample.
However, it is difficult to identify the kind of variability in this case. In general, the
greater variability in the second sample seems to be confirmed, since d̂sd(X1) = 1.13,
d̂sd(X2) = 1.73, p̂sd(X1) = 0.27, and p̂sd(X2) = 0.28. Moreover, all tests reject
the null hypothesis. The dsd-based tests have zero p-values. The p-values of the
standard and centered permutation tests based on projection standard deviation are
0.014 and 0.004 respectively. The greater p-value of the standard method is due to the
significant differences in the mean functions (see supplementary online material) and
the relatively small correlation–the standard permutation test may have a conservative
character, resulting in loss of power.

Finally, we study the Trace data set, which is a subset of the Transient Classification
Benchmark (trace project), an initiative at the turn of the century to collate data from
the application domain of the process industry (e.g. nuclear, chemical, etc.). It is
a synthetic data set designed to simulate instrumentation failures in a nuclear power
plant, created by Davide Roverso. In this data set, there are four classes, and we use the
last two, with n1 = 28 and n2 = 31 observations. The values of the estimators are as
follows: d̂sd(X1) = 1.69, d̂sd(X2) = 2.35, p̂sd(X1) = 0.44, and p̂sd(X2) = 0.62.
They suggest greater variability in the second sample. Figure1 confirms this, but we
can observe a kind of perturbation for t ∈ [150, 215]. This may be a reason for the
non-rejection of the null hypothesis by the dsd-based tests, with p-values close to
10%. On the other hand, the psd-based tests seem to be robust to this perturbation and
reject the null hypothesis with zero p-values. This example shows that the projection
standard deviation can sometimes be useful. The similar p-values of both standard
and centered permutation tests can be explained by the fact that the mean functions
seem to be equal (see supplementary online material).

5 Conclusion

In this paper, we have studied the applicability of distance and projection standard
deviations to measure and test the equality of variability of functional data. Of course,
the variability is not strictly defined in the context of functional data. One of its mea-
sures is the covariance function, which, being a function, is more difficult to interpret.
The standard deviations considered are more practical, as they are real numbers. The
distance standard deviation appeared to be useful for different (all considered) kinds
of variability of functional data. On the other hand, the projection standard deviation
failed to detect scale differences, but was more useful when the variability was caused
by “internal” issues. These observations were made in extensive simulation studies,
where the type I error level and power of the two-sample tests for equality of stan-
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M. Krzyśko, Ł. Smaga

dard deviations were investigated. The test procedures were based on approximating
the distribution of the test statistic as described by Edelmann et al (2020), using the
new permutation method. In this method, we first centered the observations, and then
applied the permutation approach. This simple modification of the standard permu-
tation method resulted in maintenance of the type I error level, even when the mean
functions were different. The use of the proposed methods was illustrated in five real
data examples, which were based on data sets with various characteristics. For most of
the data sets, the tests based on distance standard deviation were more powerful, but
for some of them, the projection method gave better results. To sum up, the proposed
methods seem to be promising for measuring and testing the variability of functional
data in an interpretive way, but they need to be further evaluated with additional real
and artificial data.

Supplementary information In the supporting material, we present additional
simulation studies, results of FANOVA tests for real data examples of Sect. 4, the
example of generated functional data in the simulation studies of Sect. 3, and the R
code for simulation studies and real data examples.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11634-023-00538-6.
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