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APPLICATIONS OF DISTRIBUTED SYSTEM CONCEPTS
TO DYNAMIC ANALYSIS AND CONTROL OF BENDING VIBRATIONS

By David R. Vaughan
Missile and Space Systems Division
Douglas Aircraft Company, Inc.

SUMMARY

As an alternate to the normal-mode approach to dynamics and controls
analysis of flexible aerospace vehicles, bending vibrations are studied in
terms of the distributed parameter concepts of propagation and reflection.
Only thin uniform beams and cascades of them are studied. The results provide
preliminary insight into bending vibrations for the design of controls for
flexible vehicles.

Transverse vibrations are approached by an analogy developed between
propagation and reflection in the Bernoulli-Euler and wave equations. Thus,
longitudinal-traveling-wave solutions for beams are treated before transverse
vibrations.

Solution of the Bernoulli-Euler esuation for transverse bending of a

thin semi-infinite beam shows that e scos /Ts and e~ ssin /Ts are propa-
gation operators, and the input (characteristic) admittance contains the
operators Vs (fractional derivative) and 1/¥s (fractional integral).

The Bernoulli-Euler equation for the transverse bending vibration of a
thin uniform free-free beam is solved in terms of these propagation and char=-
acteristic-impedance operators. It is shown that a matrix transformation

(U = W'lY) carries the local state vector Y to a vector of characteristic
variables (U) and permits factcrization of the solution into provagation-
and end-effects matrices. This matrix factorization is shown to have the same
structure as that for the solution of the wave equation,

For beams with terminal dampers or controls, which can be represented as
terminal-impedance matrices, the end-effects matrices are derived from those
for the free-free beam by simple matrix algebra. The matrix relation between
the incident and reflected characteristic variables (U) is treated as a
generalization of the reflection coefficient for electrical transmission lines.
In particular, this reflection matrix is shown to be identically zero, when
the terminal- and the characteristic-impedance matrices are equal.

Several special terminal-impedance matrices are considered, and response
to commands and load disturbances is studied in the time domain, by analog
simulation, and in the frequency domain. An attempt to correlate the behavior
of these systems with their reflection matrices was only partially successful.
The matrix describing reflection and refraction of the characteristiec variables
at the interface of two cascaded uniform beams is developed and shown to con-
tain only real elements.
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INTRODUCTION

The research reported herein was motivated by the feedback-control problem -
in flexible launch vehicles. As launch vehicles become larger, the ratio of
the first bending frequency to the desired control frequency decreases. This
frequency propinquity makes design of feedback controls much more difficult
than it is when the bending and desired control freguencies are widely sepa-
rated,

Dynamics and controls analysis of bending vibration in flexible vehicles
has generally been in terms of the natural modes (refs 1 and 2). This report
puts forth an alternate, fundamentally different approach based on propagation
and transmission concepts. Although the present work is restricted to thin
uniform beams ard cascades of them, it affords a preliminary understanding of
the dynamics and control of bending vibration in complex structures. Simpli-
fied examples are treated that should ultimately provide new insight into the
intrinsic nature of bending vivration and its control.

Stress under impact conditions has been analyzed in terms of propagation.
Vigness {ref 3) uses the theory of transverse wave propagation governed by the
Bernoulli-Euler equation and points out that its solution for an infinitely
long beam was developed by Boussinesq (ref 4)., Traveling waves governed by
the Timoshenko differential equation have also been used to study transverse -
impact effects (refs 5 and 6).

Although propagation concepts have been applied to transverse-beam-impact
analysis, the analysis of vibration absorbers has been almost exclusively in
terms of the natural modes of vibration (refs 7, 8, and 9). An exception is
the field of acoustics. Klyukin (ref 10) and Klyukln and Sergeev (ref 11)
have investigated the transmission and reflection of incident flexural waves
by antivibration resonance systems. Their work is restricted to steady-state
harmonic vibration, which is useful for acoustics studies, but not for tran-
sient analysis. '

The central problem treated in the present work is twofold: (1) achieving
a desired motion of a flexible structure rapidly and with minimum vibration or
ringing, and (2) minimizing excursions from the desired motion caused by unpre-
dictable loads. The problem is approached through an analogy to propagation
and reflection of both flexural and longitudinal waves. The input-impedance
matrix for transverse vibration of & semi-infinite beam is found to contain
the operators Ys and 1/Y/s. This leads to the investigation of the effec-
tiveness of these operators in the terminal-impedance matrices of vibration
dampers or active controls. The concept of a reflection matrix, which is a
generalization of the reflection coefficient of electrical-transmission-line
theory,\is introduced and related to the terminal-impedance matrix.

Several different terminal-impedance matrices are considered in detail.
For these cases, responses to commands and load disturbances are studied in
the time domain by analog simulation, and in the frequency domain. An attempt
to correlate the behavior of these systems with their reflection matrices is
only partially successful.
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Considerable attention is devoted to the longitudinal-traveling-wave
solution for beams, because its treatment is so closely analogous to that of
flexural wave propagation.

C(Ts)

SYMBOLS

cross~section area of beanm, in? Also, parameter matrix for
wave equation in state-vector form dy/dx = Ay, 2x2 for
Bernoulli-Euler state-vector equation dY/dx = AY, lLxl

/ EI . 2
= , in./sec

pA

matrix that carries P to P¥ by the relation P¥* = BPB-l,

Lxlh

e-'/Tg cos VTs

propagation velocity of longitudinal waves, in./sec

Young's modulus of elasticity, lb/in?

generalized force applied to nth transverse-bending mode, 1b
external longitudinal force, 1lb

(M,Q)T, 2x1

intensity of distributed external longitudinal loading, 1b/in.
gains of terminal-impedance matrices [see eqs (102a and 102b)]
area moment of inertia of beam cross-section, in?

interface matrix [see eq (124), kxl]

matrix elements of partitioned J, 2x2

/=1

gains of terminal-impedance matrices [see eqs (102a and 102b)]

E I1p0A,

BI04
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H

left-side longitudinal end-effects matrix for beam terminated
in Zg Also, left-side lateral end-effects matrix for

beam with terminal Za at face a, bxl

matrix elements of partitioned L, 2x2

left-side longitudinal end-effects matrix for free-free bheam,
2x2, Also, left-side lateral end-effects matrix for free-
free beam, bxh

length of finite beam, in.

elements of L

external moment, in.-1lb

nth modal mass

mess of beam, lb-secz/in.

diagonal matrix of eigenvalues of A for wave equation, 2x2,
and for Bernoulli-Euler equation, ULxk

matrix of real variables, diagonal in the 2x2-partitioned
sense, derived from P by the relation P* = BPB-l, Lixh

generalized force applied to nth longitudinal mode

external transverse force, 1lb
intensity of distributed external transverse loading, 1b/in. \

nth normal coordinate

right-side longitudinal end-effects matrix for beam terminated
in zb, 2x2., Also, right-side lateral end-efferts matrix

for beam with terminal impedance Z, 8t face b, Lxh, -

matrix elements of partitioned R, 2x2

right-side longitudinal end-effects matrix for free-free beam,
2x2, Also, right-side lateral end-effects matrix for free-
free beam, lxb

elements of R

=

e~'T8 gin /Ts
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asa

ba

Laplace transform operator, sect

22/(2a), sec

transmission matrix for longitudinal beam vibration with conven-

tion y_ =T Y., 2x2
ry rnr, 'r,

Bernoulli-Euler transmission matrix for thin=beam transverse

bending with the convention Y = T* Y | Lxk
T Nfa T

time for longitudinal wave to travel from x = 0 to station

x, sec. Also x2/(2a). sec
time, sec
vector of characteristic variables, lixl
longitudinal beam displacement, in.
characteristic variables for transverse bending vibration
longitudinal velocity of beam, in,/sec
characteristice variables for transverse bending vibration

matrix of eigenvectors of A for wave equation, 2x2, and
for Bernoulli-Euler equation, ULxl

WB-l, Lxh
location coordinate along beam, in,
¢« o M
)

(y,8)", 2x1

location coordinate of station r

beam lateral state vector = (y, 8, M, Q)T

longitudinal input admittance for station a, in./(1lb-sec).
Also, lateral-input-admittance matrix for station a, 2x2

longitudinal transfer admittance (vb = YbaFa)’ in./(1b-sec).

Also, lateral-transfer-admittance matrix with convention
xb = Ybafa




oa

ob

De

characteristic admittance for longitudinal beam waves

in./(1lb=sec).
for thin beam bending, 2x2

characteristic-admittance matrix for face a,
characteristic-admittance matrix for face b,

beam longitudinal state vector = (v,F)T, 2x1.

beam displacement, in.

transverse beam velocity, in./sec

Also, characteristic admittance matrix

2x2

2x2

Also, transverse

elements of admittance matrix for thin-beam bending [see

eq (94)]

terminal-impedance matrix at face a, 2x2

terminal-impedance matrix at face b, 2x2

characteristic impedance for longitudinal beam waves, lb-sec/in.
Also, characteristic=-impedance matrix for thin-beam bending,

2x2

characteristic-impedance matrix for face a,

characteristic-impedance matrix for face b,

-+
vector of characteristic variables = (z ,z )T

terminal impedance at face a, lb-sec/in.

terminal impedance at face b, 1lbesec/in,

2x2

2x2

characteristic variables for longitudinal wave transmission

o

changes in elements of R22 resulting from Zb

(v+,u+)T, 2x1

(u-,v')T, 2x1
angular rotation of beam, rad

angular velocity of beam, rad/sec

D
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Subscripts:
n

r

Superscripts:

T

*

Operations:
L1
(")

()

4
density of beam material, lb-secz/in.

propagation matrices, 2x2 [see eqs (98a and $5b)]

nth normal-node function

dé(x)/ax, inTt

nth modal frequency, rad/sec

normal-mode number, integer

denotes value of subscripted quantity at specially designated
station, such as a or b, lower-case letter

de.wotes value of subscripted quantity at face a of beam

denotes value of subscripted quantity at face b of beam

denotes transpose of superscripted matrix

denotes external command or disturbance of superscripted
quantity

denotes inverse Laplace transform of quantity operated upon
denotes d( )/dt

denotes d( )/dat

Matrices in block diagrams:

ax+by cx+dy X

[
ol.
| o f—

O |a—
<

- aX+by ax+by < a.'b fo—X

}-——cxi»dy cx+dy «— ¢’ d —Yy

(2]
C—tp‘

—t )
_.-p"

p S Yy ax+by cx+dy




LONGITUDINAL VIBRATION IN BEAMS

The Wave Equation

General background.- Longitudinal vibration of a uniform continuous beam,
characterized by a linear elastic field with distributed mass, is governed by
the wave equation (ref 12)., With sign conventions as shown in figure 1, if a

e %

F‘+(

Figure 1.--Longitudinal forces and displacements for a uniform
beam and micro-element.

beam is of length 2, cross-sectional area A, mass per unit volume p, and
modulus of elasticity E, the displacement u of any cross-section in the
direction of the location coordinate x 1is governed by the wave equation:

82u 2 2u
2 2 (1)
ot ax

The wave velocity ¢ is determined from the local vroperties E and op:
c=/§ (2)

Equation (1) is the classical wave equation found in nearly all treatments
of partial differential equations. It governs the dynamics of such diverse
wave phenomena as water hammer (ref 13), lossless electrical transmission lines
(ref 14), and torsional vibration of rods (refs 1 and 12). Although all con-
tinuous physical systems have int' /mal dissipation and, thus, ceinot obey the

H
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wave equation exactly, many systems have such small energy losses that solutions

of equation (1) are quite useful in engineering anelysis. Moreover, many
features of this solutinn are retained for lossy systems, such as electrical
transmission lines with distributed series resistance and shunt conductance.

Normal-modz solution.- In addition to the traveling-wave solution,
equation (1) can be solved in terms of its natural modes of vibration (refs 1
and 12). If the beam of figure 1 is free at both ends, the natural frequencies
are

w = %1 /ji (3)

n p

The normal functions or mode shapes are

¢, (x) = cos 2%£ (L)

The total displacement u(x,t) is given by the sum of the mode displacements:

u(x,t) = J ¢, (x) q (¢) (5)

n=0

where qn(t) are the normal coordinates.

For forced motion, the normel coordinates are governed by the transfer
function

1l
q (s) = Q_(s) (6)
n M e 4 Me B
n nn
th
where Mn is the n modal mass.
The generalized force Qn is
L
- \

Q (t) = (I)f(x,t) ¢ (x) ax + Z F(t) o (x)) (1)

where f(x,t) dis the intensity of the distributed external longitudinal
loading, and Fr are the concentrated forces applied at stations r.

The normal-mode station is detaiie2 iurvic: i- references 1 and 12, This
diversion into the normal-mode solution of the wave ejquation serves to show
that transfer functions derived from modal considerations consist entirely of
polynomials in the Laplace operator s, as shown in equation (6). Thus,

10
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rational algebraic functions of s (e.g., ratios of two polynomials in s) :
are derived from a continuous system or a partial-di:ferential-eqmation problem
formulation, This is most attractive for dynamic analysis and control, and is
a qajor advantage of the normal-mode-type solution to the wave equation, This
series solution exhibits the system poles most clearly; the most significant
(i.e., low-frequency) poles are retained simply by dropping the hirber modes
from equation (5)., Rational algebraic transfer functions can also be generated
by replacing the continuous beam with an approximate lumped-spring-mass model.
The, n, natural frequencies of such a rodel will not, in general, he exactly
equal to the first, n, natural frequencies of the continu "is beam. For come
plicated nonuniform structures, lumped-spring-mass models are presently the only -
practical means to establish transfer functions.

Semi-Infinite Beam
The traveling-wave solution is considerably simpler for a semi-infinite
than for a finite beam. Moreover, it affords considerable insight iato the

fundamental nature of propagation.

For a semi~infinite beam (right end ex.uading to x = «), the boundary
condition at x = » is

u(e,t) =0 (8a)

If an arbitrary longitudinal force Fa is applied to the left end

(station a) of the beam, the second boundary condition is

F (t)
du(0,t) a
AT T A S,
9x FA (8b)
For simplicity, the beam is assumed to have nc ctored kinetic or elastic
energy, i.e.,, the initiel conditions are

du(x,0) _
-——3':,_- 0 (9a)
u(x,0) = 0 (9v)

Laplece transforming equation (1) with respect to t, and denoting the
transform of u(x,t) by u(x,s), results in the following ordiiary differ-
ential equation:

e
sQu(x,s) = ¢° Q_ELZZ_,S_) (10)
dxl..

11




(35b)

rm)o.

Figure U4 shows the relations o) equations (34) and (35a and b) in block
diagram form;

[] []
1o T2

z-

a b
V2 —‘t - o1 - J‘? @Yo * Ty
) Propagation o - °
2] > s [

.t .t *
a b
@ YO . e e"TS P v’é' Vb
o .o
= 12

Figure 4.~ Propagation and end-effects relations for lorngitudinal
vibraiion of a free-free beam,

the overall relation is an admittance relation. This input-output choice at
the boundaries determines the end-effects matrices L° and R°. Different
end-effects matrices can be derived for different boundary conditions. The
propagation relations described by equation (34) are not affected by boundary
conditions; the propasgation time, T, is of course proportional to the beam
length, &. The end-effects matrices are a function only of the local pro-
perties and the cross-section geometry and, hence, independent of 1&.

The sequence of events following the application of unit impulse in Fa
can be readily derived from the block diagram (fig 4). First, the velocity Ve
responds instantaneously in an impulse of magnitude YO. After T sec, an
impulse of z+ emerges from the a-to-b delay simultaneously with an impulse

b

- + -
v, of nmagnitude 2Y°. Because Zy = Zys an impulse Zy emerges from the

b
b-to-a delay after 2T sec simultaneously with an impulse Ve of magnitude

2Y°. The general pattern of behavior is now established: the impulse
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The general solution of equation (10) is

u(x,s) = cle-sx/c + c2€+SX/C (11)

The semi-infinite-beam houndary condition (eq 8a) requires that the coef-

ficient c, be zero. The remaining coefficient ¢y can then be evaluated

from the second boundary condition (eq 8b). The solution of equation (11)
becomes

ulx,s) = [y TSy po(g) (12a)
S (o] a
where
YO z — s T(x) = x/c (12v)
A YpE

This report attempts to deal with impedances and admittances wherever
possible. Therefore, the longitudinal velocity v(x,t) is introduced:

vix,t) = dulx,t) (13)

Because su(x,s) = v(x,s), equation (12a), rewritten in terms of longi-
tudinal velocity, becomes

vix,s) = [Y e-T(x)s] Fa(s) (1k)

0

Propagation operator e-Ts.- The operator e-Ts is the propagation oper-
ator for longitudinal wave transmission. It is the pure-delay operator, as
evident from the transform pair

£(t = T) « » e L5p(s)

Thus, T(x) is the time required for the wave tc travel at a constant
velocity ¢ from station a to any station x. If a unit step is applied at
station a, the velocity at station x will jump to the value YG’ T{x) sec

later, as shown in figure 2a., If a sinusoidal force is applied at station a,
i.e steady-state frequency response is

vix,jw) _ =JwT(x)
—Fﬁ’-)- = Yge (15)

12



The polar, or Nyquist plot of the right side of equation (15) is a circle,
as shown in figure 2b.

2.0

1 . O
Qutput /

Input

* 4 o.o—d-

T -1.0

time t

-2.0
-i.0 0.0 1.0 2.0

(a) Step response (b) Polar-frequency plot
O wl=0,2n,km,...
0 wl=r,37,57,...

. X -T
Figure 2.--The wave-equation propagation operator e S.

The amplitude ratio is, therefore, independent of frequency. The phase lag is
wT(x) rad and increases without limit for high frequencies.

Characteristic impedence Z..- If equation (14) is specialized to x = 0,

the input admittance (Yaa) of the semi-infinite beam is Y
Vo is simply

0° and the velocity

v =Y F (16)

The quantity YO is called the characteristic admittance of the beam,
Note particularly that, although the transfer admittance [Yxa(s)] between

stations x and a is a function of s and, therefore has a phase lag, the

characteristic impedance Y0 is indevendent of s. The reciprocal of Y

0
is called the characteristic impedance of the beam, It will be symbolized by
ZO. Thus,

Z. = A VoE (17)

0

13
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Longitudinal Vibration of a Free-Free Beam

Factored solution.- Although the traveling-wave solution for longitudinal
compression waves in thin uniform beams is well-known (ref 15), the solution
is derived here by a method that directly separates the processes of propa-
gation within the beam from the process of reflection at the boundary. The
method, which follows closely a treatment of wavelike transmitters by Paynter
(ref 16), is developed in detail for subsequent use as a model for generalizing
to the transverse-bending problem.

For a uniform thin beam of length, £, which obeys the wave equation and
has the initial conditions assumed in equations (9a and 9b), application of
the Laplace transform with respect to t yields the same ordinary differtial
equation as that for the semi-infinite beam. The energy state of the beam is
determined by the longitudinal velocity v(x,t) and the axial compression
force F(x,t). Thus, a state vector ¥y can be defined as

vix,t)
y(x,t) = [ } (18)
F(x,t)

The transform y(x,s) of y(x,t) is related to u(x,s) by the following:

v(x,s) su(x,s)
y(x,s) = = (19)
Flx,s) -EA 9—‘-‘-51-’5-!-?-)-
x

Equation (19) is used to write the transformed wave equation (eq 10) in
the canonical form,

A
— 1 -
N . 8
v(x,s) 0 ‘- = v(x,s)
o! -
dx - (20)
F(x,s) - -—-EA; 0| F(x,s)
L =
L c - L .
Equation (20) can be written compactly as
a -
3= = Ay (21)

14



where A is the 2x2 matrix on the right side of equation (20). Fquation (21)

is the canonical form for the state-variable formulation currently so popular

in the theory of automatic control (ref 17). Note that the independent variable

in the present case is the spacial variable x; and the components of y are
Laplace transforms of the physical variebles,

The eigenvalues of A and Az of the matrix A are

1

A, = s/ec; A, = =s/c (22)

1 2

The theory for diagonalization of matrices with distinct eigenvalues (ref

18) permits matrix A to be written in the factored form A = WPW’l wvhere P

is a diagecnal matrix of eigenvalues, and W 1is a matrix formed by the use of
the corresponding eigenvectors as columns., If we choose P as

P = (23)
then the following W and W-l satisfy the requirements:
1, 17 1 Y|
o]
W= : TR ¥ (2k)
V2 V2
=Z Z 1 Y
_° 2 - 2]

where ZO and YO are the char .cteristic impedance and characteristic admite

tance defined in equations (12a and 17)., If a new state vector 2z is chosen,
so that

y =Wz (25)

then 2 satisfies the matrix differential equation

dz
dx

The solution of equation (26) can be written in terms of the matrix ex-
ponential (ref 18) as

= Pz (26)

zb(s) = ' za(s) (27)

15



are the values of z at stations a and b, For the

where 2z and 2z
a b

matrix P in equation (23), the matrix e is
eTs 0
e’ = ’ T (28)
-Ts
0 e

Because y = Wz, [eq (25)] the relation between Y, and y, is deter-

mined from equation (27) as

Pty (29)

= [v
(v o

b

Transmission matrix.- The matrix product WegP W-l will be called the
If the matrix product is formed, the relation

transmission matrix Tba'

Yy = Tpa Ya becomes
Tba
v. (s) cosh Ts -Y_ sinh Ts||v (s)
b = i 0 + a (30)
Fb(s) -Z, sinh Ts cosh Ts Fa(s)

The use of transmission metrices for both lumped and distributed systems
is treated in references 14, 15, and 16, The transmission matrix is particu-
larly useful in the analysis of cascade systems, because it is simply the
matrix product of the constituent matrices; e.g., if Yp = Tba Yo and

y. = ch Yy then Yo = ch Tba Yge If the transmission matrix Tab is defined

c
. = te s -1
so that Yo = Tab Yy it is then equal to Tba' Thus,

Tab
v (s) cosh Ts Y sinh Ts] [v_(s)]
N E o v (31)
F (s) Z, sinh Ts Cosh Ts Fb(s)J

Hence, matrices Tab and Tba are identical except for sign differences.

This is a consequence of the symmetry of the beam,

16



Transfer matrices.- Although the transmission matrix form, which relates

the variables Vs Fa to Vi Fb, is useful, other arrangements of the vari-

ables lead more directly to transfer functions that are input-output relations. =«
Of these, the admittance matrix form is the most suitable for treating forced
response:

v cosh Ts -1 F

a a

. |

~ Z sinh Ts
0

v 1 -cosh Ts||F
L b JL P

(32)
|

This corresponds to the free-free boundary condition. The natural fre-
quencies for this condition ere given by sinh Ts = 0, which yields the free-
free-beam frequencies, T = 0, 7, 27, etc. The system zeroes of the four

admittance operators are different. The transfer admittances Yab = va/Fb and
Yba z vb/F& have no zeroes. The input admittances Yaa = va/Fa and
Ybb = vb/Fb have zeroes determined by the equation cosh Ts = 0, i.e.,

w= n/2, 3n/2, 5n/2, etc., Thus, the pole~zero pattern for Yaa or Yy is a

set of alterating poles and zeroes along the Jw axis, as shown in figure 3a. =
The frequency response of the admittance operators is found by substituting
s + jw. For example,

va(Jw) - cos wT
Fa(Jw) JZO sin Tw

Yaa(Jw) = (33)

Figure 3b shows the gain and phase of Yaa(Jw). Other transfer matrix

forms are useful for different boundary conditions, e.g., the impedance matrix
form, when the velocities Vo and v, éare inputs,

Separation of propagation and reflection.- The transmission and transfer
metrix forms, although computationally useful, do not emphasize the significance
of the propagation and characteristic-impedance operators that are of prime
importance for semi-infinite-beam dynamics. -

Actually, equation (29) holds the key to a separation of the propagation

and reflection processes. The thin-beam transmission matrix Tab could have

been derived more directly were it not desired to derive equation (29) and the
relations preceeding it as a by-product. Note that equation (27) is a trans-
mission matrix for the new state vector 2z, because it relates the state

vectors at b and a. Elements of z will be denoted by 2z~ and z+ and
will be called the characteristic variables for the wave equation., The trans-
mission matrix form of equation (27) can be converted into a transfer matrix

form involving only the pure-delay operator e'Ts. In terms of 2t and z,

17
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Figure 3.- Longitudinal input admittance Yaa(S)

this relation is

-
through the beam-propagation operator.

. 4. . +
istic variables (z

established by rearranging y = Wz
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The reason for the superscripts +

variables are propageted in the +x and

and z )

and -

and the physical variables
into the forms

is now evident:

wT »

(34)

+
the =2 and

=x direction, respectively,
The relations between the character-

(v and F) are

(35a)



".ﬂ-."-'.,‘

circulates undiminished around the loop containing the two delay operators
(propagation loop).

This sequence illustrates (for the free-free beam), the inherent lack of
damping in terms of propagation and reflection concepts. Since an arbitrary
Fa(t) or Fb(t) ce1 be considered a train of impulses, an arbitrary wave will

circulate undiminished around the propagation loop.

Damping, and Control

Terminal constraints.- The beam behavior with terminal dampers or with
active terminal controls is now considered., Terminations are appended to the
block diagram of figure 4 to investigate their effects in terms of propagation
and reflection.

The terminal constraints imposed at ends a and b will be written

= -y "% /¢
F, Za(va va) + F* (3%a)
= - vk %*
Fo = z, (v, = v¥) + ¥ (36b)
In these relations, za and z, are terminal impedances, v: and vz
are externally applied velocity commands, and F; and Fg are externelly

applied force disturbances. For passive dampers, v; and vg must be set to

zero. For active controls, za and Zy need not satisfy the constraints of
a passive impedance.

Appending the constraints of equations (36a and b) to the block diagram
of figure b results in the block diagram shown in figure 5. Here, the end
effects can be simplified without affecting the propagation relations and in
fact, can be cast into the same form as the free-free bean. In figure 6 the
new end-effects matrices are shown as L and R to distinguish them from L°
and R°, the end-effects matrices for the free-free beam. The elements 213

and T, of L and R can be determined from the relations and parameters
Vv

for figure S5

- o o P . = ° -lo
N (1 - nllza) 29y . (1 - rllzb) 9, (37a)
L. = 2% (1 -z 2° -1 s r.o. =r% (1 -2z r° -1 (37v)
21 T %21 a*11 3 Ty STy bF11
= [} =l,0 . = (<] -1l o
2o (1 zllza) 22, 3 Ty, = (1 - rllzb) re, (37¢)
= 90 ) o y-1, ,o . = 10 o o y=1, .o
bop = 83, * 23y (1= 2.00))7 2,00, 5 1, =15, + 15, (1 - 200 ) 7 r),
(374)
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Figure 5.- Free-free beam with longitudinal terminal constraints appended.
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Figure 6.~ Propagation and end-effects relations for beam with longitudinal

terminal constraints.
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The significance of these varameters is investigated by the ovcrall

transfer functions for figure 6; these relate cthe velocities Vo and b to

the disturbance F; and Fg and the velocity commands v; and v%:

v = [2 Ts -Ts )-l e-Ts =T

- S
- T *
a 11t bo(l-e Trppe T, Tpe® %) [T - z,vi]
-Ts -Ts -1 -Ts * * .
+ [2,(0-e" Tr 0T 0, e Ty ) (FY - 2 v (38a)
- -Ts -Ts -1 =Ts -Ts % %
v = [rpy #rp(AmeT 0 e ) T e e Ty 1 (FE - 2y v
-Ts -Ts -1 =Ts % »
+ [r12(1-e 122e r22) e 221] [Fa - zava] (38b)

These expressions are taken directlv from the block diagram (fig 6)

. - ~Ts ~Ts _ =2Ts

without combining terms, such as e 2228 r22 = 222r22e ’

illustrate how they are derived, because the matrix form of similar relations

for beam bending, which is derived subsequently, does not allow the combining
of terms,

in order to

The reflection coefficients.- The coeffiecients

122 and r22 play a

most important role in equations (38a and b), They are known in the literature
as the reflection coefficients (ref 14), because they are the ratios of the
reflected-to-transmitted 2z variebles, i,e,,

+ - - +
= . = Q
L (39)

The expressions for 122 and r,, [eq (37d)] can be written in the more
conventional form
Zo + za Zo -z
b2 "7 -z 3 T2 77 vz (ko)
(o} a o] b
Clearly, 222 and r22 are equal to zero, if the terminal impedances

z, and z, match the characteristic impedance Zo' For the free-free
boundary condition, z, =%, < 0, and the reflection coefficients are plus

one. This agrees with the relations between z+ and 2z for the free-free
beam (figure 4). For the fixed-fixed boundary condition, the reflection
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coefficients are minus one, be.ausc Z, and Zy in general, the refiec- I
tion coefficien’ for either :md a or b 1s a real number with magnitude
< 1l for all real positive values of the terminal impedances,

The case of no reflection is of particular interest., It can be inter-
preted in terms of dynamics uf the semi-infinite beam, for which the free-.end
input admittance is Yo, because 5o and z, are zero. This 1is also

obvious from figure 7.

a b
Finite Beam Zo
*_ Se—
Fa AL
Va F‘b
 — —— o
Finite Beam Sem;;:;finite o
e — v ———— -
F v
a b

Figure 7.~ Physical interpretation of Zo termination.

When neither 2,2,) nor r,, is zero, equations (38a and b) can be used .

directly. More insight can be gained by writing the indicated inverses in
series form:

(1 - By, )™ = (1 - R e e e
+ (222r22)2e'hT8 + (!.221-22)3;6'1‘s * oeees (1) °
Substituting equation (41), into equation (38) resuits in
A R S R e S "gz"gae-ws too )P -z vl
+ [!.121-21(9"1'8 (1 + !.22r‘%,e"2'rs + lgzrgze'ws +ere)) [Fg - zbv; (k2)
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A sinmilar equation for v results,

b

The significance of the series expansion for v, may be illustrated for

the srecial case, where 2, = 0O and =z is arbitrary. The input impedance

b
Y is then
aa

<

- 2 =4 -0T's
1+ 2(r20e 2Ts +r° e Lrs + r3’)8 6Ts

oo Ao + ..0)] (43)

a— -
F Yaa - Yo[
a

The response of vy to a unit step of Fa is shown in figure 8 for

several real values of r,...

22
il h
L - . -
r22-1 3 THo l
v /Y 3F v /Y °r
Cc 2 (o] 1 —
1 -t /T
| W WS U W S W | »t/T i " 1
123456789 1234567829
y A
3F 3r
Val¥o 2 '__r_r—r’:l_/e valYo 2} Tpp=-1/2
11 22 1]
PR S W Y GHE SR | b-t/T L‘_H_l t/T

123456789

12345678

Figure 8.~ Effect of the reflection coefficient r,, On
successive waves ~-step response of'Y&a(s).

The responses clearly show that the series solution (eq L43) is an expansion in
terms of successive waves., Such expansions are well-known in electrical-
transmission-line theory (ref 1k),

Load disturbances.- One fundamental problem of automatic control is the
regulator problem, i.e., holding the output constant. This is in contrast to
the servomechanism problem, i.e., making the output follow the input. Load
disturbances can be regulated with active or passive devices. In the present
context, viscous dampers, spring-mass-damper vibration absorbers, and active
controls with fixed set-points may all be considered regulators of longitudinal
beam velocity.
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Velocity regulators at the beam terminals, whose damping forces are a
function only of the velocity at the point of apnlication, are described by
equations (38a and b), if the disturbances also occur at the terminals.

Consider the problem of reducing, by a regulator mounted at b, the
velocity va resulting from disturbances Fa' The transfer function for this

= ]:
A ?
if the regulator impedance is a real number (i,e., velocity feedback), the
reflection coefficient Too will vary monotonely from plus one to minus one

as zb varies from zero to infinity [see eq (37d)]. If the beam is disturbed

by an impulse of Fa’ the response is most simply calculated from equation

is given by equation (L3), The case of no regulator corresponds to r

(43) and visualized in terms of propagation and reflection. Moreover, an
impulse has some merit as a test signal when the freauency spectrum of the dis-
turbance is broad. Figure 9 shows the response of v, to a unit impulse of

Fa for several different values of r22. b

2 = 2 -
r22 1 r22 1
Zoval 1
01 2 3 4 5 6 csa
t/T -ll
- ol
01 2 3 L 5 6
t/T
2 = T -
oo 1/2 2 PN 1/2
Zv 1
[o 20 : § 7 v
O_t 0 8a
0123 L5 6 0
t/T -1

01 2 3 4 5 6
t/T

Figure 9.~ Effect of the reflection coefficient r,, on
response of Ve to a unit impulse disturgance of Fa.

It is clearly preferable to make Ty = 0; thus, the optimum setting of the
regulator gain is Zo. In addition, too much feedback is as undesirable as too
little.

Application of transmission concepts to regulation problems rances from
the electrical-transmission-lire voltage-regulation problem (ref 19) to
pulsation damping in fluid lines (ref 20),

Velocity control.- As an example of the application of propagation and
reflection concepts to velocity control, uassume that an active rate feedback
control is mounted at b to control Vo and v,, and the control transfer
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function 2y, is a pure gain, The variation of oo with o is the same

as that in the regulator problem, Equetion (38) and the series expansion of
equation (41) can be used to determine the response:

z. Y 2z. Y
_ b o b "o -2Ts -UTs 2 -0Ts M
v, = [l+z v * 5 (e *r,,e +r, e +...)]vb
b o (1+zb Y )
° (L4)
2z. Y
- b "o -Ts -3Ts 2 =5Ts *
vy, = [———-l+zb Y (e +r,, e *r,, e + ...)]Vb

Figure 10 shows the response of va and vy to a step command for several

different values of coniroller gain.

1 1 = 1 -
rc a— b--J
2/3 2/3 2/3
—v '
N b
_ i .1 | I I I
1 2 3 4 56 1 2 3 4 5 6 1 2 3 4 5 6
t/T t/T t/T
a) Zb/Zo=l b) zb/Z°=l/2 c) zb/Zo=
Figure 10.- Effect of z, /2 on response of v and v. to a uinit step
A command, ° a b

The conclusion is much the same as that for the load-disturbance problem,
i.e., a control gain of z, = Zo optimizes the response at the uncontrolled

end a. Increasing the gain beyond this value produces oscillation rather
than faster response.

This example is admittedly idealized, but it shows that the control loop
is an impedance affecting the reflection of waves at the controlled end of
the beam, Iven for this idealized situation, where the controller has an
infinite bandwidth actuator, the inherent propagaiion delay T is shown to
limit the speed of response at stations physically separated from the control.
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Nonuniform beams.- A nonuniform beam can be approximated by a cascade of
dissimilar uniform beams havirg an overall transmission matrix which is simvly
the matrix product of the constituent transmission matrices. 7The subleties of
minimizing the number of uniform elements, the insights gained by factored
forms, and concepts of transmiss. un and reflection are treated in an elerant
fashion by Paynter (ref 16), Paynter and Ezekiel (ref 21), and Brown (ref 22),
They show that a transformation of variables may greatly reduce the variability
of wave forms caused by property variations. Since nonuniform structures are
not considered in depth in this report, these transformations are not treated
here; however, they are highly recommended for analysis of nonuniform struc-
tures,

TRANSVERSE BENDING VIBRATIONS OF THIN BEAMS
The Bernoulli-Euler Equation

The preceding treatment of the dynamics and control of lonpgitudinal beam
vibration by propagation and reflection concepts is used in this section as
a model to generalize these concepts for the dynamics and controls analysis
of thin-beam bending. This is a preliminary step toward understanding the
flexible-vehicle control problem in terms of these concepts.

The central roles of the propagation operator, characteristic imvedance,
and the reflection coefficient in the dynamics and control of longitudinal
vibrations suggest that generalizations of these concepts may be equally useful
for bending vibrations. This is confirmed in the remainder of this report.

General background.- Unfortunately, the transverse bernding dynamics of
beams do not obey the wave equation. The equation for transverse bending of
a thin beam is known as the Bernoulli-Euler equation. It assumes that energy
is stored only in the beam's lateral translation inertia and bending compli-
ance. The thin beam equation for transverse bending is assumed in the work
that follows. The implications of this assumption are treated by Vigness
(ref 3), Dengler and Goland (ref 6), and Fliigge and Zajac (ref 23), According
to the latter, Lamb (ref 24) showed, in 1914, that the Bernoulli-Fuler equa-
tion gives instantaneous spatial propagation of effect. This result is con=-
tained in Boussinesq's theory (ref U4) for transverse impact of beams.
Timoshenko proposed correcting the thin-beam behavior by two additional
energy-storage mechanisms: kinetic erergy in the beam's rotary inertia and
potential energy in the beam's shear complicance. In 1942, Fliigge demonstrated
that Timoshenko's theory results in a finite spatial propagation velocity
(ref 25)., Many analytical studies of traveling waves in the Timoshenko beam
have been published. Reference 5 (Leonard and Budiansky), and references 6,
and 23 cover this subject rather completely.

Nearly all of this work was developed to predict the stress caused by
sharp impact. For this purpose, the use of the Bernoulli-Euler equation can
result in serious errors. On the other hand, the effects of rotary inertia
and shear comp..iance are often ignored in the dynamics and controls analysis
of flexible vehicles (which is universally performed by normal modes).
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Accordingly, the deficiencies of the propagation behavior of the solution
to the Bernoulli-Euler equation, which are unacceptable for impact studies,
may be of little consequence i.. controls applications, where the extremely
high-frequency be..avior emphasized in the impact problem is of secondary im-
portance, The distributed-parameter approach is well established in the treat-
ment of heat propagation (ref 26) and of distributed RC electrical lines
(ref 14), where spatial propagation velocity is infinite,

A clear derivation of the Bernoulli-Euler equation for transverse vibration
of thin beams is given by Jacobsen and Ayre (ref 12). Sign conventions, nomen-
clature, and pertinent relations used in this report are discussed in the
following paragraphs.

Figure 11 shows the nomenclature and sign conventions for shear forces,

moments, and angular and transverse displacements of a thin beam and a micro-
element.

Y, yb1 My 8y
Q( (7 /////// ))
A %

/W \\M+—-dx

Qf ‘Q+%§dx

Figure 1l.- Lateral forces and displacements, moments, and
angular displacements for a uniform beam and a micro-element
thereof.

The symbols y, 6, M, and Q denote the transverse displacement, angular
rotation, moment, and shear force, respectively. The lateral location coor-
dinate is x, and the beam length is &, as in the analysis of longitudinal
vibration.

Analysis of the micro-element yields the following relations:

Static Beam Flexure M = EI 9—% (45a)
X
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F = ma in y direction LU pA 2y (45v)
9x 2
ot
oM
Moment Balance Q = = (b5¢)
Geometry 68 = %% (b5d)
where 1 = the area moment of inertia of the cross-section, and L, A, and

p are the Young's modulus, cross-sectional aresa, and density previously de-
fined. Combining equations (L45a, b, and ¢) yields the Bernoulli-Euler equation.

L 2
23 al 7
a —-%'-4-—- =0 (L6)
X at2
where
2 _ EI
a = 'D—A (hY)

Normal-mode solution.- Normal-mode solution of the Bernoulli-Euler equa-
tion closely parallels that of the wave equation. UIxtensive treatments are
given by Bishop and Johnson (ref 27) and in references 1 and 12, However, a
distinct treatment of the rigid-body motion as an integral part of the normal-
mode analysis could not be found; therefore, it is considered in the following
paragraphs.

In addition to the flexible modes, two rigid-body modes exist: rigid tody
rotation and rigid body lateral translation. These modes will be given the
subscripts ~1 and 0, respectively. Thus, the total lateral deflection is

y(x,t) = [ o (x) q(t) (48)
n=-1

The normal-mode coordinates, q,, are determined, as before from the

generalized forces, Fn’ by the transfer functions

q, = 5 2 (49)
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But now, the generalized force Fn is

2

- oLl t

Fo=/2%x) ¢ (x) ax+ )0 o (x)+M ¢ (x) (50)
0 r

where 9'(x) 1is the distributed lateral force intensity, Mr is the concen-

trated moment at station r, and ¢é = d¢n/dx is the nth" mode slovpe.

The mode shapes and natural frequencies are determined by the boundary
conditions. The rigid-body mode shavnes for a free-free uriform beam, in terms
of arbitrary scales Cn’ are

= Xy, =
The rigid-body-motion modal masses ~: frequencies are
M Do) M =mé(x (52)
-1 3 "-1 > o 0
w_l = 0y W, =0

The flexible mode shapes are giyen 1 references 27, 1, and 12, and are
tabulated for a variety of boundary conditions by Bishop and Johnson (ref 28).
The flexible free-free mode masses are given by

l) n-= 1,2,3, Xy (53)

The free-free frequencies are determined from the frequency equation

/ 22 / 22
cos /&= cosh V&= =1 (54)
a a

The normal mode solution for the Bernoulli-Fuler equation has great appeal,
because it retains almost all the simplicity of the normal-mode solution for
the wave equation. Moreover, although the mode shapes, masses, and frequencies
must be determined, equations (48), (49), and (50) retain their simplicity for
nonuniforms structures. The modal solution has the same advantages for the
RBernoulli-Euler equation as it has for the wave equation: (1) the transfer-
function poles are evident, (2) high-frequency poles are eliminated simply by
truncating equation (48), and (3) the transfer functions are rational alre-
braic functions of s. Moreover, these advantages are retained in the normal-
mode solution for the Timoshenko beam.
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However, tue solution of the Bernoulli-Fuler equation in terms of propa-
gation concepts will be shown to reveal features of the beam dynamics that are
well-hidden in the normal-mode solution.

Semi-Infinite Beam

The traveling=-wave solution of the wave equation for a semi-infinite
medium was shown to yield, in a simple manner, the concepts of the propagation
operator and the characteristic impedance, Similarily, it is instructive
to investigate the solution to the Bernoulli-Euler equation for a semi-infinite
uniform thin beam before studying the finite beam.

The boundary conditions at x = ® are

y(e, t) =0 (55a)
8 -
3§ (@, t) =0 (55b)

If the beam is initially at rest and undeflected, the initisl cor !i-
tions can be written

%EGL (x, 0) =0 (56a)
y(x, 0) =0 (56b)

The Laplace transform of equation (46) with respect to time yields the
following ordinary differential equation:

2 2 dh (x,s)
sy(x, s) + a __X_§;__ =0 (57)

dx

The -eneral solution of equation (57) can be written

AX A X ALX A X
y (x,s) = c,e 1, c e 2 + c.e 3 +cpe 4 (s58)

where

Vs/a (1-3)//2

A = Vsla (149)/V25 3,

Ay = /3Ta (-1+3)/V2; A, = /s7a (-1-3)//2 (59)
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or, alternately, it can be written

T(x)s YT(x)s

y(x,s) = c e sin YT(x)s + c e cos YT(x)s
(60)
-/T(x)s ~/T(x)s
+ c3e sin VTins + che cos ¢T2x5s
where x2
T(x) = Sa (61)

The advantage of equation (60) is that complex numbers are avoided
entirely. If equation (60) is used, the boundary corditions at x = e

(eas 55a and b) require that cl = c2 = 0, Thus, the onlv operators remaining

are e (x)s cos /T(x)s and e~ (x)s sin /T(x)s. Because they occur so

frequently, the following notation is introduced for convenience:

-/Ts

c(Ts) = e cos VTs (62a)
-/Ts

S(Ts) = e sin vTs (62v)

If an arbitrary transverse velocity, &a(t), and moment, Ma(t), are

applied at x = 0, the remaining two boundary conditions are

sy(0,s) = &a(s) (63a)
2 M (s)
i“y(0,s) _ &
> = =37 (63b)
dx

If c5 and c¢) are evaluated by equations (63a and b), the result can

be written

. . M (s)
v(x,s) = C[T(x)s) y&(s) - s[T(x)s] -%f- (6b)
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Bernoulli-Euler propagation operators.- In analogy to e-Ts of the wave
equation, C(Ts) and S(Ts) will be called the Bernoulli-Fuler propagation

operators. To call e"Ts the wave-propagation operator is not in strict

accord with standard practice, wherein the negative exponent Ts would be so
termed (refs 16 and 22).

The inversion transforms of the propasgation operators C(Ts) and S(Ts)

are far .cre complicated than that of e~ TS, The step response of C(Ts) is

treated by Carslaw and Jaeger (ref 29), who show, by a contour integration,

that
X

v2nat
R -1 (£ ciTia)s)] = 1 - lg[cos L 6% 4 sin £ 5%)as (65)
s L 2 2

~
-

This integral can be evaluated using the Fresnel integrals tabulated by
Janke and Emde (ref 30):

X ™ 2
Ic(x) EJQ cos — x° dx
o

2
(66)
x m_2
I (x) 55\ sin = x° dx
s o 2
In terms of these functions, the result is
-1 1 - T(x) T(x)
L (S clrx)e)) =1 - [1, =%+ 1 ~3] (67)
1.0 - T
y(x,t), in./sec
.D
o \
-.5 ]
0 1 2 3 L x//2mat 5

Figure 12.- Lateral semi-infinite beam velocity, vix,t),
due to a unit step of y at x=0; plotted as a functicn of
x/v/2nat.
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Figure 13.- Lateral semi-infinite beam velocity, a
unit step of y at x=0; plotted as a function of 2nat/(x").
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Because C(Ts) is the transfer function froa §a(s) to y(x,.), the

right side of equation (67) must be the response of y(x,t) to a unit step of
Ygr This is plotted as a function of x/v2wa%? *n figure 12, The time re-

sponse of i(x,t) is shown in figure 13 as a function of wt/[[T(x)]. The
behavior for small values of nt/[T(x)] cannot lLe plotted because of hirh-
frequency ringing, a manifestation of the deficiencies of the Bernoulli-Fulier
equation. The integral of the velocity response showu in figure 13 is the
lateral displacement y(x,t) which results from a step-velocity input at a.
The high-frequency ringing is heavily fil“ered by the integration process.
Thus, the position response appears more like a delay for small t.

The frequency responses of C(Ts) and S(Ts) are

-2ut  =3Y2uT
C(JuT) = [e + e 1/2 (68a)

<207 =3/24T
S(JuT) = [e -e 1/023) (68b)

Trese are shown in figure 1bL.

(a) e-‘/ﬁcos\/'l‘_s (v) e_‘/T—ssinﬁ;

Figure 1h.-~Polar-frequency plots for the Bernoulli-Euler propagation ~verators
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The low-frequency approximations are

C(Ts) » e i 3(7s) » /Ts (69)

Thus, at low frequencies, C(Ts) approaches the distributed lag e T,
and O(Ts) approaches the fractional-derivative operator. At high frequencies,
the magnitude of Loth operators approaches 0.5, the phase leg is provortional
to vw?, and S(jwT) leads C{jwT) by 90°, These frequency plots can be
interpreted'as the amplitude and phase of & at staticn x Which result from

inputs of y or M at station a [see eq (64)].

Characteristic-impedance matrix.- If an arbritrary transverse force Qa

ard moment %a are applied at x = 0, the remaining two boundary conditions

are determined from equations (4Sa and ¢) as

2 M (s)

Tiles) o 2 (708)
dx z

3 \ Q (S)

Liings) o e (700)
dx

The coefficients S5 and ¢), can be eveluated, and the transverse and
angular velocities & and 6 can be de*ermined in terms of ua and Qa as

(xe) et)e] - <(xt0e) TP | PR

-

= - l (11)
| Sxis) - 25 clr(x)s) ~telr(x)s) + sir(x)s])] [0 (s) |

Tf this equation is specialized for the case x = (¢, the result

Y
(o]
— —— gr— ’_~— — S
v a_ 2 faal |y
" g EI ' EI s Y,
= = (72)
i a_/2s l a_ Q
a 103 § a EI a




The matrix designated Y = in equation (72) will be called the characteristic-

admittance matrix for thin-beam bending. The need for a matrix of character-
istic admittance elements arises from the duplexity both of velocity variables
(y,8) and force variables (M,2).

The sign conventions of figure 11 reveal thet the signs of the motions
predicted by equation (72) are consistent with physical intuition, which would
have the end a of the semi-infinite beam move in the nlus Ya and minus ea

directions in response to either Ma or Qa. The minus is apnended to ea

because ol the sign convention chosen., Yo sign convention compatible with the
transmission-matrix concept (i,e., fitting together in cascade with compatible
sign convention' can obviate minus siasns in the characteristic admittance
relation both for left and right extending semi-infinite beams. Yor the sign
convention shown, if station b 1is considered the terminal face of a left
extending semi-infinite beam, the characteristic-admittance relation is

—§ ] —-.W —h ]

Y (73)

— L_;b_

In this case, the minus must be appended to Qb'
A discussion of the operators /s and 1//s is now in order. Their step

responses can be found in most extensive tables of transform vairs (e.z., table
7.1 of ref 1k):

L1, .

o Jz-l (==) =
sV/s

L (74)
/s

~
Sl L

D
Nl

Thus, the step response of the Yn matrix has the form shown in figure 15.

. +
The infinite response of Ga to a sten of Ma at t =0 does not appear, of

course, if the step is revlaced by an input with no jump function at t = 0,

The frequency response of the Yo matrix has the form sacwn in fieure 16,

because [ﬁ: has a phase of 45° and gain-frequency slope of 10 dB/decade,
whereas 1/Y/jw has a phase of -U5° and gain-frequency slope of =10 dB3/decade.
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Figure 15.-~-Matrix pictograph of step responses of the characteris-
tic-impedance matrix.

Figure 16.--Matrix pictograph of frequency responses of the charac-

38

L

y, (Jut)

—éa(Jwt)

N

-

teristic-admittance matrix

M_(Jut)

Qa(.jwt)

™



The inverse of he characteristic-admittance relation [eq (72)] is

EI EI\/E_ ]
=M = l = [= y
8 a 8 a a

(75)

The 2x2 matrix ZO in equation (75) will be called the characteristic-
impedance matrix. This relation shows the forces Ma and Qa that would act

on the face of a semi-infinite beam in terms of the input motions &a and Sa.

The characteristic-impedance relation for face b can be written

-9 .
My Yo

= |z, (76)
Q 9
L l_ b |

The characteristic-impedance relation has the same meaning for face b as
equation (75) has for face a; i.e., M  and Q are the forces that would

act on face b of a semi-infinite beam in terms of the input motions &b

and eb.

The minus sign appended to one term of each of the equations (72, 73,
75, and T6) must be treated carefully., The meaning of the signs in the
characteristic-impedance relations [eqs (75 and 76)] is particularly difficult
to visualize, A better intuitive picture can be achieved by visualizing the
relations at a cut in an infinite beam as shown in figure 17. The forces
exerted on face b by face a are given by the characteristic-impedance
relation for face a. 7lhus, the impedance relation seen by face b, when it
is connected to a semi-infinite beam, is

% 3.’b
=z, (77)
8
_-Qb__« TR N b_4

39



4l

o

7/ BRI
m M'b__( a
/ .1 -

Face b Face sa

Figure 17.--The impedance matrix seen by face b of a semi-
infinite beam is the characteristic impedance
of face a.

The sign conventions of figure 11 confirm that all forces exerted on face
b are restoring forces. The distinction between equations (76) and (77) is
that equation (76) is the input impedance of face b, and equation (77) is
the impedance seen by face b, when it is connected to a semi-infinite beam.
These distinctions are much simpler for the scalar characteristic impedance
in longitudinal vibration, and very little care is required to keep the sign
relations in order for that case.

Note that Yo and Zo have been defined so that all elements are pos-

itive. With this definition, Yo # Z;l. If the minus signs are moved within

the 2x2 matrices in equations (72, 73, 75, and 76), and the resultant 2x2

. R
Zoa’ and Zob’ respectively, then Yoa =Z ~, and

matrices named Y , Y
oa oa

ob?

_ -1,
Yoo = Zobs
desired inverse relation regquires two Yo and two Zo matrices, and even then

-1 -1 s sas .
however, Y__ # Zy, end Y . # Z,,+ Thus, a definition with the

the desired inveirse relation does not apply to all pairs of YO and Zo
matrices.

The characteristic-impedance matrix concept for thin-beam bending has not
been treated in the literature, as far as can be determined, Considerable
work, however, has been done on the charscteristic impedance for flexure waves
in plates (for example, refs 31, 32, 33, and 34),
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Transverse Vibration of a Free-Free Beam

Factored solution. - Now that the nature of the propagation operators and
characteristic-impedance matrix for the Bernoulli-Euler equation has beern es-
tablished through analysis of the semi-infinite-beam solution, the transverse
vibration of a free-free team can be investigated. The solution is analogous
to the treatinent of longitudinal vibrations; it is developed by a method that
directly separates the process of propagation within the beam from the process
of reflection at the boundaries., The development is a peneralization cf the
methods used to factor the solution of the wave equation.

The Laplace transform with respect to t, applied to a uniform thin beam
of length &, which obeys the Bernoulli-Euler equation and has no initial
stored energy [eqs (56a and b)], yields the same ordinary differential equation
as that for the semi-infinite beam [eq (57])].

A vector Y defining the state of the beam can be defined as the column

vector (y, 8, M, Q)T. It is related to y(x, s) by the following:

P}(x,s{- —;y(x,s) ]
8(x,s) sy*(x,s)
Y(x,s) = (78)
M(x,s) %T-&"(x,s)
l LI ]
x| [perinn

Equation (78) can be used to reduce the transformed Bernoulli-Euler
equation [eq (57)] to in canonical form as four first-order differential
equations:

— — _ — .=
¥ 0 1 | 0 0 y
. S .
— - - Q
= (19)
M 0 0 0 1 M
Q 'hIg 0 0 0 0
I L
Equation (79) can be written compactly in the state vector form
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— = AY (80)

where A is the Uxhb matrix in equation (79). Note that Y here represents
the Laplace transform of the states. The eigenvalues of the A matrix, A

l’
A2, XB, and Ah are simply the roots of Ah + 52/8.2 = 0 given in equation
(59). The A matrix can be factored as in the wave equation to A = WPW-l,
where P, W, and Wl are
— _
Al 0 0 0
0 X2 0 0
P=1l4 o 1 0 (81a)
3
B
s | s s s I vl e e
1 EIXl EIXl
1 1 1 1
sSA sA sA sA =
1 2 3 i s | s | pr2 | EDa3
2 2
W= U = 2 (81b)
RDC | EDG ED | EIA] Ll | —5
| %3 | ElS | EIA
3 3
EIA | EIA Eng EIA} 13 S
s L EDy ' OEIN
S, — e ——

Because Al, A2' A3, and xh are complex, the elements of W and W-l are,

in general, also complex. This is the spatial analog of the solution for a
damped-spring-mass system in terms of its complex roots, which, although pos-
sible, is generally awkward: manipulation of real variables is usually more
convenient.

A transformation is required that carries the eigenvalue matrix of a
complex conjugate pair (xr *I A A -3 AJ)

y

Xr + 3 AJ 0

|
|
o T

=J A

r

I'
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to the related conical form matrix (ref 35):

(82)

Applying this transformation to both pairs of conjugate eigenvalues in
the P matrix yields

(1 1, ] 11, | [ o 1 3|
( 0 0 1 0 0
411 3 -3 0 A, 1 3
eS| —— |1 L (83)
2a , ‘-1 Y5 . 1 1 ; 330 ; 1 |5
-1 -1 3 =3 0, 1 -3
. p— b — L —J— —

Hence, transformation BPB-l carries P to the matrix P*, which is
diagonal in the 2x2-partitioned sense and has only real elements. Using the

factorization of A into A = WPW -
(p* = BPB-l) gives

and the transformation of equation (83)

-1 1

A= ws"t p* put = we pu oyl (8)

where

1

W% = WB (85)

Thus, W* provides a transformation between the A matrix and the

quasidiagonal P* matrix. The matrices W* and w*‘l are
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-

W*

-1

W*

n |-

-

A new state vector U

is defined, analogous to equation (25), by

and, analogous to equation (26),

equation

The solution of cquation (88) in terms of the matrix exponential is

44

Ub(S) = e

V2 s 0 2 s 0
32 | 32 | 32 | 3/
1/2 1/2 | 1/2 1/2
a a a
0 /5 Els 0 -5 Els
a a
_EIS3/2 EIS3/2 EIS3/2 EIS3/2
a3/2 a3/2 83/2 a372
A a1/2 . _a3/2
S 33 2 EIs3:2
. al/2 @ﬁ a3/2
3/2 Els EIS3/2
5 _al/2 ; 23/2
s s372 EIs372
; /2 |z | W32
;372 Els p1s3/2 ]

Y=W*U

U satisfies the matrix differential

au

dx

*
P U (s)
a

(86a)

(86b)

(87)

(88)

(e9)



where Ua and U are the values of the U vector at stations e and b,

b *
For the matrix P* in equation (83), the matrix ¥ s
— —
S
e Lscos YTs ,e/aggin /Ts
0
s | /T | /s
ezp = | -e TSsin VTs e Tscos oy = (90)

/T - . :
e " *Scos /Ts le TSsin /Ts

0

- -y
-e TSsin VTs I e Tscos /fgj

e

The relation between Yb and Ya can be determined from enuations (87)

and (89): x
Y, = [u* P w1y y (91)
b a
. . . s . . Lp*
Bernoulli-Fuler equation transmission matrix.- The matrix W* e

w*'l is thus the thin-beam bending or Bernoulli-Fuler-eaquation transmission

matrix. It will be denoted Tga. If the matrix product is formed,

= T*¥ Y becomes
e &

b b
— - [ /_ —_ 1 7
y a a a /a .
v ¢ 2s B 'Y |7 25 8| Ve
N — — (92)
hd S a S a *
% '/'2'5 § @ EI /2a Bl T Y O
EI EI /a a
A - — - ——y — — /
r‘b a Y a //25 § o ¢/2 8 ra
EL/s G| EL. |./
L.Qb “a 2a Bl- a ! 2a @ Q

where o, B, Yy, and & arc defined as

a = cos ¥Ts cosh /Ts (93a)
B = -[sin /Ts cosh ¥Ts + cos /Ts sinh V/Ts] '93p)
Y = sin /Ts sinh /Ts (93¢)
6 = sin /Ts cosh /Ts - cos VTs sinh /Ts (934)
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The kLxh transmission matrix in equation (92) is a generalization of the

2x2 wave-equation transmission matrix in equation (30). It retains the useful

? = Tk = T%*
property that, for a cascade of systems where Yb ¥ Ya and Yc ch Yb,

the overall transmission relation is Y = T*® T* Y ., The inverse reletion
1 c cb ba a

. " . - *- . . N m . - » .
to equation (722) is Ya Tba \b’ which will be symbolized Ya Tab Yb

is not used in this report and will not be reproduced here. The elements of

T;b differ from those of Tga, at most. by an algebraic sign, in analogy to

the relations hetween Tba and Pab for the wave equation.

It

Transfer matrices for the Bernoulli-Fuler equation.- Fo» the reasons
advanced in the section on transfer matrices for the wave equation, the ad=-

mittaence matrix form of the relation tetween the variables or Ya and Yb

is most suitable for treating forced transverse response of the beam. Jecause
the beam is symmetrical, the elements of the lower half of the admittance
matrix may be defined in terms of those of the upper half. Thus,

Ya Yin Y2 | iz Y| %a
% Yo1 Y20 Y33 T Mo
= (94)
Yol |13 Y| Y V2| | %
% Yoz Yol Y1 Voo | %
I N P N
The elements yiJ can be found in terms of the elements of the trans-

mission matrix T*ﬂ, but details will not be developed here, However, the

natural frequencies of the admittance elements are easily shown to be deter-
mined by the zeroes of the determinaat

EL -E1 & _ 5
a Y l a 2s

S el

]
(@]
—~
\O
N
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Substitution of the expressions for 8, y, and & into equation (95),
plus considerable algebraic manipulati~n, reduces this condition to

sinh® ¥Ts  sin° /Ts = 9 (96)

The roots of equation (96) cun be shown t» be s = + juw, where w Is
given by the frequency equation

2 / 2
cos /%-c;.‘:- /9L= 1 (97)
a a

This is identical to equation (54) for the modal bending frequencies of a free-
free beam. Thus, the closed-form transfer functions of the admittance matrix
do indeed contain all the modal bending frequencies of the free-firee beam;

this confirms the consistency ~f the modal and transmission forms of the
solution.

The frequency responses of the elements of the admittance matrix can be
found by substituting s - jw. This generates transcenuental functions of
ﬁﬁf, vhich are computa.ionally inconvenient and result from expressing the

T;a matrix in real functions of s. A form of the transmission matrix which

yields real functions of w is given by Brown (ref £2). Alternately, Pestel
and Leckie (ref 36) and Bishop and Jchnson (ref 27) assume harmonic motion at
the outset of analysis and derive a frequency~-dependent tiansmission matrix
equivalent to that of Brown.

The formulation in this r«port gives real functions of s. both in the
transmission matrix and admittance mutrices; no single formulation can yield
real functions of bolth s and w.

Separation of propagation and reflection.- The transmission and transfer
matrices for the Berncuili-Euler equation do not lend themselves *to a clear
visualization of the processes of propagation and reflection of energy in a

thin beam. Factorization of the T;a matrix in equation (91) is the starting

point, analogous to the wave~equation treatmznt presented earlier, for a
separation of the propagation and reflection processes,

The transmission matrix relation between Ub and Ua (eq 89) can be
converted a%gp a transfer function invsl!;ng only the propagation operators
C(Ts) = e™""% cos s and S(Ts) = e ''° gin /Ts. If the four components

- - +
of U are denvted u, v, v+, and u , this relation is
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e 2N
‘

Aab
e,
([ o | [ctrs) -s(ms) 0 0 —u;j’
a y
£a< Fb
v s(Ts) c(Ts) 0 0 v
a b
| = ) (98a)
+ 0 0 c(rs) s(Ts) v |
vy s s -
+ \ +
€ ) b
+ +
u 0 0 -S(Ts) c(7Ts) u
G I L —_— ] L. _JJ
Aba
- - o+ o+ . .
The symbols €_, €5 €5 € s Aab' and Aba in equation (98a) can be used

to write that equation in partitioned form:

p—

- ar

€a Aab 0 Eb
= (98b)
+ +
0
eb Aba ca
L J L -4

This, the transfer-function relation between the states of u is diagonal-
ized in the 2x2-partitioned sense. The variables are named so that the propaga-

- - + +
tion relation between u and v is the same as that between u and v ,
i.e.,

- - + +
Ug Y Y, Va
= H (99)
- - + +
v V.b Vb ua

This fact is not particularly evident when it is written in the order
shown in equation (98a), which, nevertheless, is retained, because it arises
naturally from the matrix transformations. The propagation of the u and v
variables is illustrated in the matrix block diegram of figure 18.
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Ma u; /T3 . “; b
- - 1 e *®cos/Ts ' -7 " %sin/Ts —

Q v v, 6
_&.__‘ 1 — = e “®sin/Ts | e TScos Ts : — I-.__}i
1.° RO

. (Lxkh) + + (Lxb)
ya | B va' -YTs L -/'I-'_S- vb I—‘-—Mb
e cosYTs e sinvYTs —
6 u *
- - = e-/T—s.sin/'E e-/ﬁcos/'l‘-s_ ub = ‘_Q_b
\ Y — *v* fS— Y —
Left-side Propagation relations Right-side

End effects

End effects

Figure 18,.- Propagation and end-effects relations for lateral vibration
of free-free beam.

The matrice

and the transformed variables
The left-side end-effects matrix

y = WU,

e

. . +
or, in terms of the variables X, fa’ €qs €

S

LO

and R°,

+
and u,
(L°) is given by

- -+
u,v,v,

LO

11 12
— ”~ e /‘_- ” e ﬁ—qr.— —\
a a 28
2_ A - )
EI l EI s a3 /2s Y
= T4l |1
-8, 2s -8 S
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relating the physical variables &, é, M,

and Q

are rearrangements of

(100a)

Lge, it is
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[ 7] F_o o) o]

Xa Iia ] M2 || fa
= (100b)

+ ) ) -

€a o1 ' Log || Ea

R I .—.—1

The right-side end-effects matrix (R®) is given by

R® R®

11 12
1 ~ }—- ! - 10,
. a :& -2—a /—-.
Yy BT FI ' s /25 2s 1My
< > £
% b
. D -
i = b J (101a)
- E—HZE :22- & 1 2 v+
Y% EI s l Els ' s b
e ) —_— >E+
b - a /2 | + | |*p
v ﬁ—g 0 0 1 u.b
. J L 7._.._)
o [o]
R21 R22
s . : - + o o o o s 3
or, in terms of the variables Xy s fb’ €ps €y Rll’ Rl2’ R21’ and R22, it is
: o o
% Rio1 Bl | T
= (101b)
- o o +
& | [ Fo1 Rzl | %o

The block diagram in figure 18 is an admittance relation. The end-effects
matrices L° and R° would change for different boundary conditions, which,
of course, do not effect propagation relations. Different end-effects matrices
can be derived by rearranging y = W* U into appropriate forms; they are, of
course, dependent only on the local beam properties. The propagation time

constant T of the Bernoulli-Fuler equation is proportional to 22 in contrast
to that of the wave equation, which is proportional to 2.

Damping and Control of Bending Vibrations
Terminal constraints.- The behavior of the Bernoulli.Euler beam with

terminal dampers and/or active terminal controls is now considered in terms of
propagation and reflection, The terminel constraints assumed are:
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£ z X = x* T*
a a a a
PUNESSESE R _~

_ T _ 1 - - -

. 2— y %* *
My -G§ Gel/s Ya = Ya Ma . .

= + or f =72 (x_ - x*)+ t* (102a)
5= . a a “a a a
Q K./ == K 6 - o* Q*
n_i — vy e —La a_ —a—
. - o* *
fb Zb xb - f
———- f—'—'J—\ [ I i —
B -W o EEE > o *
"y =G5 'Ge//s 5p =¥ | | o
= + = ! - * *
= l or £, =2, (x xb) + F¥ (102p)

0 KeyV — Ke 0, = 0% Qg
o] a 6 b b
el I Jr o LR

There are generalizations of the longitudinal-beam constraints of equations
(36a and b)., The signs are placed so that any motion produces restoring forces
and moments. Figure 19a shows the terminal controls appended to the beam ter-
minals, and figure 19b, shows this in block-diagram form, in terms of the ad-
mittance of the free-free beam. Because this study is in terms of propagation
and reflection, appending the terminal constraints to the beam as shown in
figure 18 is prefersble.

Now, the terminal coustraints of equations (10zZa and b) appended to the
block diagram of figure 18 are shown in the matrix block diagram in figure 20.

a a ° a ° b b
LI, Aab Ro1
[«] [o] (o] o]
2o Ly Lag Roo Ry Zy,

+ +
b Bad f € €

a a Lo a b
21 A.ba- ]

Figure 20, Free-free beam propagation and end effects relations
with lateral constraints appended,
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The end effects shown are simplified in figure 21 without affecting the prop-
agation relations.

X, . €, ) €y i fg-szg
~ 12 ab 21 ' -
»
|
¢ + + .
L *
fa zaxa €a 2N Xy

Figure 21. Propagation and end-effects relations for beam with
lateral terminal constraints.

The matrices in figure 21 can be determined from those in figure 20 as: -

= _ 10 -1.0 4, = _ RO -1l -0
Ly = HT-13) 207 1905 Ry = [T - Ry, 2.) 7 Ryy (103a)
L.. = [1° (I -2 1L® )'1]- R.. = [R® (T - Z_R® )'1] (103b)
21 21 a 11’ '3 21 21 b 11
L. = [(I -122 )7 0, 1; R, = [(I - R% 2 )7*RO_] (103¢)
12 11%a’ Liots 12 1%’ P12
L.. =12, + [L°. (I - 2 L® )‘lz °.J: R.. =R, + [R%, + [RO. (I - Z R® )‘l R. ] B
p2 = Yop 01 a”11’ “%a"12’% To2 T Tap 22 21 b1’ Zpi12

(1034d)

As in the wave equation, where the parameters of equation (37) were used
in the overall input-output relations for figure 5, the matrices of equations
(103a, b, c, and d) can be used to express the overall input-output relations
for figure 19 as




’.n,

a0

% =(L..+L.. (I =A.R.A L) A R, A L J(e% - 2 &%)

a 1l 12 ab 22 ba 22 ab 22 ba 21 a
+ (L (T = A RooA Loo)""A R, (€2 = 2 &%) (10ka)
%, = [Ry) + Rp,(I - MoalooMpaFoe) " Mogloghapioy] (£1 = 2y %)
R (T - AbaLllAabR22)-lAbaL21](f; - Zg %) (10kD)

The matrix equation (10La) relates the transverse and angular velocities

Yy and 6 to the load disturbances M¥, Q*, M*, QO* and to the transverse-
a a a’> a® b’

and angular-velocity commands, 5;, 6;, ig, é;. This relation is in terms of

the propagation matrices Aab’ etc., the end-effects matrices Lil’ R;l ete.,
and the terminal impedances Za and Zb'
The Bernoulli-Euler reflection matrices., - The 2x2 matrices L2? and

R22 will be called the Bernoulli-Euler reflecticn matrices, in analogy to the

reflection coefficient for the wave equation. In terms of the reflection

. . - + + -
metrices, the relations between scalar components of €qs Egs € and e_ are

b? b
— —_
v u
+ - a a
€, = Ly €, or ) =L,, (105a)
u v
a a
—~ = .;+_
_ . Yy b
€, = Ryy €, OF i = R,, \ (105b)
v.
| |
The behavior of the right-side reflection matrix R22 in terms of the
right-side terminal impedance matrix 2, is examined in detail to illustrate

b
the dependence of the reflection matrix on the terminal impedance. Fquation
(103b) clearly shows that, for a free end (Zb = 0), the reflection matrix is

equal to RJ,. Thus, in terms of the elements of R,, [eq (101)],
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1,2
Z, =0+ = —L—=R (106)

where A+ B 1is read if A +then B,

The exopression for R22, in general, can be written in terms of its devi-

ation from its value for Zb = 0,

b b
Rop = ———"L————— (107)

!
1+6b

Then, from equations (103d), (106), and (107),

- o o] o
“{ —J = R, (I - 2,R%,)” szlL (108)

If the right side of equation (108) is expanded in terms of the elements

of Z, Ril, ;2, and Rgz, the expressions for o, , B, v, and Gb are
2 2
ay = [2(§%) GyKs 2(E%)Gi - u(E%) KsGy - h(E%OKi]/D (109a)
2 2
8, = [2(55) GgKg - 2(g)G, - blgp) K;Gy - MK, = b(gp)Gs = b(gp)Kgl/D
(109b)
2 2
vy = [-2(58) GgKyg + L(gE) KiGs - 2(g7)G,1/D (109¢)
2 2
6, = [2(zF) 6Kg - 2(§§oci - (D) KyGg = U(z)G51/D (109d)
where
2
= (1 + 2( a)K. + (EI Kg + ( a)G Q(EI Gy + 2(F ) GéKi] (109e)
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Equations (1C9a, b, ¢, d, and e) indicate that the reflection matrix remains

independent of s, if Gy, Ge, K&’ and Ké are independent of s. In other

words, if the elements of the terminal-control matrix Za are made to have the
same functional form as those of the characteristic-impedance matrix Zb’ then

the elements of the reflection matrix R have the same functional form as

22

pu i.e., constants independent of s.

those of the matrix R22,

Several special cases of Z, are considered and naned, because they are

b
treated extensively in the remainder of this report. The "Zo" termination is
the general case, where nc element of Z_ 1is zero, The "Ké + Ki" termination
has G, = Gs = 0, The "K:" termination has G, = Ge = k, = O, The "free"
y 6 6 y & ¥y
termination has Zb = 0. The equations for these different cases and their

special relations are summarized in table I,

The "Zo" termination can affect all elements of R,,. In particular, if

22
G& = Gé = Ki = Ké = EI/a, all elements of the reflection matrix are zero.

This is the case of Zb = Zoa and corresponds to terminating face b of the

beam with face a of a semi-infinite beam. Thus, the reflection matrix, like
the reflection coefficient, is nulled when the beam is terminated in its char-
acteristic impedance. For the Bernoulli-Euler case, distinction between Zoa

and Zob must be made, Physical reasoning requires that Zb = Zoa’ not
Zb = Zob' Figure 17 helps to clarify this point.

) b

equation (107). In particular, if Ky = K? = Kz = EI/a, then a, = -1 and
8, = =2. Thus, all elaments of R22, vhich can be modified, are nulled, if

Ki and Ké are adjusted so that the nonzero elements of 2

The "Ke + K?" termination can affect only the terms a,_ and Bb of

b match the corre-

sponding elements of Zoa‘

The "K:" termination can affect only By in equation (107). In partic-

Gl
ular, if Ké = EI/a, then Bb = -2, Thus, the only element of R22, which is
affected by Ké, is nulled, if Ké is adjusted so that the nonzero elemeat of

Zb matches the corresponding element of Zoa'

The behavior of the reflection matrix in these special cases is con-
1idered significant, although it is not yet fully understood. The case of
x22 = 0 is particularly interesting in view of the benefits for damping and

control by setting the reflection coefficient to zero in the longitudinal-wave
problen.,
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When 2. =7 so that R, = 0, the input admittance at terminal a (for

b oa 22
Z, = 0) can be derived from equations (10ba) and (103a) as ia = Lilfa. Equa-
i { ° = = :
tions (72), (73), and {100a) reveal that L], =Y, and R, =Y. thus,
X =Y _f (110)

Therefore, the input and characteristic admittances of a finite uniform
beam, terminated in its character. stic impedance, are equal. This is evident

+
from figure 20, because R22 = 0, and N is not reflected; thus, for Za =0,
the relation between %X and f_  is simply %X = L.. f . These relations

a a a 11 "a

can be visualizeu better by comparing figures 18, 19, 20, and 21,

When neither of the reflection matrices L22 and R22 is zero, equation

(10ka) may be expanded by the matrix series for the inverse:

2

-1
)"t =1+ A pRoohy Los + (AaszzAbaLQQ) + .ue (111)

(I’“abReeAbaLza

Equation (10Lb) can be expanded in a simi_ar form. The expanded form of equa-
tion (10ka) is

. 2
ko= Ly # Loy [T+ (A Roohy Toy) + (A Rooh Loo)™ 4 uJIA Ry Loy 1)
. 2
*
{(£% = 2%} + {[L, (I + (A R A Loo) + (A Roohy Loo)™ + oel]
* . 7% *
[Aaszl]} {rb z¥ ib} (112)

This equation for transverse vibrations has a form similar to that for
the successive wave erpansion for the longitudinal-vibraiion problem [eq (L2)].
Thus, equation (112) is a matrix generalization (for the Bernoulli-Fuler
equation) of the successive wave expansion for the wave equation. A word of
caution is due here; the Bernoulli-Euler propagation operators have no pure-
delay effect, and the equation (112) cannot be strictly interpreted as a
successive wave expansion, For any t > O, the response of every term of the
series will be nonzero. The expansion may prove useful for computations in
both the time and frequency domain for situations in which the series converge.
Inasmuch as the Bernoulli-Fuler propagation operators only approximate the
Timoshenko~-beam propagation operators (which do have a pure-delay effect),
truncating the series might be expected to result in an approximation of the
physical behavior of a beam, even when not permitted by the mathematics of the
Bernoulli-Euler solution,
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Another situation in which the propagation operator has no pure-delay
effect is the one-dimensional diffusion equation. 1In this case, series expan-

-YT . .
sions in the propagation operator e S and the diffusion reflection coeffi-

cients have the form

Weber (ref 1L4) describes such a series for a transmis ion line with
distributed capacitance and resistance but negligible inductance, and he warns
against its interpretation as a successive wave expansion.

The following paragraphs show that the early part of transient response
is indeed similar to that predicted from the first term of equation (112),

Transverse load disturbances.- The problem of regulating or holding
constant the transverse velocities (y and 8) of a beam subjected to trans-
verse loading (M,Q) at the ends is now considered in terms of the Bernoulli-
Euler propagation operators and reflection matrices.

Restrictions: Results are restricted to uniform beams with active or
passive dampers that fit the terminal constraints of equations (102a and b).
This means that all damping forces and moments are a function only of the motion
at the terminals where they are applied. Moreover, the force and moment
disturbances are assumed to be applied at the terminals only.

These are severe restrictions, yet a tail-controlled flexible vehicle, with
sensors mounted near the tail, subjected to a gust disturbance near the nose,
is not too far removed from this situation. Some terms in equations (102a and b)
are more applicable to this situation than others. Lateral forze disturbances
seem more likely than moment disturbances, for instance. Also, the terms

G? and Gé imply devices that can apply damping moments. A practical scheme

to apply independent damping moments and forces might be conceived, if the
benefits were great. The "Ké" and the "Ké + an terminations are chosen,

because the former corresponds to the conventional angular-rate feedback, and
the latter is the closest possible approximation to the "Zo" termination

with G& and Gé set equal to zero.

The "Zo" termination is also treated, implementation problems not-

withstanding, for several reasons: (1) because it was shown to null the reflec-
tion matrix, it has particularly simple relations and represents a limit case;
(2) for the insight it might afford; and (3) for technological spin-off value,
e.g., application to damping of transverse vibration in other systems. Moment
disturbances are also treated for the latter two reasons.
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Somewhat arbitrary but specific beam parameters, rather than nondimensional
variables, were selected for study. The dimersions and parameters chosen are
presented in table II., The chcsen beam weighs 56 1b; the first mode frequency
is 32 rad/sec; and the value ot EI/a is U41.5 (in./1b)/(in./sec).

Simulation and computation: System behavior was studied both in the
time domain, by an analog simulation, and frequency domain,

Analog simulation of the terminal relations requires analog models of the
operators Vs and 1/Ys. This was achieved by operational amplifiers with
lattice-network feedbacks. Theoretically, the rational algebraic driving-point
impedances of the feedbacks fit the function 1/¥s within approximately
+ 0.5 a0 and :_2° over the frequency range 10 < w < 1000 rad/sec. The method

of simulating /E, and l//g, and the affect of the low=frequency asymptotic
order of these approximations are described in Appendix A. The frequency-
domain studies utilized, in place of l//g, the rational algebraic approximation

2 3 L
S S S S
1, 1+ g 10 o) *+ 28 (5550 * (5om)
S S S S S
10 [8 {155) * 56 (155) * %6 (55) * ¢ (z00” |

This allowed the use of standard frequency-response programs. This function
approximates 1/¥s within the tolerances mentioned.

Analog simulation of the beam in terms of propagation operators and end-
effects matrices involves approximation of the transcendental functions of
/s ratios of polynomials in s (perhaps by lattice networks as operational
anplifier feedbacks). FEffective approximations for the Bernoulli-Euler operator
have not yet been found.

Thus, the free-free beam was simulated in terms of the first five normal
modes (see table I). The normal-mode rational algebraic approximations to the
admittance operators were chosen for the frequency-response calculations to
permit the use of standard frequency response programs and to ensure that the
frequency responses of the beam used in these calculations were consistent with
those of the analog simulation of the beam. The latter had to be in terms of
the normal modes. Although not required for stability, a damping ratio of 0.02
was added to the normal-mode transfer functions in the frequency-response
calculations to keep the magnitudes of the bending resonances finite and of
reasonable value for plotting. The normal-mode damping ratios in the analog
simulations were set as close to zero as possible,

Although the factorization of the beam transfer function was not used in
simulation of the beam, it served to identify the role of operators /s and
l//g in beam dynamics and led to an investigation of their use as control
functions. The method of simulating the beam dynamics is irrelevant (as long
as it is correct) in the comparison of various control schemes.
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SPECIFIC

Physical Characteristics
Length (2) + v o o o o o & &
Cross-section Area (A) . . .

Young's modulus (E) . . . .

Density (p) « ¢ ¢ ¢ o o « &

Derived Parameters

Area moment of inertia (I) .

a = 'EI/ZDAS e o o o o o o o

EI/a . . L] L L L L] . . L . .

Rigid-Body and Bending-Mode Data

TABLE 11

BEAM PARAMETERS

200 in.
1.0 in?

3Ux106 lEé
in.

0.725x10
in.

0.0796 in%

3 in2

in-1b

k1.5 (in/sec '

-3 lb-sec2

MODE w M #(0) P(e) g'(0) @r(g)
-1 0 0.227 2.0 2.0 -0.0200 -0,0200
0 0 0,145 1.0 1 0 0
1 32 0.1k5 2.0 2.0 -0,0L6k 0.0L6L
2 89 0.1L5 2.0 =2.0 -0,0778 -0.0778
3 174 0.1k45 2,0 2.0 -0.110 0.110
N 288 0.1k5 2.0 2.0 -0.141 -0.141
5 433 0.1Ls 2.0 2.0 0,173 0.173
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Frequency response: UWhen controls are only at b (Za = 0) and disturbances

only at a, figure 19 can be reduced to the block diagram shown in figure 22,

; ] %: oo |y
. ﬁ? o YL 5 Z
e * e L gé - ég ——

Figure 22. Beam with control at b only (Za = 0) and disturbance at a only
(f* = 0).
b

The frequency response can be computed from the relations

. - -l %
Xa = [Yaa * Yab(I - Zbeb) Zbea] f (11ka)

% = [0 - v 27 ) o (11kp)

The four frequency responses determined from equation (11L4b) are shown
in figures 23a,b,c, and d. They are computed from rational algebraic functions
of s for the elements of Zb’ Yaa' ete. For figures 23b and 4, which are

the responses of &b and eb to Qa’ the foliowing four terminations were
studied:

Case A "free" termination
Case B "Ké" termination (Ké = EI/a)
Case C "Ké + K&" termination (Ké = K& = EI/a)
" " 1 e = K, = e = (G, = E
Case D Zo termination (Ke Ky 5 Gy EI/a)
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Table I shows that, for cases A, B, C, and D, the number of nulled
elements of the reflection matrix is 1, 2, 3, and 4, respectively. The
supposition that damping effectiveness would increase with the number of nulled
elements is not fully supoorted by the results shown in figures 23b and 234.

The "Ké + K&" termination is most effective, as measured by the dB reduction

from the case of no control, which is easily visualized for each termination.
The frequency band of approximately 10 to 100 rad/sec is probably the most im=-
portant. The response at lower frequencies can most likely be shaped by design

of the low-frequency part of the /s approximations, The high-frequency part
cannot be shaped by the designer because of actuator bandwidth limitations;
moreover, the energy spectrum of plausible loads generally drops off rapidly
at high frequencies,

Figures 23a and 23c, show the responses of ib and éb to Ma; only

"7 " termination is

cases B and D were studied. Here, again, the

slightly more effective than the "Ké" termination. Thus, in these special
circumstances, terminations of the type C and D appear a few dB more
effective than conventional angular-rate damping.

For the "Zo" termination, the reflection matrix R is, of course,

22
zero. In this case, equation (104b) can be reduced to

ib cos /Ts - sin V/Ts | Y SE cos V/Ts M,
=& " Ts I (115)
éb - gi cos VTs -(cos VTs + sin /Ts) Q,

which is identical to equation (T1l) for the semi~-infinite beam for the special
case of x = &, DBecause no reflections exist, this indeed must he the case.

Equation (115) describes and figure 2.4 shows the exzact frequency response
for the "Zo" case. The behavior can be visualized from the frequency re-

sponse of the Bernoulli-Euler propagation operators (see fig 13). 1In particu-
lar, operators C(Ts) and S(Ts) are both of magnitude 0.5, and 90° out. of

phase at high frequency. Thus, at high frequency, }'rb/Ma and é/Qa should
be 3 dB below their dc gain. The other two terms of equation (115),
)'rb/Qa and éb/Ma, should be 6 dB below their low-frequency asymptotes,

Comparison of the results in figure 23 with these exact results shows that
the rational algebraic approximations to Zb, Y and Y introduce a

bb? ba
significant ripple in the frequency responses.
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Transient response: These four cases were also studied by analog simula-
tion described earlier, Step disturbances of Ma and Qa were applied, and

the resultant motions at both ends of the beam were recorded,
The motions at end a and end b are shown in figures 25 a, b, ¢, and 4
and in figures 26 a, b, ¢, and d, respectively. In the responses, the "ZO"

termination generally seems to minimize the maximum excursions of & and 6
from zero best, if the responses after, say, t = 0.20 are ignored. The
response for large t 1is considered irrelevant, because a position control loop
could be used to null the dc error component.

The damping forces and moments applied to the beam by the Zo termination

were also recorded for steps of Ma and Qa to determine the force magnitude

and frequency requirements of an active damper in such a situation. Results
are shown in figure 27; note that quantity 2Q, rather than @, is plotted.
In terms of the quantities £2Q and M, results are independent of 2.

In general, the force must be given by Zoa ib' Thus, from equations
(115 ) and (102b),

— - =] - B

| | -2 -E/% c(Ts) - S(Ts) ' /2 o(s) N,
= ;—I (116)

Q, %I_ /%—s_ 'Ei - _Eg o(rs)  -LC(Ts) + s(Ts)] |a,

I L — L L

If the matrix product in equation (116) is formed, the steady-state
relation can be found by evaluating the limit as s + 0, This result can be

written
Mb 1l 1 Ma
lQb 0 ’ 1 lQa

This is simply a statement of static equilibrium for the beam. The
simulation results do satisfy this equilibrium check. Morever, all transient
peaks are less than 1.0 with the exception of lQb/Ma, wvhich is less than 6.0.

Thus, the "Zo" termination appears to require transient control effort of the
same orcer of magnitude as that for equilibrium.
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Lateral and angular velocity control.- The problem of tracking lateral and
angular velocity commands is now treated. When commands and control are
restricted to terminal b, as shown in figure 22, the freaquency response can
be computed from the 2 and the admittance elements, by the relations

b’

ia = [Yab(I - zbybb)'l zb] ig (118a)
. =1 .

xp = (I = Y2l Y2y ] X3 (118v)

Because R,, = 0 for the "Zo" termination, the response can also be

22
simply computed in terms of the propagation operators. Using equations (10ka
and b) and setting Z, =0 and 2z = Z,, VYield

3'ra e'/E (1 - sin /Ts) v -2—:- e-/ﬁ- sin /Ts y{;
- ‘ (119a)
éa Y ?-z- e-ﬁ sinVTs e-/'ITS- (cos /Ts + sin /Ts) ég
R I L
1 [ 1 1 /%8 1 1 /7a i
Yy s 1’7 5 (1 - sin 2/Ts) -5’5 (cos 2/Ts e
-2V/Ts
= + e evls - sin 2/Tsg)
] 1 2s 1 l /2s 1 , e
eb T = 3 -7’ (2 = cos 2VTs 5 (cos 2/Ts + 9;
3 \
| L . N - sin 2/Ts) +sin2/ﬁ"s-;__L_J
(119v)
The steady states of equations (119a and b) are
y 1 _g‘j ¥ |
1im a b
e B . (120a)
ea 0 1 6.‘;
| _ J L _
— — —_—— —
¥y i 1 ol | y*
14m b b
Jn 1 —t— _ (120b)
eb 0 1 9{;
L L. I
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Equation (120b) indicates that end b has no tracking error in the steady
state. Equation (120a) relates the rigid-body motion of the two ends. The
equations (119a and b) are useful in determining the differences between the
exact solutions and those determined from equations (118a and b), using rational

algebraic approximations for Yab’ Ybb’ and Zb.

Transient response: The responses to steps 9; and ég wvere studied
by analog simulation. The first system studied was the "Zo" control, i.e.,
Z, = Zoa; it did not track commands. This contradicts the behavior predicted

b
by equations (120a and b). The difficulty was traced to the low frequency of

the analog approximations to /s and l//g, which were first used in the

simulation., This was corrected and is treated in Appendix A. The "Z " con=-

trol then responded to commands, as shown in figures 28a and b. These responses
are disappointingly slow, considering that the period of the first bending mode
is approximately 0.2 sec, Later, a command of i; alone was otserved to
correspond to pure translation, whereas a command of é; alone corresponds to
rotation about the point b. These motions are clearly unnatural for the beam
that rotates about its center of gravity when stimulated by a moment Mb and

about the center of percussion (station x = 2/3) when stimulated by a force Qb.

This difficulty was circumvented by using simultaneous commands to ég
and i; with a ratio corresponding to rotation about the center of percussion,

vhich is two-thirds the beam length from Uu. The simultaneous commands were
constrained by the relation:

2 L ¢
o = S o
¥ = =5 8¢ (121)
The response to these simultaneous or dual commands is vastly superior to
the response to single commands. The step responses at ends a and b are
shown in figure 29, Also shown is the response of the first term of eauation
(119b); this term can be thought of, loosely, ag the response caused by the in-

itial impact. The early part of the ib and eb transients agrees quite well

with this high-frequency approximation, considering that the analog simulation
uses rational algebraic approximations for both Y and Z_., The second term

bb b
of equatiag;jll9b) can be loosely considered the wave reflected from end a
(the e~2'T® factor is due to the vave's round trip through two e~ '°°

operators). Because R,, = 0, no wave is reflected from end b. If this loose

22
thinki..g is carried one stage further, and the trigonometric terms of the second
matrix of eguation (119b) are replaced by their low-frequency equivalents, the
following approximation results:
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[ r1 1 ‘2—— F—l 1 EE— [
» , = _E'. - - = »
Yo 2 7’3 2 IT‘/s y
v s e 2/T8 (122)
: 1,2 | 1 -L,2| 1 s
eb { R'/ a 2 T'a 2 eb

Comparison of this relation to that between vy and vg for longitudinal

t = Yo and r22 =0 in

= (1/2 + 1/2 e'QTs) v#. The similarity is striking, c.though

control is interesting. 1In the latter [setting =z
equation ‘Lk)], vy
admittedly contrived by suppression of the cos YTs and sin /Ts terms.

The constraint between the dual commands was varied somewhat from the ratio
22/3. The step responses appear to degrade, if the ratio is much greater than
22/3 or much less than £/2. Frequency-response sensitivity to the dual=-
command ratiuv was also studied and is discussed subsequently.

The "Ké" and "Ké + Ky" terminations were also simulated. Dual step

commands with 9; = (22/3) 53 were used for the "Ké + Ki" control. For tne

"Ké" contro., the i; command is irrelevant, because both Gi end K? are

zero. The responses at ends a and b for the "Ké + K&" and "Ké" termi-

nations are shown in fipures 30 and 31, respectively. 'The performance of the

"Ké + Ki" termination is clearly inferior to t.uat of the "Zo" termination.

If fast rise time wi:a lit*le overshoot is a roal, the "Ké" conirol is certainly
the best, but not overvhelmingly so. Study of the sensitivity of the "Ké"

control to variations in the gain Ké from its matched value of EI/a indicates

that Ké = EI/a 1is a practical optimum. The degrading effects of increasing or

decreasing Ké significantly from this value are also shown in figure 31,

Thus, the "Ké" control, whose reflection matrix is the iaentify matrix,

appears highly desirable; that the value Ké = EI/a, suggested from the re-

flection matrix concept, is indeed an optimum is considered significant. Note
that the rigid-body transfer function for this optimized "Ké" control is
Ks x'é-

& 2 {123)
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When Ké = 41,5, the rigid-body real root is -8.6 rad/sec. This compares

with the first bending mode frequency of 32 rad/sec. Why the "Zo" control is

not superior to the "Ké" control is at present unexplained. One source of

difficulty may be the way commands are put into the control loop. For the "Zo"

control, simultaneous commands constrained to the ratio j; = (22/3) ég gave

eb response which is superior to that achieved with only a ég command (com=

pare figures 28 a and b with 29). A further modification which might be inves-
tigated is a prefilter in the command structure. The configuration shown in
figure 32 may have merit.

=
22
. (=)
. *
b % ! o ——
- - F )
Ybb ZO S b
atf = — )
* ..‘
% % %

Figure 32, "Zo" Matrix Control with pre-filter.

It uses K/¥s in the ig channel to cancel the Vs term in the first matrix

of equation (119b); this would eliminate the initial spike in the éb response

shown in figure 29. Preliminary studies of this prefilter scheme were made in
the frequency domain.

Frequency response: The frequency responses of éb/é; were computed for

e °* 6
&; = (22/3) eg. The responses, computed from equation (118b), using rational

the "K:", "K: + Ki"’ and the "Zo" controls, using dual commands with

algebraic approximations to Yb} and Zb’ are shown in figure 33. The low-

frequency tracking ability of all three systems is good. The "Ké" control is

clearly superior through the important range 10 < w < 100 rad/sec and, parti-
cularly, at the first bending frequency of 32 rad/sec,
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Figure 33. Effect of Z_ on éb(Jm)/ég(JN)

The "Zo" matrix control with the prefilter is shown in figure 32, and its

frequency response is compared with that of the "Ké"

-15 -

-20
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control in figure 3k,
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- e ZO" Control
""'"Ké" Control
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10 20

Effect of pre-filter on )
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E

Figure 35. Two uniform beams in cascade

Although the bending resonance previously exhibited by the "Zo" control is

eliminated as predicted, the oscillation of gain is still much greater than
that for the "Ké" control. The prefilter investigated could not correct these

deficiencies. This, of course, does not rule out the possibility that some
other prefilter configuration, combined with the "Zo" matrix control or the

6 ]
In fact, this is highly likely in view of the slightly superior performance of
these schemes for disturbance alleviation.

"Ke + K9" controi, might respond to commands better than the "Kg" control.

Transverse vibration of nonuniform beams.- The application of propagatiol
and reflection concepts to the dynamics and control of uniform beams leaves
many questions open. Nevertheless, a composite beam comprised of two uniform
beams in cascade was studied to glean an insight into possible applications of
these concepts to nonuniform beams. The subscripts 1 and 2 denote the left
and right beams shown in figure 35.

The factored transmission relations for the two uniform sections can be
mated, as shown in figure 36, Here, end-effects matrices are distinguished as
impedance (subscript z) and admittance (subscript y), because the interface
must have an admittance on one side to mate with an impedance on the other.
Figure 35 clearly shows that the matrix relation must be of the form

J
~ 4 7] e e ——— o _+ -
Voq Y1v
J J

. 21 22| |
Yoa Yy

=l 71T _ (124)
Uog Y1y

R B SR
_‘_’2&_ = N :2b_

The J matrix will be called the interface matrix. To determine the
elements of the J matrix, note that
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-1
= ¥

Upy = WE T Yy (125a)

= "

Y,, =W U, (125v)
vhere wi and wg are the W* matrices for beams 1 and 2, and Ylb and
Y28 are the Y state vectors at stations 1b and 2a, and, vhere

- - + + .7
Upp = [y 5 vy 0 Vi 5 Ugp) (1268)
o= - + + .T
Upa = Mpg 5 Vo s ¥pa 5 U5, (126b)
Because Ylb = Y,,» eouations (125a and b) give
u. = [w ey (127)
1b 1 2° 2a

For the trivial case, where the beams are identical, equation (127) is

merely Ulb = U2a; this means that le = le =1 and Jll = J22 = 0, and

the variables are transmitted in both directions without reflection, as they,

of course, must be in this case, If the matrix product in equation (127) is
formed, the general result is

— — -~ -

3 3 3 3 | [ -
Yb 2+kyytyy ko17¥o1 2=kyy ko1 kr17Kpp Ung
- 3 2. 3 3 , 3( | -
Vb ko1ko1™ | Kpp*2kyy thyy ko1=ko1 kny=2ks0 ko7 | Vou
1
o ' 2k, =k, 3 Kyq =K, o 24k, +k, 3 Ky, ok, :
1b ~%017%03 217721 21" 21 217521 Voa
+ 3 2. 3 3 2. 3] +
Y1y ky17koy ko1 =2kyy *Roy ko17%2 ko1*2koy) *hoy 7| | Voa
L L L
(128)
where T o A
_ /FalPofs
Ko1 2" E 1. (129)
212P1™



The trivial case, where beams 1 and 2 are identical, checks in equation
(128) also. The elements of the matrix in equation (128) are independent of s,
even in the general case, For any particular (numerical) case, converting
equation (127) into the interface matrix form of equation (124) is simple.

A treatment of the enormous number of ways to generalize the uniform-beam
relations with these concepts is beyond the scope of this report. The fact
that the interface matrix is composed of real numbers is considered promising
for future work in nonuniform beams.
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CONCLUDING REMARKS

Specific Conclusions

The following specific conclusions can be drawn from the investigations
of Distributed System Concepts in Dynamic Analysis and Control of Bending
Vibrations:

1. The solution of the Bernoulli-Euler equation for transverse bendagg
vibration of a thin semi-infinite beam shows that e-/T; cos Y75 and e~''%
sin /Ts are propagation operators, and the matrix of input admittances of a
semi-infinite beam (characteristic-admittance matrix) contains the fractional

derivative and integral operators vs and 1/vs.

2, A matrix transformation (U = w'l Y), carrying the local state vector
Y to a vector of characteristic variables (U), permits factorization of the
solution to the Bernoulli-Euler equation for uniform-thin-beam bending into
three constituent matrices that represent (1) the left-side end-effects;
(2) left-to-right and right-to-let't vropagation, which is diagonelized in the
partitioned sense; and (3) right-side end-effects. The end-effects matrices
depend only upon the boundary conditions, cross-section geometry, and local
properties of the beam. They contain only the operations found in the
characteristic-impedance matrix. The propagation matrices contain only the
propagation operators. This matrix factorization has the same structure as
that for the solution to the wave equation, which is factored into end-effects
matrices and scalar-delay operators that describe the wave propagation.

3. For terminal dampers and controls, which can be represented as im-
pedance matrices, the end-effects matrices can be derived from those for the
free-free beam and the terminating-impedance matrices, by simple matrix algebdra.
The propagation matrices are not involved in this computation.

L, The matrix relation (reflection matrix) between the incident and
reflected U variables is identically zero, when the terminal-impedance and
characteristic-impedance matrices are equal. If the elements of the terminal-
impedance and the characteristic-impedance matrices, have the same functional
form, then the reflection matrix contains only real numbers. Some elements of
the reflection matrix are nulled by terminal-impedance matrices, which are
simpler and more practical to implement than characteristic-impedance matrices.

5. The response of the controlled system to load disturbances or commands
can lLe expanded in powers of the reflection and propagation matrices. This is
a generalization of the sucessive-wave expansion in powers of the reflection
coefficient and the wave delay.

6. Conventional angular rate damping or control (in which lateral restor-
ing force is proportional to angular-rate error) is optimized when the gain
equals the (lateral force)/(angular rate) term of the characteristic-impedance
matrix., For this value of gain, the reflection matrix is reduced to the identity
matrix.
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7. The matrices describing reflection and refraction of the U variables
at the interface between two cascaded uniform beams have only real elements.

Remarks

No specific conclusions are drawn concerning use of fractional-derivative
and fractional-integral operators in the impedance matrix for damping or
control. Although such terms can change the reflection matrix and, in fact,
make it zero, the results of analog simulation and frequency-response calcula-
tions both for load disturbances and command inputs are inconclusive and
emphasize the need f'or a more comprehensive understanding of the Bernoulli-
Euler reflection matrix.



APPENDIX A

THE FRACTIONAL-DERIVATIVE OPERATOR vs ANC

THE FRACTIONAL-INTEGRAL CPERATOR 1/vs

Analog Simulation

Approximate analog simulation of the operators /s and 1/Ys has teen
treated by Carlson and Halijak (ref 37); they show that good approximations
can be achieved by an operational amplifier with a lattice-network feedback
having a drivinngpint impedance which approximates 1//s. The configurations
for 1/Ys are shown in figures 37a and b, respectively.

0—'\/\/\/—11'\; -© o—| _r] o

o- o o _ -9
Figure 3Ta. Analog Approx. Figure 37b., Analog Approx.
for fractional integral 1/vs for fractional derivative vs

These networks approximate the required function quite well over a broad range
of frequency with R, C, short-circuit, or open-circuit termination of the
feedback lattice., The asymptotic form for low frequencies uoes depend upon
the termination, however, For example, if the approximation for 1/V/s 1is
terminated in a capacitor, as shown in figure 38, then the low-frequency ap~-
proximation is a gain.
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Cmepioa .
N 50 Y R

Figure 38. Lattice for 1/Vs terminated
with a capacitor,

The circuits originally set up in the analog simulation of the "Zo"
control had the low-frequency, asymptotic forms shown in the block diagram of
figure 39.

< |w|e
|m|m

De
i
7]
ujor

Figure 39. Low frequency approx. for original "Zo"
control simulation,

and ¢ are assumed to be arbitrary

Here, the symbols F, G, a, B, v, €,
is used, The

positive const.ints, and the rigid-body approximation to Ybb
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steady~-state errors in ib and éb did not go to zero as predicted by the
exact relations for the "Zo" control (eq 120b). The transfer function for

the system in figure 39 is

.. o | [,.2 2 30 ..7]

N (8" + 6Gs + ve) (6¢s” + yFs) v

= l (A1)
° [ 2 .
* o »
eb 8y (BGs + ae) (1 + 8#)s” + rFs) o}
2
[s°(1 + a) + bs + c]
where
a=83; b= (aF + 6G)

(A2)

¢ = (ye + B@ye + aFé6G - YFBG = S&@ac)

The first-row numerator elements contain constant terms that cause steady-
state errors in ib for step inputs in ig and eg. Analysis also showed

that an algebraic loop results from multiplying @s by B/s. If the approxi-
mation for s is changed so that its low-frequency asymptotic form is a gain
¢, rather than a derivative @s, the transfer function becomes

g - ¥y s°(s + aF + 8¢) ‘ -s(ae + BGs) ¥
(A3)

- -sa(yF + &¢)

s(s2 + §Gs + ye) o}

[s3 + as2 + bs + c]

where

a = (aF + B + 6G)
b = (ye + aF6G - YFBG) (A4)
c = (yeB@ - 6@ac)

Now, none of the numerator elements contains a constant term. Thus, the
steady-state errors have the correct behavior. One way to make the approxi-
mation for VB8 behave as a gain for low frequency is to connect a resistor
across the input capacitor, as shown in figure 40. The RC time constant
chosen for operational-amplifier input impedance was 0.4 sec. Thus, break
frequency for this network is less than 10% of the first-mode frequency.
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Figure 40.- Input resistor used to
correct low frequency
behavior of Vs approx.

The analog model was changed, and the errors in §b and eb properly
»

returned to zero in response to the steps of i; and éb

Rational Algebraic Approximations

For the lattice network shown in figure 4la, the driving point impedance
can be shown to be

_ (xs) + 28 (15)3 + (70)(xs) + 28 15 + 1
Cs [8 (vs)3 + 56 (15) + 56 15 + 1]

2, (5)
For the special case R =1 ohm, and C =1 farad, the frequency response

is shown in figure 41b. The exact frequency response of 1//s has a phase of
45°, and the gain is a straight line passing through 0 dB at w =1 with a
slope of =10 dB/decade, The figure clearly shows that the function ZhO(S)

fits within + 0.5 @B and + 2° over the range 0,1 < w < 10 rad/sec. For
t#1, it fits 1//s to the same accuracy over a frequency range centered at
wt = 1,

The analog-simulation networks finally used are shown in figures 42a and
¢c. The driving-point impedances are

Z

R [10 (vs)" + 120 (t8)3 + 25 (1s)2 + 120 s + 10] (26)

55 [(1s)® + 45 (1s)" + 210 (18)3 + 210 (18)2 + 45 15 + 1]
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- (11 (‘rs)5 + 165 (Ts)h + L62 (Ts)3 + 330 ('ts)2 + 55 18 + 1]
Cs [('rs)5 + 55 (ts)ni+ 330 (15)3 + L62 (TS)2 + 165 ts5 + 11]

Z

5S¢ (AT)

The frequency responses of Z58 and ZSc are shown in figures L2b and

d for the cases R = lO6 oms, 1t =1,0 and R = lO6 ohms, v = 0,1; they
clearly show how 1 shifts the range of fit, and how the termination affects
the behavior outside the range of fit.
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