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Abstract 

Two important approximations have been in

corporated in much of the work with approximate 

analysis of unsteady motions in combustion cham

bers: truncation of the series expansion to a finite 

number of modes, and time averaging. A major 

purpose of the analysis reported in this paper has 

been to investigate the limitations of those approx

imations. In particular two fundamental problems 

of nonlinear behavior are discussed: the conditions 

under which stable limit cycles of a linearly unstable 

system may exist; and conditions under which bifur

cations of the limit cycle may occur. A continuation 

method is used to determine the limit cycle behav

ior of the equations representing the time depen

dent amplitudes of the longitudinal acoustic modes 

in a cylindrical combustion chamber. The system 

includes all linear processes and second-order non

linear gas dynamics. The results presented show 

that time averaging works well only when the sys

tem is, in some sense, only slightly unstable. In 

addition, the stability boundaries predicted by the 

two-mode approximation are shown to be artifacts 

of the truncation of the system. Systems of two, 

four, and six modes are analyzed and show that 

more modes are needed to analyze more unstable 

systems. For the six-mode approximation with an 

unstable second mode two bifurcations are found to 

exist. A pitchfork bifurcation causes a new branch 

of limit cycles to exist in which the odd acoustic 

modes are excited. This new branch of limit cycles 

then undergoes a torus bifurcation that causes the 

system to exhibit stable quasi-periodic motions. 

I. Introduction 

Because combustion instabilities arise normally 

as linearly unstable motions, nonlinear processes 

must be present to prevent the instabilities from 

growing without limit. Experimentally, therefore, 

nonlinear behavior is always observed and serious 

analysis of nonlinear combustion instabilities began 

with work by Crocco, Sirignano, Mitchell and Zinn 

at Princeton in the 1960s. The results reported 

here are the most recent in continuing investigation 

begun in the early 1970s, using a form of Galerkin's 

method. 

This approach is based on expressing any 

unsteady motion in a combustion chamber as a 

synthesis of normal modes for the geometry in 

question. Spatial averaging converts the problem of 

sol ving the system of nonlinear partial differential 

equations to the much simpler problem of solving a 

system of nonlinearly coupled ordinary differential 

equations for the time-dependent amplitudes of the 

normal modes. Various tests have confirmed that 

accurate results can be obtained with this procedure 

for a broad range of conditions. Hence this system 

of equations, representing a collection of nonlinear 

oscillators, seems to be an acceptable formulation 

for studying various aspects of observed behavior 

understood poorly or not at all. 

There are two main classes of nonlinear 

problems in this subject: determining the conditions 

for existence and stability of limit cycles; and 

determining the conditions under which a linearly 

stable system may become unstable when subjected 

to an appropriate disturbance. As a practical 

matter, two approximations have commonly been 

used to simplify the analysis and to try to 

obtain simpler methods for routine applications: 

(1) time averaging converts the second-order 

equations to a first-order system governing the 

slowly changing amplitudes and phases of the 

modes; and (2) in any case the expansion must 

be truncated to a finite number of modes. It 

seems that the possible consequences and validity 

of those approximations can be understood only 

by solving the original system of second-order 

equations. One approach is simply to compute 

numerical simulations for ranges of the parameters 

characterizing the system. That tends to be a 

somewhat arbitrary approach. We choose here 

to apply some elementary notions of dynamical 

systems theory and construct bifurcation diagrams. 

Numerical simulations are then computed only for 

particularly interesting cases. We believe that 

this will provide a more systematic approach to 

understanding the matter cited above. 

The equations analyzed in this paper represent 

the time evolution of the amplitudes of the longi-
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tudinal acoustic modes in a cylindrical combustion 

chamber. Linear contributions from the combustion 

processes, gas/particle interactions, boundary con

ditions, and the interaction between the steady and 

unsteady flow fields are included along with nonlin

ear contributions from the gas dynamics. The equa

tions were obtained from Paparizos and Culick1 and 

have the form 

Tin + w~ fJn = 2 an r,n + 2 en Wn fJn 

n-l( ) (1) .... (1). . 
- ~ Cni fJa fJn-~ + Dni fJt fJn-t 

t=1 

00 ( ) 
(2) . . (2) 

- 2 ~ Cni fJi fJn+i + Dni fJi fJn+i 

,=1 
(1.1) 

where 

C(~) = .-1. [n2 + i(n - i)(,-l)] 
nt 2,z(n-z) 

C(~)= .1 . [n2 -i(n+i)(,-1)] 
nt 2,z(n+z) 

D(1) = (,-l)wi [n2 - 2i(n - i)] 
m 4, 

D(~) = (,- l)wr [n2 + 2 i (n + i)]. 
nt 4, 

This system of equations has the form of a system 

of nonlinearly coupled oscillators. The parameters 

an and en account for the linear processes 

mentioned above and represent the linear damping 

and frequency shift of each mode respectively. 

Parameter values used in this study were obtained 

from Paparizo~ and Culick1 and are listed in Table I. 

Previous analysis of this system has concen

trated on the time averaged equations for two modes 

only. The system was truncated at two modes be

cause it has not yet been possible to obtain literal so

lutions for more than two modes.Analytically deter

mining the existence and stability of thelimit cycles 

of a fourth-order system is still a difficult problem 

so time averaging was applied to the set (1.1). Time 

averaging and a coordinate transformation (see Sec

tion 3.1) changes the problem to one of determining 

the steady states of a third-order system, a prob

lem that can be solved analytically. Paprizos and 

Culick1 carried out time simulations for systems of 

up to ten modes and, as expected, discovered dif

ferences related to the number of modes included in 

the truncated system. The present analysis uses dy

namical systems theory and continuation techniques 

to study the effects of time averaging and trunca

tion at a small number of modes on the limit cycle 

behavior of the system. 

It is helpful to nondimensionalize time by the 

fundamental acoustic frequency, WI, so events occur 

on a time scale of one. Applying the transformation 

1 ........ 

t = Wl t, (1.2) 

2 

where t IS nondimensional time, results 111 the 

system 

n-1( ) 2 (1). . (1) 
- ~ WI Cni T]i T]n-i + Dni T]i T]n-i 

t=1 

00 ( ) 
2 (2). . (2) 

- 2 ~ WI Cni T]i T]n+i + Dni fJi T]n+i . 

t=1 

(1.3) 

Since this study is restricted to longitudinal acoustic 

modes in a cylindrical combustion chamber the 

modal frequencies are related by the equation 

(1.4) 

Substituting this relation into Equation (1.3) results 

in the system 

Tin + n 2 
fJn = 2 an T]n + 2 nOn T]n 

n-l( ) (1) . . 1 (1) 
- ~ Cni T]i T]n-i + w2 Dni T]i fJn-i 

t=1 1 

2 ~(C(2) . . 1 D(2) ) 
- L....J ni T]i T]n+i + w2 ni T]i fJn+i 

i=1 1 

where 
........ an 
a n =

WI 

........ en 
en = -. 

WI 

(1.5) 

To analyze Equation (1.5) with techniques from dy

namical systems theory and continuation methods 

it must be written as a first-order system. This can 

be done by defining the new variable 

The system then has the form 

T]n = ~n 
~n = -n(n - 2 On)T]n + 2 an ~n 

~ ( ........ (1) ........ (1) ) 
- ~ Cni ~i ~n-i + Dni T]i T]n-i 

t=1 

where 

........ (1) - -1 [ 2 ] 
Cni -2,i(n-i) n +i(n-i)(,-l) 

C ........ (2) - 1 [2' ( .)( 1)] ni - . ( .) n - z n + z ,-
,z n + z 

D ........ Cl) - , - 1 [2 2' ( .)] ·---n- zn-z 
m 4, 

£j~~) = 7 2~ 1 
[n2 + 2 i (n + i) ]. 

(1.6) 

(1.7) 



Time averaging is applied to Equation (1.7) by 

assuming that the time dependent amplitude of each 

acoustic mode has the form 

'f]n(t) = An(t) sin(n t) + Bn(t) cos(n i} (1.8) 

Substituting Equation (1.8) into Equation (1. 7) and 

averaging the resulting system over the period (0 ---r 

211") results in the system (Paparizos and Culick 1 
) 

n-1[ ] + ~ nK, ~ Ai An-i - Bi Bn-i 
t=l 

- n" f[An+i Ai + Bn+i Bi] 
t=l 

(1.9) 

n-1[ ] + ~ n K, ~ Ai Bn - i + Bi An-i 
t=l 

+ n" ~[An+i Bi - Bn+i Ai] 

where 
,+1 

K,= --. 

8, 

Steady states of Equation (1.9) represent limit 

cycles of the time dependent amplitudes of the 

acoustic modes, 'f]n, because of the time dependence 

specified by Equation (1.8). 

The zero solution of Equation (1.9) (An = 
Bn = 0) represents a zero pressure perturbation 

of the original system. The stability of this steady 

state is given by the eigenvalues of the linearized 

system, 

Thus, when an is zero this system undergoes a 

Hopf bifurcation. As discussed previously, Hopf 

bifurcations lead to the existence of limit cycles, 

so when an is positive Equation (1.9) will undergo 

limit cycle behavior. This seems to suggest that 

time averaging did not really make the continuation 

problem any easier because the time averaged 

system also contains limit cycles. Thus, when 

applying the continuation method to the time 

averaged system it is necessary to continue a limit 

cycle as opposed to a steady state. This is an 

important distinction because the computer time 

required to determine the limit cycles of a system 

with continuation methods is several orders of 

magnitude longer than the computer time required 

to determine the steady states of the system. 

Time averaging does reduce the computational time 

required to do numerical simulations because the 

high frequency content of the pressure fluctuation 
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is eliminated by time averaging, making it possible 

to use larger time steps in the simulation. 

Applying time averaging to Equation (1.7) 

did not convert the limit cycles of Equation (1.7) 

to steady states of Equation (1.9) because the 

van der Pol transformation applied before time 

averaging [Equation (1.8)] did not use the proper 

frequency in the sine and cosine terms. The 

eigenvalues of the system obtained by linearizing 

Equation (1.7) about the origin were shown to be 

An = an ± in VI - (2 Bn/n) - (an/nP 

so the van der Pol transformation should have had 

the form 

'f]n(t) = An(t) sin(On t) + Bn(t) cos(On t) 

(1.10) 

where 

On = n VI - (2 Bn/n) - (an/np. 

It is not possible to apply time averaging with this 

van der Pol transformation because the frequencies, 

On, are not integral multiples of each other. Thus in 

the linear approximation, the frequencies of the time 

dependent amplitudes of the acoustic modes are not 

integer multiples of each other. A limit cycle of a 

given frequency will exist for the complete system 

through the interaction of the nonlinear terms, 

but it is not possible to calculate this frequency 

analytically. 

Since Equation (1.9) is expected to contain 

limit cycles as asymptotic motions it is useful to 

transform Equation (1.9) into polar coordinates. 

This can be accomplished by defining the coordinate 

transformation 

An = rn cos ¢n 

Bn = rn sin ¢n. 
(1.11) 

Taking the time derivative of Equation (1.11), 

( 
rn ) (cos ¢n sin ¢n ) (An) . = 1 1 ., 
¢n - r sin ¢n r cos ¢n Bn 

(1.12) 

and applying this transformation to Equation (1.9) 

results in the system 

00 

i=l 

(1.13) 



Paparizos and Culick1 have shown that in the limit 

cycle one would expect the frequencies of the time 

dependent amplitudes of the acoustic modes (wn -

n ¢n(i)) to be integer multiples of each other. Since 

Wn = n WI for the case considered here, one might 

expect 

! (<pn(t) - n (P.(t)) = 0 

in the limit cycle. With this in mind it seems useful 

to replace the variables ¢n by the new variable 

Substituting this new variable into Equation (1.13) 

resul ts in the system 

Tn = 
n-l 

an Tn + ~n '" L Ti Tn-i cos("pn - '¢n-i - "pi) 

i=1 

00 

- n '" L Ti Tn+i cos( '¢n+i - "pn - "pd 

i=1 

n= 1, ... ,N 

n=2, ... ,N. 

(1.14) 

Note that '¢1 is zero by definition, so the dimension 

of the system has been reduced from 2N to 2N - 1. 

This reduction in the order of the system is possible 

because the reference value of the phase is arbitrary; 

the important quantity is the difference between the 

phases of the various modes. Thus, one can define 

all phases relative to the phase of mode one as was 

done above. 

II. Theoretical Background 

2.1 Dynamical Systems Theory 

Dynamical systems theory is a methodology for 

studying systems of ordinary differential equations. 

Many systems have been studied using dynamical 

systems theory but it has not been used to study 

nonlinear acoustics in combustion chambers. The 

important ideas of dynamical systems theory used 

in this report will be introduced in the following 

paragraphs. More information can be found in the 

book of Guckenheimer and Holmes2
. 

The first step in analyzing a system of 

nonlinear differential equations, in the dynamical 
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systems theory approach, is to calculate the steady 

states of the system and their stability. Steady 

states can be determined by setting all time 

derivatives equal to zero and solving the resulting 

set of algebraic equations. The Hartman-Grobman 

Theorem [Guckenheimer and Holmes2
, Chapter 1, 

page 13] proves that the local stability of a steady 

state can be determined by linearizing the equations 

of motion about the steady state and calculating 

the eigenvalues. A steady state is linearly stable 

if the real parts of the eigenvalues are negative and 

linearly unstable if any eigenvalue has a positive real 

part. In the neighborhood of a steady state (i.e. a 

region where the linear analysis is valid) the sytem 

will be attracted to the steady state if it is stable 

and repelled from it if the steady state is unstable. 

The Implicit Function Theorem [Ioos and 

Joseph3, Chapter 2, pages 13-14] proves that the 

steady states of a system are continuous functions 

of the parameters of the system. Thus, the 

steady states on the nonlinear acoustic equations 

are continuous functions of the linear stability 

parameters of each mode, an. Stability changes can 

occur as the parameters of the system are varied 

in such a way that the real parts of one or more 

eigenvalues of the linearized system change sign. 

Changes in the stability of a steady state lead to 

qualitatively different responses for the system and 

are called bifurcations. Stability boundaries can 

be determined by searching for steady states which 

have one or more eigenvalues with zero real parts. 

There are many types of bifurcations and each 

type has a different effect on the response of the 

system. Qualitative changes in the response of 

the system can be predicted by determining how 

many and what type of eigenvalues have zero 

real parts at the bifurcation point. Bifurcations 

for which one real eigenvalue is zero lead to the 

creation or destruction of two or more steady 

states. Bifurcations for which one pair of 

imaginary eigenvalues has zero real parts can lead 

to the creation or destruction of periodic motions. 

Bifurcations for which more than one real eigenvalue 

or more than one pair of complex eigenvalues has 

zero real parts lead to very complicated behavior 

and are beyond the scope of this report. 

Results presented in this report will also 

be concerned with the limit cycle behavior of 

dynamical systems. In particular, the pressure 

oscillations referred to as combustion instabilities 

in combustion systems are represented by limit 

cycles of the amplitude equations. Limit cyles can 

undergo bifurcations similiar to the bifurcations of 

steady states discussed above. Analytical results 

generally involve the study of the Poincare map 

of the system. Bifurcations of limit cycles occur 

when one or more eigenvalues of the linearized map 

about the limit cycle have a magnitude equal to one. 



One real eigenvalue equal to positive one signifies a 

pitchfork bifurcation, one real eigenvalue equal to 

negative one signifies a period doubling bifurcation, 

and one complex eigenvalue with magnitude equal 

to one signifies a Hopf bifurcation of the limit 

cycle. A thorough discussion of the various types of 

bifurcations of both steady states and limit cycles 

that can occur in a dynamical system is given in 

Guckenheimer and Holmes2
. 

2.2 Continuation of Steady States 

Continuation methods are a direct result of the 

Implict function theorem, which proves that the 

steady states of a system are continuous functions 

of the parameters of the system. The general 

technique is to fix all parameters of the system but 

one and trace the steady states of the system as a 

function of this parameter. For a system of ordinary 

differential equations of the form 

x = f(x; Jl), (2.1) 

where x is a vector representing the state of the 

system and Jl is a one-dimensional parameter, the 

implict function theorem proves that the steady 

states of the system are continuous functions of the 

parameter, Jl. Thus, solutions of the equation 

f(x; Jl) = 0, (2.2) 

are continuous functions of Jl. Continuation 

methods are numerical techniques for calculating 

solutions of Equation (2.2). 

The technique used in this work is called a 

pseudo arc-length continuation technique and is 

from Doedel and Kernevez4
. In this numerical 

technique the parameter, Jl, is treated as an 

unknown along with x and x and Jl are calculated 

as functions of arc length, s, along the curve of 

steady states. If one steady state of the system is 

known, a new steady state can be approximated by 

linear extrapolation from the known steady state 

(see Figure 1). The slope of the curve at the 

known steady state can be determined by taking 

the derivative of Equation (2.2) with respect to s, 

where, 

fx x' + fp. Jl' = 0, 

I dx 
x =-

ds 

I dJl 
Jl = ds' 

(2.3) 

(2.4) 

and solving for x' and Il'. The change in x and Jl in 

one step along the curve is limited by normalizing 

x' and Jl' with the relation 

(2.5) 
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The error between the approximate steady state and 

the true steady is then reduced to an acceptable 

level with Newton's method. 

The above technique is computationallyexpen

sive as it is necessary to invert the matrix (Ix, Ip.) 
to solve for x' and Jl' at each step. If two steady 

states of Equation (2.1), (xo, Jlo) and (Xl, Jll), are 

known, an approximation to the above technique 

can be used. This involves approximating Equa

tion (2.5) with the pseudo arc-length continuation 

equation 

(x - xd x~ + (Jl - Jld Jl~ - ,6..s = 0, (2.6) 

where ,6..s is the step size along the solution curve 

and xi and Jli are the values of x' and Jl' evaluated 

at (Xl, Jll)' The values of xi and Jllt can be 

approximated by (see Figure 2) 

x~ = 
(Xl - xo) 

,6..s 

Jl~ = 
(Jll - Jlo) 

,6..s 

(2.7) 

Steady states of Equation (2.1) are then calculated 

by solving 

f(x; Jl) = 0, 

(x - xdx~ + (Jl- JldJl~ -,6..s = 0, 

with the following algorithm: 

(1) Approximate x~ and Jl~ at the known 

steady state, 

(2) Approximate the unknown steady 

state; x = Xl + xi ,6..s, Jl = Jll + Jli ,6..s, 

(3) Use Newton's method to reduce the 

error between the approximate and 

true steady state to an acceptable 

level. 

2.3 Continuation of Limit Cycles 

(2.8) 

To study combustion instabilities it is also 

necessary to compute the limit cycles of a dynamical 

system. It is possible to compute the limit cycles 

of a dynamical system by discretizing the system 

in time and turning the computation of limit cycles 

into a calculation of steady states. More specifically, 

periodic orbits of Equation (2.1) are given by 

solutions of 

x - f(x(t); Jl) = ° 
x(o) - X(I) = ° (2.9) 

where I is the period of the limit cycle. Scaling time 

by the relation t 1---+ f transforms Equation (2.9) into 

x - I f(x(t);Jl) = 0, 

x(O) - xCI) = O. 
(2.10) 



All periodic orbits of Equation (2.10) have a period 

equal to one. Using the techniques discussed above 

for steady states, f.1, will be treated as an unknown 

and solutions will be calculated as a function of arc 

length, s, along the curve of limit cycles. Since the 

period of the limit cycle of Equation (2.9), I, is 

unknown another equation is needed to make the 

system solvable. The extra equation can be derived 

by noting that two periodic orbits at subsequent 

values of arc length, s, have an arbitrary phase 

difference. This is true because if x(t) is a periodic 

orbit satasfying Equation (2.10), then x(t+O") is also 

a periodic orbit satisfying Equation (2.10). Thus, if 

Xk(t) is a known periodic orbit of Equation (2.10) 

and x(t) is the subsequent unknown periodic orbit 

of Equation (2.10), the arbitrary phase difference 

between the periodic orbits can be eliminated by 

minimizing (Docdel and Kernevez4
) 

g( IT) = l' Ilx(t + IT) - Xk (t)115 dt. (2.11) 

Equating the derivative of Equation (2.11) to zero 

results in the equation 

l' (;:(t) - "'k(t)) i(t) dt = 0, (2.12) 

where x(t) = x(t + u) and u denotes the value 

of 0" that minimizes Equation (2.11). Integrating 

Equation (2.12) by parts gives the phase condition 

l' x(t) ,"k(t) dt = 0, (2.13) 

which will be used in the continuation technique. 

Note that x(O) = x(l) and Xk(O) = xk(1) as a result 

of the periodicity of the solutions. 

The pseudo arc-length continuation equation 

used for calculating the steady states of a dynamical 

system, Equation (2.6). will have to be generalized 

to calculate the limit cycle of a dynamical system. 

The change is necessary because the solution is now 

a function of time. Time dependence of the solution 

can be accounted for by calculating the quantities 

represented by Equation (2.6) over one period of the 

limit cycle, 

l' (x(t) - x.(t)) x~(t) dt 

+ (f-l- f-lk)f-l~ + (, - 'k) I~ - ~s = O. 

(2.14) 

The complete system for calculating the (k + 1 )8t 

limit cycle of Equation (2.1), (x(t)'f-l' I), when the 
kth limit cycle is known is . 

F(x(t); f-l, I) = 

6 

X-, f(x(t); f-l) 

x(O) - x(l) 

fo! x(t) Xk(t) dt 

fo! (x(t) - Xk(t)) x~(t) dt 

+(f-l- f.1,k)f-l~ + (I - 'k) 'k - bs 

= O. (2.15) 

Periodic orbits of Equation (2.1) are functions 

of time, x(t), that satisfy Equation (2.15). It is 

exceedingly difficult if not impossile to analytically 

or computationally determine the functions x(t) 

that satisfy these equations. One way of solving 

this system is to discretize the periodic orbit, x(t), in 

time. In particular, divide the period 0 :::; t :::; 1, into 

N intervals. In the /h interval define the Lagrange 

basis polynomial 

m 

aj,i(t) = II 
k=O,kf;i 

t - (tj + #; ~t) 
~~t 

m 

(2.16) 

and approximate the periodic orbit, x(t), in the /h 
interval by 

m 

Xj(t) = L aj,i (t)Uj+i/m. (2.17) 

i=O 

The key characteristic of the basis polynomials, 

aj,i(t), is that 

Thus, 
1. 

Xj (tj + - ~t) = Uj+i/m 
m 

(2.18) 

(2.19) 

and Uj+i/m represents the discrete approximation of 

the periodic solution x(t) at time, t = tj + .£ ~t. 
The method then consists of solving 

(2.20) 

for i 1, ... , m and j 1, ... , N, where 

Zj,i are the zeroes of the mth degree Legendre 

polynomial relative to the appropriate subinterval. 

By discretizing the equation in this manner, the 

new unknowns are the Uj+i/m. This technique is a 

generalization of relaxation methods (Press, et al.5
, 

p. 609), in which ordinary differential equations are 

approximated by finite difference equations on a grid 

or mesh over the domain. By using Lagrange basis 

polynomials to supply the time dependence and 

then solving the system at discrete values of time, 

the time dependence is removed from the system of 

equations to be solved. 



The integral equations in Equation (2.15) are 

discretized by a composite quadrature formula 

obtained by approximate integration over each 

subinterval of time (Press et a1. 5
, page 131). Gauss

Legendre quadratures are used in this work so the 

collocation points, Zj,i at which Equation (2.15) is 

solved were chosen as the zeroes of the mth degree 

Legendre polynomial relative to the appropriate 

subinterval. This choice of collocation points allows 

one to easily handle integral equations included in 

the dynamical system. 

The problem is then one of finding the steady 

states of a system of ordinary differential equations 

where the new variables are the Uj+i/m. This 

is much easier than finding the periodic orbits of 

Equation (2.1), and one that can be solved with 

the continuation algorithm discussed above, but this 

simplification comes at a price. Discretizing the 

system results in a large increase in the dimension 

of the system to be solved. In particular, if the 

dimension of the original system, Equation (2.1), 

is n, then Equation (2.15) has dimension 2n + 

n. Now suppose the system is discretized into 

N time intervals with m collocation points in 

each subinterval. The dimension of the discretized 

system will then be Nmn+n+2, which can be very 

large. 

The stability of the periodic orbits is deter

mined by calculating the Floquet multipliers of the 

discretized system (Guckenheimer and Holmes2
, 

page 24). Floquet multipliers of the periodic or

bits are analogous to the eigenvalues of a steady 

state. The basic technique is to linearize the sys

tem of equations [in our case Equation (2.1)] about 

the periodic orbit and calculate the solution of the 

linearized equations. This is not a trivial matter 

because you first need to determine the periodic or

bit. An alternate technique is to calculate the eigen

values of the linearized Poincare map, which are 

equivalent to the Floquet multipliers. In the present 

work, an approximation to the linearized Poincare 

map is used to calculate the Floquet multipliers of 

the orbit (Doedel and Kernevez4
, page 44). 

Bifurcations can be found by searching for 

periodic orbits that have one or more Floquet 

multipliers whose magnitude is one. A purely 

real Floquet multiplier equal to positive one would 

signify a pitchfork bifurcation, while a purely real 

Floquet multiplier equal to negative one would 

signify a period doubling bifurcation. A pair of 

complex Floquet multipliers whose magnitude is 

equal to one would signify a Hopf bifurcation of the 

Poincare map of the system a lead to the appearance 

of quasi-periodic motions (i.e. flow on a torus). 

These are commonly called torus bifurcations. 

III. Analysis of Steady States 

The steady states of Equation (1.7) are 

determined by setting the time derivatives equal 
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to zero (TJn = ~n = 0) and solving the resulting 

algebraic equations. It is easy to see that the 

zero solution, (7]n, en)=(O,O), is a steady state 

for equation (1.7) no matter how many modes 

are included in the system. This steady state 

corresponds to zero pressure perturbation in the 

combustion chamber and is the steady state of 

interest in this study. 

The stability of the zero steady state can be 

determined by calculating the eigenvalues of the 

system obtained by linearizing Equation (1.7) about 

the origin. Linearizing Equation (1.7) about the 

origin gives 

(3.1) 

Note that the acoustic modes represented by 

Equation (1.7) are linearly uncoupled, so the 

linearized system for an N-mode approximation 

will consist of N pairs of linear, uncoupled 

equations. It is thus possible to determine the 

eigenvalues of the linearized system independent of 

the number of modes included in the approximation. 

If the acoustic modes were linearly coupled, 

the eigenvalues for each mode would in general 

depend on the number of modes included in the 

approximation. The eigenvalues of the nth mode 

are 

If an is zero, then the eigenvalues of the nth mode 

are pure imaginary and a Hopf bifurcation occurs. 

This leads to the existence of limit cycles when an 
is positive for one or more modes. These limit 

cycles represent time vary amplitudes of the acoustic 

modes and are physically realized as combustion 

instabilities. 

Equation (1.7) has steady states besides the 

steady state at the origin. A pair of nonzero 

steady states can be analytically determined for the 

two mode approximation, but they are physically 

unrealistic as they are greater than one. In 

particular, for ! = 1.4, the steady states are 

given by (7]1,7]2) = (±6.3, 1.4) (Jahnke6
). These 

steady states are unstable so they will not affect 

the dynamics of the system near the origin. It 

is important to determine all the steady states 

of a system and their stability to obtain a full 

understanding of the system. If a steady state is 

stable, the system may be attracted to that steady 

state whether or not the steady state is physically 

realistic. 

Steady states other than the zero steady 

state were also found for the four- and six-mode 

approximations. These steady states were found 

using a continuation algorithm as it was impossible 



to determine the steady states analytically. Four 

nonzero steady states were found for the four

mode approximation. All these steady states were 

physically unrealistic and linearly unstable, so they 

will not affect the dynamics of the system. Six 

nonzero steady states were found for the six

mode approximation; these were also physically 

unrealistic and linearly unstable. 

IV. Results for a First-Mode Instability 

4.1 Two-Mode Time-Averaged Equations 

The two-mode time-averaged equations in polar 

coordinates can be obtained from Equation (1.13) to 

give the system of first-order ordinary differential 

equations 

1-1 = al rl - K rl r2 cos(2<Pl - ¢2) 

;PI = -81 + K r2 sin(2¢1 - ¢2) 

1-2 = a2 r2 + K ri COS(2¢1 - ¢2) (4.1) 

~2 = -02 + I< G:) sin(2,p, - <1>2). 

The angular variables ¢l and ¢2 only appear in 

Equation (4.1) in the combination 2¢1 - ¢2, which 

equals ¢2 by definition (see Section I). Based 

on this observation or by using Equation (1.14), 

Equation (4.1) can be written as the third-order 

system 

1-1 = al rl - K rl r2 cos ¢2 

1-2 = a2 r2 + K ri cos 'lj;2 

. .,.... .,.... ( ri) 
'lj;2 = (()2 - 2 (}l) + K 2 r2 - r2 sin 'lj;2. 

(4.2) 

Paparizos and Culick1 derived an equivalent form 

of the two-mode time-averaged equations using the 

transformation 

An = rn sin(¢n - n¢l) 

Bn = rn cos(¢n - n ¢I) 
(4.3) 

in place of the transformation given by Equation 

(1.11). Paparizos and Culick1 then went on to show 

that stable steady states of the two-mode time

averaged equations only exist if a2/al < -2 and 

that the steady states are given by 

rl = ~v -al a2 (1 + /32) 
K 

r2 = ~Jar (1 + (J2) (4.4) 

¢2 = tan-Ie -,8) 

where 
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It is important to note that the steady state 

of Equation (4.2) does not necessarily represent 

a steady state of the two-mode time-averaged 

equations, Equation (4.1). T!le condition that ~2 
equals zero means that 2¢1 - ¢2 equals zero but not 

necessarily that ;PI and ;P2 are individually equal to 

zero. It is easy to solve for the time dependence of 

¢l and ¢2 by substituting the steady state values of 

rl and r2 into Equation (4.1). This shows that at 

the stead state values of rl and r2, 

(4.5) 

so the steady states of Equation (4.2) represent limit 

cycles of the two-mode time-averaged equations, 

Equation (4.1). The solution of the two-mode time

averaged approximation to the nonlinear acoustics 

in a cylindrical combustion chamber is thus given 

by 

'fJI (t) = 

( 8y) v-a l a 2(1+,LJ2)sin(w1t+¢1(t)) ,+ WI 

'fJ2(t) = 

where 

and 

(, :Y)WI Jar (1 + ,82) sin(2wlt + ¢2(t)) 

(4.6) 

2 ¢IO - ¢20 = tan-l( -,8). 

Note that the time dependence of ¢l and ¢2 changes 

the frequency of the time dependent amplitude of 

the acoustic mode. 

The maximum amplitudes of 1]1 (t) and 1]2(t) in 

the limit cycle are shown in Figure 3 as functions 

of al/a2. Figure 3 shows that a limit cycle 

exists when al/ a2 is negative, but is stable only 

if al/a2 is less than negative 1/2. It is important 

to note that the amplitude of the limit cycle 

goes to infinity as al/ a2 approaches -1/2, which 

coincides with the stability boundary of the limit 

cycle. Since the original equations representing the 

time evolution of the amplitudes of the acoustic 

modes were derived using a perturbation analysis, 

only limit cycles with small amplitudes are valid 

approximations to solutions of the complete fluid 

dynamic equations. Also, time averaging is 



theoretically valid only if the amplitudes in the limit 

cycle remain small. Thus one would expect that 

the limit cycles predicted by the two-mode time

averaged equations are not valid for values of a1/ a2 

near -1/2. It is particularly important to take this 

into account when considering the validity of the 

stability boundary predicted by the two-mode time

averaged equations. 

4.2 Two-Mode Continuation Results 

Time averaging clearly simplifies the analysis of 

the two-mode approximation, but this simplification 

comes at cost. In order to apply time averaging, 

a sinusoidal time dependence is explicitly specified 

for each acoustic mode. This fixes the period of the 

limit cycle and makes it possible to integrate over 

one period. These approximations are valid near the 

Hopf bifurcation point (i.e. for &1 < < 1), but as &1 

becomes larger the approximation becomes less and 

less valid. 

Continuation methods make it possible to 

compute the limit cycles of Equation (1.7) as a 

function of one of the parameters of the system 

without resorting to time averaging. In this 

section, the continuation technique is used to 

determine the existence and stability of limit cycles 

of Equation (1.7) as a function of the linear 

damping parameter of the fundamental acoustic 

mode, a1. Limit cycles of Equation (1.7) will exist 

as a result of the Hopf bifurcation that occurs 

when a1 is zero. This Hopf bifurcation point is 

used as the starting point for the continuation 

method. Figure 4 shows the results obtained by 

applying the continuation method to the two-mode 

approximation. The maximum amplitudes of the 

first and second acoustic modes in the limit cycle 

are plotted as functions of aI, along with the period 

of the limit cycle, T, and the maximum amplitude 

of the pressure fluctuation at the head of the 

combustion chamber, P'(x = 0, t). The maximum 

ampitude of the pressure fluctuation at the head of 

the combuation chamber is used as a measure of 

the validity of the perturbation equations. Results 

in which the pressure perturbation is greater than 

one half of the mean chamber pressure are probably 

not valid. The stability of the limit cycle is 

also indicated in Figure 4; stable limit cycles are 

represented by solid lines while unstable limit cycles 

are represented by dashed lines. 

Results from the time-averaged equations are 

also plotted in Figure 4 to show the differences 

between the results obtained by the continuation 

method and the results obtained by time averaging. 

Results from the two methods are practically the 

same for values of al less than 120. Note that the 

change in the period of the limit cycle as a function 

of al is poorly approximated by the time-averaged 

equations. Recall that the change in the period 

of the limit cycle predicted by the time-averaged 
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equations occurs because the asymptotic motion of 

the time-averaged equation is a limit cycle. 

The limit cycle behaviors predicted by the con

tinuation method and the time-averaged equations 

are significantly different for values of al greater 

than 120. The continuation method predicts that 

a turning point bifurcation occurs for al equal to 

131, beyond which no limit cycle will exist. The 

limit cycle also becomes asymmetric near the turn

ing point. This is particularly evident in the plot of 

the pressure perturbation at the head of the combus

tion chamber. The limit cycle behavior predicted 

by the time-averaged equations remains symmetric 

by definition. Also note that the amplitude of the 

pressure perturbation at the turning point is close 

to one-half of the mean chamber pressure so the 

perturbation expansion used to obtain the acoustic 

equations may not be valid. 

4.3 Four-Mode Time Averaged Results 

The four-mode time-averaged equations are 

obtained by using Equation (1.9) for n = 1,2,3,4. 

Recall from the previous discussion that the 

asymptotic motion of the time-averaged equations 

is a limit cycle arising from the Hopf bifurcation 

that occurs when al equals zero. For the two-mode 

case, it was possible to turn the problem from one of 

determining the limit cycles of a fourth-order system 

to one of determining the steady states of a third

order system by noting that the phases of the time 

dependent amplitudes, </>1 and </>2, only occur in the 

combination 2</>1 - </>2, States of the resulting third

order system could then be determined analytically. 

By using Equation (1.14) to obtain the time

averaged equations for the four-mode approxima

tion in polar coordinates, one obtains a seventh

order system. It is not possible to determine the 

steady states of this system analytically, however it 

should be possible to determine them using a contin

uation method. This has not been accomplished at 

this point, but should be in the near future. The 

main difficulty is that the equations are singular 

when any rn are zero, which is exactly the value of 

rn at the Hopf bifurcation, where one would expect 

the nonzero steady states of the averaged system to 

initially appear. It is certainly possible to continue 

the limit cycles of the averaged system in rectangu

lar coordinates, but this defeats the purpose of time 

averaging. 

4.4 Four-Mode Continuation Results 

The results obtained by applying the continu

ation technique to the four-mode approximation to 

Equation (1.7) were significantly different than the 

results for the two-mode approximation. Figure 5 

shows the limit cycle behavior of the four-mode ap

proximation as a function of al. The results for the 



corresponding two-mode approximation are shown 

in Figure 4. The most obvious difference between 

the two sets of results is that the stability bound

ary that occurred at the turning point bifurcation 

for the two-mode approximation does not exist for 

the four-mode approximation. For the four-mode 

approximation, a stable limit cycle exists for the 

entire range of values of a1 studied. 

In hindsight, it is not entirely surprising that 

the stability boundary determined by the two

mode approximation is sensitive to the number 

of acoustic modes included in the approximate 

system. The two-mode approximation, in which 

energy is produced by the linearly unstable first 

mode, 1]1, then transported to the st~bl: secon.d 

mode, 1]2, where it is subsequently dISSIpated IS 

a gross approximation to the energy cascade that 

occurs in fluid dynamical systems. For slightly 

unstable systems (i.e. a1 is small) the two

mode approximation is sufficient as can be seen 

by comparing Figure 4 and Figure 5. For more 

unstable systems (larger values of ad it becomes 

difficult for the second mode to dissipate the energy 

produced by the first mode. At some point it 

becomes impossible for the second mode to dissipate 

the energy produced by the first mode. As a result, 

the turning point bifurcation occurs beyond which 

no limit cycles exist. 

In the four-mode approximation, the third and 

fourth acoustic modes are also able to dissipate 

energy, resulting in a system which contains. stable 

limit cycles for larger values of a1. When a1 IS near 

131, the value at which the turning point occurs 

in the two-mode approximation, the amplitudes of 

the third and fourth acoustic modes are about ten 

percent of the mean chamber pressure. This is 

smaller than the amplitude of the second acoustic 

mode, but clearly significant to the energy balance 

in the limit cycle. Also note that the linear damping 

parameters of the higher-frequency modes are 

generally larger than the linear damping parameters 

of the lower-frequency modes (see Table I). Thus, 

as typical of fluid mechanical systems, higher 

frequency modes are more efficient at dissipating 

energy than lower frequency modes. 

Figure 6 shows the time dependent amplitudes 

of the first two acoustic modes. The amplitudes 

seem to have sinusoidal time dependence as was seen 

in the two-mode approximation. It is interesting 

to note that the time dependent amplitude of the 

second acoustic mode has a DC offset from zero 

(see Figure 6b). This seems to be the case for all 

values of a1 with the offset increasing for increasing 

values of a1. The time dependent amplitude of the 

pressure fluctuation at the head of the combustor is 

also asymmetric about zero for values of a1 larger 

than 200. It is important to note however that 

the maximum amplitude of the positive pressure 

fluctuation is larger than the mean pressure in the 
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chamber, so the perturbation expansion used to 

derive the nonlinear acoustic equations is probably 

not valid. Also note that the maximum amplitude 

of the negative pressure fluctuation becomes larger 

than one when a1 reaches 300, which is physically 

impossible. This underscores the importance of 

monitoring the amplitude of the pressure fluctuation 

to determine whether the results are physically 

realistic. 

4.5 Six-Mode Continuation Results 

In view of the major differences between 

the two- and four-mode approximations it seems 

prudent to determine the limit cycle behavior of 

the six-mode approximation to determine whether 

or not there are differences between the limit cycle 

behavior of the four- and six-mode approximations. 

Figure 7 shows the maximum time dependent 

amplitudes of the first two acoustic modes as 

functions of al for the six-mode approximation. 

At first glance, the results for the six-mode 

approximation seem similiar to the results for the 

four-mode approximation. A limit cycle exists 

and is stable for the entire range of values of 

al that were analyzed. On closer inspection 

however, one sees that the magnitude of the 

time dependent amplitudes is smaller for the 

six-mode approximation than for the four-mode 

approximation. This is particularly evident for 

values of al larger than 200. 

The rapid increase in the magnitude of the time 

dependent amplitudes that occurred near al equal 

to 200 in the four-mode approximation is absent 

from the results for the six-mode approximation. 

In particular, the magnitude of the pressure 

fluctuation at the head of the chamber for al 

equal to 300 is twice as large for the four-mode 

approximation as for the six-mode approximation. 

This occurs because when more modes are included 

in the truncated system more modes are available 

to dissipate energy. 'iVhen an insufficient number of 

modes are included in the approximation each mode 

must dissipate the amount of energy it naturally 

would, plus some of the energy that would naturally 

be dissipated by higher-frequency modes. Thus 

the required number of modes to include in an 

approximation depends on the degree of instability 

of the system (i.e. the value of al). For larger values 

of a1 it is necessary to include more modes in the 

approximation. 

V. Results for a Second-Mode Instability 

5.1 Two-Mode Approxilnation 

The solution for the two-mode time-averaged 

equations is the same for a first- or second-mode 

instability, so the solution for the two-mode time

averaged system with an unstable second mode 



is given by Equation (4.6). Stability boundaries 

for the two cases are different however. For the 

second-mode instability the solution is stable when 

(Paparizos and Culick1
) 

UP - 1) - )(3 (32 + 1)«(32 - 1) a2 

«(32 + 1) < a 1 < O. 

Generally the flow of energy in fluid mechanical 

systems is from low-frequency modes to high

frequency modes. In the present case the second 

mode is unstable so in the two-mode approximation 

energy is forced to flow from a higher-frequency 

mode to a lower-frequency mode. This is not 

physically realistic so it is unlikely that the two

mode approximation is a valid model of the fluid 

mechanics when the second mode is unstable. The 

insufficiencies of the two-mode approximation can 

be seen more clearly by looking at the asymptotic 

expansion of the two-mode approximation. Using 

Equation (1.7) it can be shown that the two-mode 

system is given by 

"'1 = 6 
~1 = 2a16 - (1- 281)7]1 

_ (3-2,) c c _ (5(,-1)) 
2, ~1 ~2 2, 7]17]2 

"'2 = ~2 
~ 2 = 2 a2 6 - 4 (1 - 82 ) 7]2 

+ (, + 3) c2 _ (2.=!.) 2 
2, ~1 2, 7]1' 

(5.1) 
Since small initial disturbances from the zero steady 

state will grow linearly it is useful to examine the 

s~lutio.n. of the linearized form of Equation (5.1). 
Lmeanzmg Equation (5.1) about the origin results 

in the system 

(f) = 

1 0 
2 &1 0 

o 0 

o -4 (1 - 82 ) 

which has eigenvalues 

Al,2 = al ± i /1- 281 - ar = al ± i 01 

A3,4 = a2 ± i /1- 82 - (a2/2)2 = a2 ± i02 • 

Thus the solution to the linearized system has the 

form 

U~) = e;,t [ (::) sin O,H (::) cos O,t] 

( ~:) = e;,t [ ( ::) sin 02t + (::) cos 02t]. 

(5.3) 
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Solving for the constants ai and bi , i = 1, ... , 4, 

for a2 equal to zero shows that the asymptotic 

solution of the two-mode approximation for &2 < < 
1 is 

(5.4) 

Only the second mode is linearly excited, as one 

would expect, because the acoustic modes are 

linearly uncoupled. Thus if the second mode is 

to excite the first mode it must do so through the 

nonlinear terms. An examination of the two-mode 

approximation [see Equation (5.1)] shows that the 

first mode is nonlinearly coupled to the second mode 

through the terms 66 and 7]17]2. With this form of 

coupling it is not possible for the second mode to 

excite the first mode if the first mode is initially 

unexcited. This is not the case for energy transfer 

from the first mode to the second mode. In that 

case the nonlinear coupling terms are 7]2 and c2 
. 1 ~1' 

so If the first mode becomes excited energy will be 

transported to the second mode. This corresponds 

to the physical situation where energy is transported 

from low-frequency modes to high-frequency modes. 

Based on the above discussion it seems 

reasonable to assume that modes of order greater 

than two must be included in the analysis of 

the second-mode instability. Enough modes 

must be included in the approximation to allow 

for the natural flow of energy between modes. 

By expanding Equation (1.7) for a four-mode 

approximation one can show that nonlinear terms of 

the form 1]~ and ~~ transfer energy from the second 

mode to the fourth mode when only the second 

mode is excited. Thus the natural mode of energy 

transfer for the second-mode instability is from the 

unstable second mode to the stable fourth mode. 

5.2 Four-Mode Tiule-Averaged Results 

The four-mode time-averaged equations deter

mined from Equation (1.9) are 

Al = al Al + 81 Bl 

- I\, [AI A2 + Bl B2 + A2 A3 + B2 B3 

+A3 A 4 +B3 B 4] 

ih = al B 1 - 81 Al 

+ fC [Bl A2 - Al B2 + B2 A3 - A2 B3 

+ B3 A4 - A3 B4] 

A2 = &2 A2 + 82 B2 

[1 (2 2 + 21\, 2 Al - B 1 ) - Al A3 - Bl B3 

- A2 A4 - B2 B4] 



jh = a2 B2 - B2 A2 

+ 2K[Al Bl + A3 Bl - Al B3 + A4 B2 - A2 B4] 

A3 = a3 A3 + B3 B3 

+ 3K [Al A2 - Bl B2 - Al A4 - Bl B4] 

jh = a3 B3 - B3 A3 

+ 3K [Al B2 + A2 Bl + A4 Bl - Al B4] 

A4 = a4 A 4 + B4 B4 

+ 4K[Al A3 - Bl B3 + ~ (A~ - B~)] 

B4 = a4 B4 - B4 A4 

+ 4K [Al B3 + A2 B2 + A3 Bd 

where 

,+1 
K=--. 

8, 

(5.5) 

For the case of a second-mode instability, an 

initial disturbance of the second acoustic mode will 

grow and result in an increase of energy in the 

system. The energy produced by the unstable 

second mode will be transported to the other 

acoustic modes throught the nonlinear coupling 

terms. An examination of Equation (5.5) shows 

that if the first, third, and fourth acoustic modes are 

initially unexcited while the second acoustic mode 

is excited, then energy will be transported from the 

second mode to the fourth mode but no energy will 

be transported from the second mode to either the 

first mode or the third mode. This can be seen by 

setting Al , B l , A 3 , B3, A4, and B4 equal to zero in 

Equation (5.5) to obtain 

Al = 0 

Bl = 0 

A2 = a2 A2 + B2 B2 

ih = a2 B2 - B2 A2 

A3 = 0 

B3 = 0 

. [2 2] A4 = 2K A2 - B2 

. [ 1 
B4 = 4 K A2 B2 J . 

(5.6) 

Further examination of Equation (5.5) reveals that 

if the second and fourth modes are excited but the 

first and third modes are initially unexcited, then 

the first and third modes will remain unexcited for 

all time. From this simple analysis it appears that 

in the time averaged equations the even acoustic 

modes are unable to excite the odd acoustic modes. 

Since the odd acoustic modes can remain 

unexcited when the even acoustic modes are excited 

one can look for steady states of Equation (5.5) 

for which A l , B l , A3, and B3 are identically zero. 
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Equation (5.5) then reduces to the two-mode system 

A2 = a2 A2 + B2 B2 - 2 K [A2 A4 + B2 B4] 

B2 = a2 B2 - B2 A2 + 2 K [A4 B2 - A2 B4] 

. ~ [2 2] 
A4 = a4 A4 + ()4 B4 + 2 K A2 - B2 

(5.7) 

B4 = a4 B4 - B4 A4 + 4 K [A2 B2] 

which has the same form as the two-mode time

averaged system composed of the first and second 

acoustic modes. Thus the solution of the two-mode 

system composed of the first and second modes, 

Equation (4.6), can be used to obtain the solution 

to Equation (5.7). Replacing the subscripts 1 and 2 

in Equation (4.6) with 2 and 4, respectively, and 

replacing K by 2K the solution to the four-mode 

time-averaged approximation can be shown to be 

1]l(t) = 0 

1]2(t) = 

( 8,) V - fr 2 fr4 (1 + {P) sin (W2t + ~2(t)) 
,+ 1 W2 

1]3(t) = 0 

1]4(t) = 

8,) Jfr~(1+/J2) sin(2w2t+~4(t)) 
(, + 1 W2 

(5.8) 

where 

and 

2~20 - ~40 = tan-l(-,B). 

The analysis of this solution is the same as that 

given in Section 4.1 for the case of an unstable first 

mode and a stable second mode. 

5.3 Four-Mode Continuation Results 

Results for the four-mode approximation are 

obtained by expanding Equation (1.7) for n = 
1,2,3,4 and then using the continuation method to 

determine the limit cycles of the resulting eighth

order system. A branch of limit cycles arises 

from the Hopf bifurcation point that occurs when 

fr2 is zero. Figure 8 shows the results of the 

continuation method along with the results from the 

time-averaged equations. Recall that the four-mode 

time-averaged equations were solved by setting the 

first and third modes equal to zero and solving the 

resulting two-mode system consisting of the second 

and fourth modes. 

Figure 8 shows that the time dependent 

amplitudes of the first and third modes are zero 



in the limit cycles predicted by the continuation 

method. This matches the solution of the time

averaged equations. The maximum amplitudes of 

the second and fourth modes in the limit cycle are 

essentially the same for the time averaged and non

time averaged systems when CY2 is less than 75. For 

values of CY2larger than 75, the limit cycles predicted 

by the two methods start to diverge. The maximum 

amplitudes of 1]2 and 1]4 in the limit cycle predicted 

by the continuation method are larger than the 

maximum amplitudes of 1]2 and 1]4 predicted by 

time averaging. Stability boundaries predicted by 

the two methods are substantially different for the 

two systems. The stability boundary predicted by 

the continuation method occurs at CY2 equal to 109, 

while time averaging predicts a stability boundary 

at CY2 equal to 140. Thus while time averaging 

predicts a stability boundary when CY4/ CY2 equals 

-2, the continuation method predicts a stability 

boundary when CY4/CY2 equals -2.6. 

5.4 Six-Mode Continuation Results 

Figure 9 shows the maximum amplitudes of the 

acoustic modes in the limit cycle as functions of 

CY2 for the six-mode approximation, corresponding 

to those given in Figure 8 for the four-mode 

approximation. For values of a2 less than 

84 the limit cycles for the four- and six-mode 

approximations are similiar. The odd modes remain 

unexcited for both systems, while the even modes 

increase in amplitude as a2 increases. For values of 

CY2 greater than 84, the limit cycles of the four- and 

six-mode approximations are qualitatively different. 

A pitchfork bifurcation of the limit cycles of the six

mode approximation occurs at a value of CY2 of 84. 

This pitchfork bifurcation results in the formation 

of a stable branch of limit cycles on which the odd 

modes are excited. Thus for values of CY2 greater 

than 84, one would expect the amplitudes of the 

odd modes to be nonzero in the limit cycle. This 

is not the case for the four-mode approximation. In 

that case the odd modes remained zero for all values 

of CY2 studied. This should serve as a warning about 

making a priori assumptions about the solutions of 

nonlinear dynamical systems. If the odd modes had 

been assumed zero for all limit cycles in the six

mode continuation results, the pitchfork bifurcation 

would not have been found. 

As a result of the pitchfork bifurcation, two 

separate branches of limit cycles exist for values 

of CY2 greater than 84. On what will be called the 

primary branch, the odd modes have zero amplitude 

in the limit cycle. This branch exists for all values 

of CY2 and appears as a result of the Hopf bifurcation 

that occurs when G'2 equals zero. The limit cycles on 

this branch are stable up to the pitchfork bifurcation 

that occurs at C¥2 equal to 84, and unstable for 

values of CY2 larger than 84. For the branch of 

limit cycles that occur as a result of the pitchfork 
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bifurcation, here called the secondary branch, the 

odd modes have nonzero amplitudes. Since the odd 

modes are linearly stable, and thus able to dissipate 

energy when they are excited, the amplitudes of the 

even modes are smaller on the secondary branch 

than on the primary branch. 

The secondary branch is linearly stable for 

values of CY2 from 84 to 155. A torus bifurcation 

occurs on the secondary branch at a value of a2 

of 155 causing the limit cycles to be unstable 

when C¥2 is greater than 155. As a result 

of the torus bifurcation, a branch of toroidal 

solutions will appear for values of CY2 greater than 

155. Figure 10 shows a time simulation for a2 

equal to 160. Multiple frequencies are clearly 

evident in the time simulation. The high-frequency 

content corresponds to the acoustic frequency of 

the combustion chamber, while the low-frequency 

content is a result of the torus bifurcation. It 

is difficult to assign any physical meaning to the 

low-frequency oscillations as the toriodal motion is 

highly nonlinear. Figure 11 shows a Poincare map of 

the time simulation of Figure 10. The closed orbit in 

Figure 11 clearly shows that the motion is toriodal 

for CY2 equal to 160. 

For values of CY2 larger than 160 the time 

dependent amplitudes of the acoustic modes seem to 

become chaotic. Figure 12 shows a time simulation 

for G'2 equal to 201.55. This value of CY2 is larger 

than the value at which the toroidal motion occurs, 

so the chaotic type behavior could be the result 

of a bifurcation of the toroidal motion. There is 

no simple way to determine whether the toroidal 

motion undergoes a bifurcation; this remains an 

open question. Note that any possible bifurcation 

of the toroidal motion occurs when (¥2 is greater 

than 160, which corresponds to large values of ryn 

and en. Thus the six-mode approximation may 

not be sufficient to describe the nonlinear acoustic 

behavior in this region. Adding more modes to the 

approximation may change the qualitative behavior 

of the system, as was shown above, so the next task 

will be to analyze a system of more than six mode 

to determine whether or not the qualitiative nature 

of the limit cycles changes. 

VI. Conclusions 

One major result of this analysis has been to 

show that for a first-mode instability the stability 

boundaries predicted with the two-mode time

averaged equations are artifacts of the two-mode 

approximation. A stability boundary is also found 

when the continuation technique is used to calculate 

the limit cycles of the two mode non-time averaged 

equations, so the existence of the stability boundary 

is charactelistic of the two-mode approximation 

and is not the result of time averaging. Time 

averaging does introduce some error as there is a 



significant difference between the values of (Xd (X2 

at which the stability boundary occurrs for the 

time-averaged and non-time averaged two-mode 

approximations. There is also a difference in the 

maximum amplitudes of the limit cycles for the two 

sets of equations. 

No stability boundary is found for the four

or six-mode continuation results for the case of an 

unstable first mode. A limit cycle exists and is 

stable for all values of (Xl examined in this study. 

There is a significant difference in the magnitude 

of the time dependent amplitudes of the acoustic 

modes in the limit cycle for the four- and six-mode 

approxmations for large values of (Xl. Figure 13 

shows a comparison of the maximum positive 

amplitude of TJl in the limit cycle as a function of 

(Xl for the two-, four-, and six-mode approximations. 

In the neighborhood of the Hopf bifurcation point 

((Xl =0) the results of the various approximations 

are almost identical. The results of the different 

approximations begin to diverge when (Xl becomes 

larger than 20, but they remain relatively close for 

values of (Xl less than 100. Results of the four

and six-mode approximations diverge rapidly as (Xl 

becomes larger than 160. Figure 13 clearly shows 

that for larger values of (Xl (i.e. more unstable 

systems) it is necessary to include more modes in 

the approximate system. More modes are necessary 

to dissipate the additional energy produced by the 

lTIOre unstable first mode. 

In the case of the second-mode instability, it 

has been found that the two-mode approximation 

consisting of the first and second acoustic modes 

is not physically realistic. This system does not 

allow for the natural transfer of energy from low

frequency to high-frequency modes, and it is not 

possible for the second mode to excite the first 

mode if the first mode is initially unexcited. An 

examination of the equations representing the time 

evolution of the time dependent amplitudes of the 

acoustic modes shows that when the second acoustic 

mode is unstable, linear energy transfer will occur 

from the unstable second mode to the stable fourth 

mode. There is no mechanism with the present 

dynamical system for the second and fourth acoustic 

modes to excite the first and third acoustic modes 

14 

if the first and third acoustic modes are initially 

unexcited. Thus the four-mode approximation 

reduces to a two-mode system consisting of the 

second and fourth modes. 

Results for the six-mode approximation with a 

second-mode instability predict limit cycle behavior 

not seen before. A pitchfork bifurcation of the 

primary branch occurs for (X2 equal to 84 and results 

in a new branch of limit cycles that have odd modes 

with nonzero amplitudes in the limit cycle. Thus for 

(X2 greater than 84 it is possible for energy to flow 

from the even modes to the odd modes. This new 

branch of limit cycles contains a torus bifurcation 

resulting in quasi-periodic motions. Similiar to the 

case of the first-mode instability, the number of 

modes required in an analysis of the second-mode 

instability depends on the degree of instability of 

the system. 
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0:'1 = 0 ---+ 300 8-
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0:'4 = -889.4 8-
1 

(}1 = 12.9 rad/8 

(}4 = -131.0 rad/8 

W1 = 5654.87 rad/8 

0:'1 = -84.9 8-
1 

0:'4 = -279.4 8-
1 

(}1 = -66.7 rad/8 

(}4 = 46.8 rad/8 

W1 = 2827.435 rad/8 

TABLE I 

First-Mode Instability 
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1 

O:'s = -1262.7 8-
1 

(}2 = 46.8 rad/8 

(}s = -280.0 rad/8 

Second-Mode Instability 

0:'2 = 0 ---+ 300 8-
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O:'s = -329.7 8-
1 

(}2 = 12.9 rad/8 

(}s = 8.8 rad/8 
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0:'3 = -583.6 8-
1 

0:'6 = -1500 8-
1 

(}3 = -29.3 rad/8 

(}6 = -300.0 rad/8 

0:'3 = -161.0 8-
1 

0:'6 = -520.2 8-
1 

(}3 = 108.2 rad/8 

(}6 = -29.3 rad/8 



Figure 1: Graphical representation of continuation method. 
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Figure 2: Graphical representation of approximation to the pseudo arc-length 

Continuation equation. 
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Figure 10: Time simulation for the six mode approximation with 0:'2 = 160. 
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Figure 12: Time simulation for the six mode approximation with 0'2 = 201.55. 
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