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ABSTRACT The absence of the global best component in the update equation of the conventional firefly

algorithm degrades its exploration properties. This research proposes multi-update position criteria to

enhance the exploration properties of the conventional firefly technique while including the effect of the

global best solution on the movement of the fireflies in the search space of the objective function. Moreover,

the dynamic search space squeezing is applied to constrict the movement of the fireflies within the certain

limits to avoid their oscillatory movement as the solution approaches towards the global best by determining

the optimal trajectory for each firefly. The robustness of the suggested firefly algorithm is tested on a hybrid

energy system consisting of thermal, hydroelectric, and Photovoltaic (PV) energy source. The intermittent

nature of the PV energy source is explained using fractional integral polynomial model and Auto Regressive

Integrated Moving Average (ARIMA) model. The main dispatch problem is successfully computed using

both the modified firefly and the simple firefly algorithm by determining the optimal power share of each

energy source for different scheduling intervals. The suggested operational strategy reduces the overall

generation cost of the system while preserving the various system constraints. Due to the stochastic nature

of the meta-heuristic techniques, the two suggested algorithms are compared statistically for different test

cases using the independent t-test results. The statistical comparison suggests that the performance of the

modified firefly is superior to its conventional counterpart as the evaluation parameters of themodified firefly

converge to relatively lower value as compared to the parameters of the simple firefly algorithm.

INDEX TERMS Modified firefly algorithm, auto regressive integrated moving average model, firefly

algorithm, hybrid energy systems, independent t-test results.

I. INTRODUCTION

The distributed generation systems such as photovoltaic

energy source and wind energy systems are now being exten-

sively used with the conventional sources to meet the demand

value over a particular scheduling interval [1]–[3]. The

renewable energy systems do not have emission and environ-
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mental constraints and can be added to the conventional grid

without having an adverse effect on the atmospheric condi-

tions. The fundamental problemwith such a dense power sys-

tem having both conventional and non-conventional energy

sources is to devise an efficient operational strategy to

reduce the overall generation cost while meeting the sys-

tem constraints. This constitutes a highly non-linear and

non-convex optimization problem in the field of optimiza-

tion theory [4]–[7]. The optimization problem dealing with
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the optimal power scheduling of two major conventional

sources, the hydroelectric source and the thermal energy

source is known as the Short Term Hydro-Thermal Schedul-

ing (STHTS) problem in literature. Several deterministic and

heuristic techniques are suggested by the authors over the

years to find the global optimum of the aforementioned prob-

lem [7], [8]. However, the addition of the distributed energy

sources to the conventional grid requires more advanced opti-

mization methods to efficiently solve the economic dispatch

of the hybrid systems. Moreover, to handle the intermittent

nature of the renewable energy sources and their dependence

on the external atmospheric conditions, certain forecasting

techniques are required to accurately predict the share of the

renewable sources towards the economic dispatch.

A. RELEVANT LITERATURE

The work in [9] uses the non-linear programming to solve

the non-convex hydro-thermal scheduling problem and com-

pares its performance with the Cuckoo Search Algorithm

(CSA), Particle Swarm Optimization (PSO) and Artificial

Bee Colony (ABC) algorithm. The suggested non-linear pro-

gramming method outperforms the mentioned algorithms

by giving lower generation cost of the system for two test

cases having different cost characteristics. The work in [10]

proposes a hybrid ABC-BAT algorithm for solving the short

term hydro thermal problem having multiple thermal units

and compares its performance with the hybrid techniques

like ABC-PSO and ABC-Quantum Evolutionary (ABC-QE)

method. The suggested hybrid ABC-BAT algorithm outper-

forms the remaining hybrid techniques by giving lower mean

generation cost. The work in [11] proposes a multi-objective

economic emission dispatch problem having hydro and ther-

mal generation sources and solves the suggested problem

using the Multi-Objective Hybrid Grey Wolf Optimizer

(MOHGWO). The suggested MOHGWO outperforms the

MOHPSO and Nondominated Sorting Genetic Algorithm

III (NSGA-III) by giving lower generation cost of the sys-

tem. The work in [12] solves the hydro-thermal scheduling

problem using the Lightning Attachment Procedure Opti-

mization (LAPO) while considering the transmission losses

and the valve point effect loading. The suggested LAPO

surpasses the methods like Teaching Learning Based Opti-

mization (TLBO) algorithm, PSO and the ABC algorithm.

The work in [13] introduces a novel Crisscross Optimiza-

tion (CSO) algorithm to solve the hydrothermal scheduling

problem having multiple reservoirs connected in a cascade

connection. The suggested CSO outperforms the techniques

like Gravitational Search Algorithm (GSA), Differential Evo-

lutionary (DE) Programming and PSO techniques. Similarly,

the references [14]–[17] discuss the STHTS problem while

using the different optimization techniques.

The references [9]–[17] discuss the optimal dispatch of a

conventional STHTS problem using different meta-heuristic

and deterministic methods. However, the addition of the

renewable energy systems requires the upgradation of the

optimization problem to include the effect of the distributed

generation systems to the conventional grid. The work

in [18] suggests the dispatch of a hybrid energy system

consisting of wind, thermal and PV energy source. The

authors consider the different modes for the dispatch prob-

lem such as the low emission mode, the energy saving

mode and the high efficiency mode of operation for the

suggested hybrid energy system. The work in [19] formulates

a multi-objective economic emission dispatch problem for

a hybrid energy system consisting of wind, PV, and hydro

generation sources. The authors suggest a Multi-Objective

Moth-Flame Optimization (MOMFO) technique to solve

the proposed multi-objective optimization problem while

using the IEEE 39-bus system. The work in [20] suggests

a bi-level model for optimal scheduling of the renewable

energy sources. The authors formulate an optimization prob-

lem while considering the planning and operational layers for

the wind-solar system. The work in [21] suggests dynamic

dispatch problem for system consisting of thermal, solar and

wind energy sources while considering the underestimation

and overestimation cost models for the distributed generation

sources. The authors suggest an improved fireworks algo-

rithm to solve the suggested dispatch problem. The references

[22]–[26] also discuss the economic dispatch of a hybrid

energy system consisting of both conventional and renewable

energy sources.

B. RESEARCH GAP

The references [18]–[25] discuss the economic dispatch of

the hybrid energy systems without providing any mathemati-

cal details for obtaining the used forecast results in their find-

ings for distributed generation sources. The authors in [26]

have suggested an efficient methodology to compute the solar

forecast results, but their findings are limited to a single PV

plant and total scheduling duration of nine hours. The firefly

algorithm introduced in [26] to solve the economic dispatch

of multi generation systems has poor global search mecha-

nism which can result in the convergence of the algorithm

towards local minimum. The firefly techniques introduced in

[27], [28] consider the dynamic variation of the algorithm’s

parameters but the suggested techniques lack the exploration

phase which can result in the premature convergence of the

algorithm towards local optimum. The firefly technique dis-

cussed in [29] again uses the simple update criteria without

considering the effect of the global best solution on the move-

ment of remaining fireflies. The suggested firefly algorithm

in [31] introduces a hybrid firefly-APSO algorithm to solve

the dispatch problem, but the authors have not considered

a balance relation between the exploration and exploitation

phase, rather a simple global best term is introduced in addi-

tion to the local search. To introduce the global search for the

conventional firefly technique, the authors in [34], [35] have

introduced a firefly technique hybridized with the conven-

tional PSO algorithm. Although, it is an efficient technique to

solve the simple benchmark functions, but due to the complex

structure of the two algorithms combined together, it will be

highly inefficient for the large scale optimization problems
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and can result in larger convergence time. Moreover, the

above mentioned references have not considered an efficient

strategy to keep the trajectory of the fireflies towards the

global best value and avoid their oscillatory movement as the

solution approaches towards the final value. Moreover, while

comparing the different techniques suggested by the authors

in [9]–[25], no statistical comparison is provided in order to

statistically prove the significance of the suggested improved

algorithm over the conventional techniques for a particular

optimization problem. The authors in [26] have compared the

suggested algorithms statistically using the independent t-test

results, but their comparison study is limited to particular

sample and population size.

C. MAJOR CONTRIBUTIONS

Based on the mentioned shortcomings of the literature, the

major contributions of the suggested research are as fol-

lows:

1) A novel type of hydro-thermal-solar scheduling prob-

lem is proposed with multiple solar units and consid-

eration of the intermittent nature of the solar energy

source.

2) Introduce multi-update movement criteria for conven-

tional firefly algorithm to balance its exploration and

exploitation properties.

3) Introduce the concept of dynamic search space squeez-

ing for conventional firefly technique to avoid the oscil-

latory movement of the fireflies.

4) A detailed design is proposed for forecasting the power

share of the multiple PV plants of different rated

capacity while considering the effect of the external

atmospheric conditions on the performance of the PV

module.

5) The proposed modified firefly algorithm is statistically

compared with the conventional firefly technique while

considering the effect of the sample size and population

size on the convergence behavior of the algorithms.

The remaining paper is arranged as follows. The

Section 2 provides the overview of the simple and modified

firefly algorithm along with the suggested system config-

uration. The Section 3 discusses the complete design of

the photovoltaic energy source. The Section 4 explains the

methodology of the simple and modified firefly for the sug-

gested dispatch problem along with the results for various test

cases. The Section 5 compares the two algorithm statistically

using the independent t-test results. The Section 6 highlights

the major findings of the proposed research.

II. META-HEURISTIC OPTIMIZATION AND PROPOSED

SYSTEM CONFIGURATION

Meta-heuristic optimization algorithms are gaining popular-

ity in the domain of optimization theory as they are easier

to implement as compared to the deterministic methods for

finding the optimal solution of non-convex, highly non-linear,

multi-modal, and complex objective functions. Moreover, the

convergence of the meta-heuristic techniques towards the

global optimum solution with lesser computational effort

than the conventional methods like Gradient Search, Newton

Raphson (NR) and Lagrange multiplier make them extremely

useful to solve the various complex optimization problems.

This research uses a modified firefly algorithm by suggesting

parametric and structural changes in the conventional firefly

technique. The firefly algorithm is selected over the other

conventional meta-heuristic methods, as it is easier to execute

formajority of the optimization problems and provides a good

approximate of the global optimum solution [27]–[30].

A. CONVENTIONAL FIREFLY ALGORITHM

The flashing phenomenon of the fireflies in nature explains

the basic working of the simple firefly algorithm. The light

intensity/brightness of each firefly which depends upon the

fitness value of the objective function dictates the movement

of a lesser attractive firefly towards a brighter firefly. Each

firefly represents a possible solution vector for the given

optimization problem and the dimensions of each firefly

are determined according to the decision variables of the

objective function. The inverse square law as defined in (1)

explains the dependence of the light intensity L at a distance

r from the source.

Lr =
Ls

r2
(1)

where, Lr represents the light intensity evaluated at a distance

r from the source. Ls shows the intensity of the source.

To consider the effect of the medium on the intensity of the

fireflies, the brightness value of the fireflies in terms of the

medium’s absorption coefficient δ is given by (2).

L = Loe
−δr (2)

where, Lo corresponds to the intensity of the fireflies at a

distance r = 0 from the source. There exists a singular

solution for r = 0 in (1), therefore in order to avoid the

singularity, the above two equations can be combined to

define the light intensity of the fireflies as follows:

L(r) = Loe
−δr2 (3)

The attractiveness of the fireflies β is directly proportional

to the light intensity of the fireflies. Therefore, we can define

the attractiveness value by the following relations:

β = βoe
−δr2 (4)

β =
βo

1+ δr2
(5)

To compute the distance between the two fireflies a and b,

following relations are used:

Rab =







((Xa,1 − Xb,1)
2 + (Xa,2 − Xb,2)

2)
1
2 , if D = 2

√
∑N

i=1
(Xa,i − Xb,i)

2, if D = N

(6)
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where, Xa,i shows the ith component of the firefly a and Xb,i
represents the ith component of the firefly b. D represents

the number of dimensions of each firefly. The following

relation depicts the movement of a firefly a having lesser

attractiveness value towards a brighter firefly b.

Xa = Xa + βoe
−δR2ab (Xb − Xa)

︸ ︷︷ ︸

Influence of Neighbourhood Firefly

+ α(rand −
1

2
)

︸ ︷︷ ︸

Random Movement

(7)

where, α represents a number in the range [0,1] and rand

shows the randomly generated numbers within the range

[0,1]. The value of βo can be taken equal to 1 for majority

of the cases. The value of δ for most cases is given in the

range [0.1,10] [32]. The pseudo code for the simple firefly

algorithm is given as follows:

Function Pseudo Code for Simple Firefly Algorithm

Declare objective function f (X );

Declare constants α, δ, βo and T ;

Randomly initialize fireflies F;

Compute fitness value f (Xi), ∀ Xi ∈ F ;

while t < T do

for i← 1 to N by 1 do

for j← 1 to N by 1 do

Find Rij using distance relation;

if (Lj > Li) then
Xi←

Xi + βoe
−δR2ij (Xj − Xi)+ α(rand − 0.5);

Determine f (Xi) at updated Xi, ∀ Xi ∈ F ;

Rank the fireflies according to their light

intensity/fitness value;

t ← t + 1;

Show the final results;

B. IMPROVED FIREFLY ALGORITHM

In conventional firefly algorithm, the parameters like α, βo, δ

are declared as constants, which can degrade the performance

of the algorithm as the solution converges towards the global

optimum. Moreover, the update equation as defined in (7)

takes into account the influence of the brighter neighborhood

firefly only, and the attractiveness of the global best firefly is

not considered while updating the position of the fireflies in

the search space of the objective function. This may result

in the trapping of the solution towards the local optimum

and can result in a larger convergence time. This research

suggests the parametric modifications to make the parameters

α, βo, δ self-adaptive to accelerate the convergence of the

algorithm towards the global optimum. Moreover, certain

structural changes are suggested to include the influence of

the global best firefly while updating the position of each

firefly in order to balance the exploration and exploitation

properties of each firefly. Then, the dynamic search space

squeezing is implemented to preserve the oscillations of the

fireflies in the search space of the objective function in order

to improve the convergence value.

1) IMPROVEMENT 1: MAKING PARAMETRIC

MODIFICATIONS

The randomization factor α, the medium’s absorption coeffi-

cient δ and the attractiveness value at r = 0 (βo) can be taken

as self-adaptive quantities which accelerates the process of

the convergence of the algorithm towards the global optimum

solution. The modified values of the constants α, βo and δ in

accordance with [33] are given as follows:

α = αoθ
t (8)

βo = (βmax − βmin)(
t

tmax
)2 + βmin (9)

δ = (δmax − δmin)(
t

tmax
)2 + δmin (10)

where, θ is in the range (0,1], αo represents the initial random-

ization factor. βmin and βmax represent theminimum andmax-

imum values for βo. δmin and δmax represent the minimum and

maximum values for the medium’s absorption coefficient. t

and tmax represent the current iteration and maximum num-

ber of iterations respectively. Equation (8) ensures that the

random movement of the fireflies is restricted as the solution

approaches towards the final value. Equation (9) ensures the

attraction of the firefly i towards a brighter firefly j is within

the certain controllable limits [βmin βmax]. Equation (10)

controls the medium’s absorption coefficient as the solution

approaches towards the global optimum.

2) IMPROVEMENT 2: MAKING STRUCTURAL

MODIFICATIONS

The simple firefly algorithm compares each firefly with the

remaining fireflies and updates the position of each firefly

having lesser intensity with respect to the brighter firefly.

This results in larger convergence time as each firefly is

compared with the remaining fireflies. It can also result in the

convergence of the solution towards the local optimum and

can increase the final converged fitness value. If the intensity

of the global best firefly is included in (7) while updating

the position of fireflies, then the convergence time can be

reduced by a substantial factor. Moreover, it also ensures a

balance between the exploration and exploitation properties

of each firefly and prevents the convergence of the solution

towards the local optimum [34], [35]. This research proposes

amulti-update criteria for updating the position of each firefly

to avoid their premature convergence and balance out the

exploration and exploitation phases of the conventional fire-

fly algorithm.

1) if the intensity of firefly i is less than j (Li < Lj), then

i will be attracted towards both j and global best firefly

g∗.

Xi = Xi+ c1βoe
−δR2ij (Xj−Xi)

︸ ︷︷ ︸

Influence of Neighbourhood Firefly

+ α(rand−
1

2
)

︸ ︷︷ ︸

Random Movement
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+ c2βoe
−δR2

ig∗ (Xg∗ − Xi)
︸ ︷︷ ︸

Influence of Global Best Firefly

(11)

2) if the intensity of the firefly i is greater than j (Li >

Lj), then i will only be attracted towards the global best

firefly g∗.

Xi = Xi + c2βoe
−δR2

ig∗ (Xg∗ − Xi)
︸ ︷︷ ︸

Influence of Global Best Firefly

+ α(rand −
1

2
)

︸ ︷︷ ︸

Random Movement

(12)

where,

Rij =

√
√
√
√

N
∑

k=1

(Xi,k − Xj,k )2, Rig∗ =

√
√
√
√

N
∑

k=1

(Xi,k − Xg∗,k )2

c1 and c2 given in the range [0,1] control the movement

of firefly i towards the neighborhood firefly and the global

best firefly respectively. Rij and Rig∗ represent the distance

between the firefly i with respect to firefly j and global

best firefly g∗. Fig. (1) shows the vector representation for

different modifications.

3) IMPROVEMENT 3: DYNAMIC SEARCH SPACE SQUEEZING

In conventional firefly technique, the search space is con-

strained by the maximum and minimum limits of the fireflies

which remain same throughout the convergence process of

the algorithm. This can result in the oscillations of the fireflies

and can result in the divergence of the solution from the

global optimum. One efficient method to keep the path of the

fireflies towards the global solution is to dynamically squeeze

the search space of the fireflies based on the global best

firefly. This results in the transformation of the constraints

from previous value to updated value after each iteration and

maintains the trajectory of the fireflies towards the global

optimum [36]. The equations (13)-(17) explain the procedure

for dynamic search space squeezing.

1
(t)
lower,i =

X
(t)
g∗ − X

(t)
i,min

X
(t)
i,max − X

(t)
i,min

(13)

1
(t)
higher,i =

X
(t)
i,max − X

(t)
g∗

X
(t)
i,max − X

(t)
i,min

(14)

1
(t)
lower,i +1

(t)
higher,i = 1 (15)

X
(t+1)
i,min = X

(t)
i,min + (X (t)

g∗ − X
(t)
i,min)(1

(t)
lower,i) (16)

X
(t+1)
i,max = X

(t)
i,max + (X

(t)
i,max − X

(t)
g∗ )(1

(t)
higher,i) (17)

where, X
(t)
i,min and X

(t)
i,max show the minimum and maximum

limits of fireflies for iteration t . X
(t)
g∗ shows the global best

firefly for iteration t .1
(t)
lower,i and1

(t)
higher,i show the changing

factor for maximum and minimum limits for iteration t . The

pseudo code for the improved firefly algorithm incorporating

the complete modifications is given as follows:

Function Pseudo Code for Improved Firefly Algorithm

Declare objective function f (X );

Declare constants

αo, θ, βmax , βmin, δmax , δmin, tmax , c1, c2 ;

Randomly initialize fireflies F;

Compute fitness value f (Xi), ∀ Xi ∈ F ;

Rank the fireflies and determine the initial global best

firefly Xg∗ ;

while t < tmax do

α← αoθ
t ;

βo← (βmax − βmin)(
t

tmax
)2 + βmin;

δ← (δmax − δmin)(
t

tmax
)2 + δmin;

for i← 1 to N by 1 do

for j← 1 to N by 1 do

Find Rij using distance relation;

Find Rig∗ using distance relation;

if (Lj > Li) then

Xi← Xi + c1βoe
−δR2ij (Xj − Xi)+

c2βoe
−δR2

ig∗ (Xg∗ − Xi)+

α(rand − 0.5);

if (Li > Lj) then

Xi← Xi + c2βoe
−δR2

ig∗ (Xg∗−

Xi)+ α(rand − 0.5);

Perform dynamic search space squeezing;

Determine f (Xi) at updated Xi, ∀ Xi ∈ F ;

Rank the fireflies according to their light intensity;

Determine the global best Xg∗ at updated Xi;

t ← t + 1;

Show the final results;

C. SYSTEM MODEL

The proposed system consists of one hydro unit, one equiv-

alent thermal energy source and three PV plants of different

rated capacity. Fig. 2 shows the system configuration and the

breakdown of the intervals for both cases. Two different test

cases are developed in order to determine the robustness of

the suggested firefly algorithm over the conventional tech-

nique. These test cases are developed according to the length

of the scheduling problem and are given as follows:

1) The total scheduling period for case 1 is three con-

secutive days (T = 72 hours). Moreover, the total

scheduling period is divided into six equal intervals

(n = 6). Each interval is further divided into 12 sub

intervals (ns = 12), where each sub-interval is of equal

duration (1 hour). The hydro power, thermal power and

the load demand remain static for each main interval,

whereas the solar power remains constant only for each

sub interval. The product of the main intervals and the

sub-intervals should be equal to the total length of the

scheduling problem (n× ns = T ).
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FIGURE 1. Vector representation for different modifications. (a) Structural modification (1). (b) Structural modification (2). (c) Dynamic search space
squeezing.

FIGURE 2. Model representation. (a) System configuration. (b) Breakdown of scheduling intervals.

2) The total scheduling period for case 2 spans over only

a single day (T = 24 hours). Moreover, the total

scheduling period is divided into six equal intervals

(n = 6). Each interval is further divided into 4 sub

intervals (ns = 4), where each sub-interval is of equal

duration (1 hour). The hydro power, thermal power and

the load demand remain static for each main interval,

whereas the solar power remains constant only for each

sub interval. The product of the main intervals and the

sub-intervals should be equal to the total length of the

scheduling problem (n× ns = T ).

III. DESIGN OF PHOTOVOLTAIC SYSTEM

The first step in solving the suggested dispatch problem

is to forecast the solar power using the available data set.

The work in [26] suggests an efficient method to compute

the solar power results using the irradiance and temperature

forecasts. This research extends the work in [26] to a system

consisting of multiple PV plants and total scheduling problem

of three days. Themain steps to determine the solar power are,

(i). Develop the mathematical model for single PV mod-

ule. (ii). Forecast the irradiance and temperature levels.

(iii). Using the suggested PV mathematical model and

the forecast results, compute the solar power for different

scheduling intervals.

A. MATHEMATICAL MODEL FOR PV MODULE

The two major parameters which determine the character-

istics of the PV module are the irradiance and temperature

levels. The suggested model determines the I-V characteris-

tics and the power curves of the single PV module based on

the temperature and irradiance values for different scheduling

intervals [39]–[41]. The model presented in this research

determines the current of the PV module as the function of
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FIGURE 3. I-V characteristics of PV module at STC. (a) Plant 1. (b) Plant 2. (c) Plant 3.

FIGURE 4. Power curve of PV module at STC. (a) Plant 1. (b) Plant 2. (c) Plant 3.

the module’s voltage given as follows:

I (V ) = I ′s − I
′
s (
V

V ′o
)α+β (18)

where, I ′s and V
′
o represent the short circuit current and open

circuit voltage of the module at arbitrary irradiance and tem-

perature level.V represents themodule’s output voltage given

in the range [0, V ′o]. I represents the module’s output current

given in the range [0, I ′s]. α represents a non-negative integer

whereas, β shows an integer given in the range [0, 1]. The

power of the module P is computed by the product of V and

I and is given as follows:

P(V ) = I (V ).V = (I ′s − I
′
s (
V

V ′o
)α+β ) V (19)

To determine the major parameters involved in (18), fol-

lowing set of equations are used:

V ′o = Si.
G

GSTC
.Tcv.(T − TSTC )+ Vmax

− (Vmax − Vmin).exp(
G

GSTC
.ln(

Vmax − Vo

Vmax − Vmin
))

(20)

I ′s = Pi.
G

GSTC
.(Is + Tci.(T − TSTC )) (21)

α + β =
Is

Is − Iop
(22)

where, Si and Pi represent the number of series connected

and parallel connected modules respectively. GSTC and TSTC
represent the irradiance and temperature values at STC. G

and T are the arbitrary irradiance and temperature levels.

Vmax and Vmin represent the maximum and minimum voltage

levels of PVmodule.Vop and Iop represent the optimal voltage

and current values of PV module. Vo and Is represent the

open circuit voltage and short circuit current at STC. Tcv
and Tci represent the temperature coefficients for Vo and Is
respectively.

1) VALIDATION OF SUGGESTED MODEL

The suggested system configuration consists of three differ-

ent PV plants. The parameters of the single PV module are

considered to be different for each plant in order to make

the dispatch problem more practical. The characteristics of

the PV module for each plant are listed in Table 1. Each

module listed in Table 1 is tested at STC, variable irradiance

conditions while keeping temperature constant and variable

temperature levels while keeping irradiance constant. Fig. 3

shows the I-V characteristics of each module listed in Table 1

at STC. Fig. 4 shows the power curve of the modules at STC.

At standard test conditions, the open circuit voltage, the short

circuit current and the maximum power are equal to the rated

values of Table 1. Fig. 5 and Fig. 6 show the effect of the

variable irradiance levels on the I-V characteristics and the

power curves of the module. The short circuit current and
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FIGURE 5. I-V characteristics at variable irradiance levels while keeping temperature constant. (a) Plant 1. (b) Plant 2. (c) Plant 3.

TABLE 1. Characteristics of single PV module for different plants in accordance with data provided in [41].

FIGURE 6. Power curves at variable irradiance levels while keeping temperature constant. (a) Plant 1. (b) Plant 2. (c) Plant 3.

FIGURE 7. I-V characteristics at variable temperature levels while keeping irradiance constant. (a) Plant 1. (b) Plant 2. (c) Plant 3.

the maximum power of the module increases at the elevated

irradiance levels while keeping temperature constant. Fig. 7

and Fig. 8 show the effect of the elevated temperature lev-

els on the I-V characteristics and the power curves of the

module while keeping irradiance constant. The open circuit

voltage and the maximum power of the module decreases

at the higher temperature levels while keeping irradiance

constant.
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FIGURE 8. Power curves at variable irradiance levels while keeping temperature constant. (a) Plant 1. (b) Plant 2. (c) Plant 3.

B. FORECASTING OF IRRADIANCE AND TEMPERATURE

LEVELS

The mathematical model described previously depends upon

the two major input parameters, the irradiance, and the tem-

perature levels. Therefore, the next step in the design of the

photovoltaic system is to forecast the desired parameters for

the entire scheduling problem. The first test case spans over

a duration of three days, therefore in order to compute the

solar power share, the forecasted irradiance and temperature

levels are required for three consecutive days. For case 2,

this research uses the forecasted values of temperature and

irradiance computed at day one of the case 1.

1) BOX JENKINS MODEL

An efficient technique described in the literature to compute

the time series forecasts of the non-stationary dataset is the

Box-Jenkins methodology [42]–[44]. Box-Jenkins methodol-

ogy describes the method to compute the optimal parameters

of the auto-regressive integrated moving average model. The

three main parameters of the ARIMA model are the order

of the Auto-Regressive model defined by the variable p,

the order of the Moving Average (MA) model defined by

the variable q, and the differentiating order defined by the

variable d. The mathematical relations for the AR, MA and

ARMA models are defined as follows:

Xt =





















α +
∑p

n=1
θn Xt−n + ǫt , if q = 0, p > 0

ǫt +
∑q

n=1
δn ǫt−n, if q > 0, p = 0

α + ǫt +
∑p

n=1
θn Xt−n if q > 0, p > 0

+
∑q

n=1 δn ǫt−n

(23)

By including the lag operator (Lk (Xt ) = Xt−k ), the above

set of equations can be written as follows:

ǫt = (1−

p
∑

n=1

θn L
n)Xt = θp(L)Xt (24)

Xt = (1+

q
∑

n=1

δn L
n)ǫt = δq(L)ǫt (25)

(1−

p
∑

n=1

θn L
n)Xt = (1+

q
∑

n=1

δn L
n)ǫt (26)

The ARIMA(p,d,q) model can be defined as follows:

(1−

p
∑

n=1

θn L
n)(1− Ld )Xt = (1+

q
∑

n=1

δn L
n)ǫt (27)

where, θ1, θ2, . . . , θn represent the parameters of auto-

regressive model. δ1, δ2, . . . , δn represent the parameters of

moving-average model. ǫt , ǫt−1, . . . , ǫt−n define the white

noise terms.

2) EXAMPLE

The major steps involved in producing the time series fore-

casts using the ARIMA model are the (i). Identification of

the model. (ii). Estimation of the parameters. (iii). Residual

diagnostics. The dataset obtained from the National Renew-

able Energy Laboratory Website (NREL) [45] includes the

daily irradiance and temperature curves for the year 2015.

The irradiance and the temperature data set are plotted in

the Fig. 9. In order to find the optimal parameters p, d and

q of the ARIMA model for the given data set, the readers are

encouraged to go through the detailed steps and the analysis

described in [26]. For the sake of the simplicity of the readers,

the steps of the Box-Jenkins methodology are skipped for the

given data set and the final forecast results for both irraidance

and temperature curves for three consecutive days (December

22, 2015- December 25, 2015) are shown in the Fig. 10.

C. PV POWER COMPUTATION USING DEVELOPED MODEL

AND FORECASTED PARAMETERS

In order to determine the PV power for three consecutive

days, the forecasted irradiance and temperature levels and

mathematical model developed previously are used while

taking into account the following assumptions.

1) The irradiance and temperature values remain constant

for each sub interval (1 hour) and changes at the begin-

ning of the next sub-interval.

2) The power of the module for each sub-interval is com-

puted using the mathematical model and the forecasted

parameters for that interval.
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FIGURE 9. Data set obtained from NREL website for the year 2015. (a) Irradiance data. (b) Temperature data.

FIGURE 10. Forecast results obtained for three consecutive days (December 22, 2015- December 25, 2015). (a) Irradiance forecast.
(b) Temperature forecast.

3) The maximum power point condition is used while

computing the power of each module.

4) The total DC power of the PV plant is given by the sum

of the maximum power of all the modules for the given

sub-interval.

5) The AC power of the plant is computed by the product

of the DC power and the converter’s efficiency.

6) The total number of themodules required are according

to the rated system capacity of each plant.

Table 2 summarizes different parameters for each plant.

Table 3 summarizes the forecast results for day 1. Table 4

summarizes the forecast results for day 2. Table 5 summarizes

the forecast results for day 3. Table 6 summarizes the total

power contribution of each plant for different scheduling

intervals for case 1 (December 22, 2015-December 25, 2015).

Table 7 summarizes the total power contribution of each plant

for different scheduling intervals for case 2 (December 22,

2015). For case 1, the total power for each interval is equal

to the sum of the power contribution of 12 sub-intervals (12

hours). For case 2, the total power for each interval is equal to

the sum of the power contribution of 4 sub-intervals (4 hours).

This completes the forecast results of PV system for different

cases. The next section describes the overall methodology and

the problem formulation for the given optimization problem

along with the results of each case.

IV. METHODOLOGY AND RESULTS

The objective function of the conventional hydrothermal

scheduling problem minimizes the total fuel cost of the ther-

mal generation while preserving the reservoir and thermal

constraints [46]–[48]. This sections describes the updated

hydro-thermal-solar scheduling problem and presents the

optimal power allocation of each energy source for different

test cases while meeting the different system constraints.

A. PROBLEM FORMULATION

The objective function for the considered dispatch problem

which aims to reduce the thermal cost of the system can be
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TABLE 2. System parameters for each PV plant.

TABLE 3. PV power computation for day 1 having cloudy conditions (December 22, 2015).

written as follows:

min(f ) =

NS∑

j=1

njF(PTH ,j) (28)

where, nj represents the total hours of each scheduling inter-

val. F(PTH ,j) represents the cost function of the thermal

generation for particular scheduling interval j. NS represents

the total number of scheduling intervals. The total cost of the

system including the PV cost is given as follows:

FT = F(PT )+ C1,s

NS∑

j=1

PS1,f ,j + C2,s

NS∑

j=1

PS2,f ,j

+C3,s

NS∑

j=1

PS3,f ,j (29)

where, FT represents the total cost of the system. F(PT )

represents the total converged thermal cost of the system.

C1,s,C2,s and C3,s represent the cost coefficients given in

$/kWh for PV plant 1, 2 and 3 respectively. PS1,f ,j ,PS2,f ,j
and PS3,f ,j represent the forecasted solar power for particular

scheduling interval j for PV plant 1, 2 and 3 respectively.

The defined objective function is subjected to following con-

straints.

1) POWER BALANCE CONSTRAINT

The sum of the power contribution from the thermal energy

source, the hydro source and all three PV plants for a partic-

ular scheduling interval must be equal to the demand plus the

transmission losses for that interval.

PH ,j + PTH ,j +

Nsp
∑

i=1

PSi,j = PD,j + PL,j (30)
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TABLE 4. PV power computation for day 2 having clear sky conditions (December 23, 2015).

where, PH ,j,PTH ,j,PD,j and PL,j represent the hydro power,

thermal power, the demand value and the transmission losses

for a particular scheduling interval j. Nsp represents the total

number of PV plants. PSi,j represents the contribution of the

ith PV plant for particular scheduling interval j.

2) POWER LIMITS CONSTRAINT

The hydro power and the thermal power must be within the

maximum and minimum power limits. The solar power must

be equal to the forecasted value for particular scheduling

interval j. The following equality and inequality constraints

are defined for different sources.

PS1,j = PS1,f ,j (31)

PS2,j = PS2,f ,j (32)

PS3,j = PS3,f ,j (33)

PH ,min ≤ PH ,j ≤ PH ,max (34)

PTH ,min ≤ PTH ,j ≤ PTH ,max (35)

where, PTH ,min,PTH ,max represents the thermal power limits.

PH ,min,PH ,max represents the hydro power limits.

3) RESERVOIR CONSTRAINTS

The volume of the reservoir for a particular scheduling inter-

val must be within the maximum and minimum values given

as follows:

Vmin ≤ Vj ≤ Vmax (36)

where, Vmin and Vmax are the minimum and maximum limits

of the volume. Vj represents the volume of the reservoir for

a particular scheduling interval j. Moreover, the initial and

final volume of the reservoir must be equal to the desired

parameters given as follows:

Vo = Vinitial (37)

V1 = Vfinal (38)

where, Vinitial and Vfinal represent the desired initial and final

volume of the reservoir. Finally, the discharge rate constraints

are given as follows:

Dismin ≤ Dj ≤ Dismax (39)

NS∑

j=1

njDisj = Dist (40)

where, Dismin and Dismax represent the minimum and max-

imum discharge rate limits. Dj represents the discharge rate

for a particular scheduling interval j.

4) EQUATION OF CONTINUITY

The volume of the reservoir and the discharge rate must be

related by the equation of continuity given as follows:

Vj = Vj−1 + nj(If ,j − Disj − Sp,j) (41)

where, If ,j and Sp,j represent the inflow and the spillage of the

water for the particular scheduling interval j.
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TABLE 5. PV power computation for day 3 having intermediate weather conditions (December 24, 2015).

TABLE 6. Total AC power contribution of each plant for different scheduling intervals for case 1 (December 22, 2015-December 25, 2015). Each scheduling
interval is of equal duration (12 hours).

TABLE 7. Total AC power contribution of each plant for different scheduling intervals for case 2 (December 22, 2015). Each scheduling interval is of equal
duration (4 hours).

B. STEPS OF IMPROVED FIREFLY

In order to solve the suggested dispatch problem, the steps

of only improved firefly algorithm are highlighted for the

sake of the simplicity of the readers. These are given as

follows:
1) Find the irradiance and temperature forecast results for

the desired scheduling period.

2) Using the mathematical model described in Section 3

and the forecast results, compute the PV power share

for each plant for different scheduling intervals.

3) Declare constants like αo, θ , βmax , βmin, δmax ,

δmin,tmax ,c1, c2.

4) Randomly initialize the volume vectors as fireflies

for all scheduling intervals and check the volume
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TABLE 8. Different parameters for each case.

constraints. The volume vector for a particular iteration

t and firefly F is given as follows:

V
(t)
F =

[

V
(t)
1,F V

(t)
2,F V

(t)
3,F . . . . . . V

(t)
NS ,F

]T

5) Determine the initial global best firefly. The initial

global best firefly corresponds towards the volume vec-

tor which has theminimum thermal cost for the initially

generated volume vectors.

6) Determine the discharge rate vector using the volume

vectors and check the discharge rate constraint. The dis-

charge rate for particular iteration t , scheduling interval

j and firefly F is computed using the equation of con-

tinuity defined in (41) and is given as follows:

=













(Vo − V
(t)
1,F )

n1
if j = 1

(V
(t)
j−1,F − V

(t)
j,F )

nj
+ (If ,j − Sp,j) if j 6= 1

∀ j ∈ {1, 2, 3, . . . ,NS}

7) Determine the hydro power using the discharge rate for

each scheduling interval and check the hydro power

limit constraint. The hydro power vector is computed

as the function of the discharge rate and is given as

follows:

P
(t)
H (NS×1)

= func(Dis(t)) =














func(Dis
(t)
1,F )

func(Dis
(t)
2,F )

func(Dis
(t)
3,F )

.

.

.

func(Dis
(t)
NS ,F

)














8) Compute the thermal power from the power balance

constraint. The thermal power for particular iteration

t and firefly F is given as follows:

P
(t)
TH (NS×1)

= PD(NS×1) + P
(t)
L (NS×1)

− (PS1,f (Ns×1)
+PS2,f (Ns×1)

+ PS3,f (Ns×1)

+P
(t)
H (NS×1)

)

where, transmission losses are determined as the func-

tion of the hydro power (PL = func(PH )).

9) Find the thermal cost of the system corresponding to

each firefly and check the thermal power limits. The

total thermal cost of the system for particular firefly F

and iteration t is given as follows:

C
(t)
F = γ

NS∑

j=1

njP
2(t)
TH ,j,F + β

NS∑

j=1

njP
(t)
TH ,j,F + α

NS∑

j=1

nj

where, γ , β and α represent the cost coefficients of the

thermal generation.

10) Compare the fireflies with each other based on their

thermal cost and move the firefly having lower light

intensity (higher fuel cost) towards a brighter firefly

(lower fuel cost) using the multi-update criteria defined

in Section 2 for the improved firefly algorithm. If the

intensity of the particular firefly F is less than the fire-

fly F ′, then the update equation is written as follows:

V
(t+1)
F = V

(t)
F + c1βoe

−δR2
FF ′ (V

(t)
F ′
− V

(t)
F )

+α(rand −
1

2
)+ c2βoe

−δR2
Fg∗ (V (t)

g∗ − V
(t)
F )

If the intensity of the particular firefly F is greater than

the firefly F ′, then the update equation is written as

follows:

V
(t+1)
F = V

(t)
F + c2βoe

−δR2
Fg∗ (V (t)

g∗ − V
(t)
F )

+α(rand −
1

2
)

11) Dynamically squeeze the maximum and minimum vol-

ume limits for each firefly.

12) Rank the fireflies and compute the updated global best

firefly.

13) Repeat the steps (6)-(12) until the solution converges to

the final value.

14) Find the total cost of the system using (29).

C. SIMULATION PARAMETERS

For simulating the different test cases, this section describes

the essential system parameters of each energy source in

the suggested hybrid system. The test cases are developed

according to the parameters provided in [48].
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TABLE 9. Load demand for different scheduling intervals for case 1.

1) PARAMETERS FOR CASE 1

The cost equation for thermal generation for case 1 is given

as follows:

F(PTH ) = 575+ 9.2PTH + 0.00184P2TH ($/hr) (42)

where,

150 MW ≤ PTH ≤ 1500 MW

In order to find the hydro power from the discharge rate,

following discharge rate characteristics are used:

Dis(PH ) = 330+ 4.97PH (acre− ft/hr) (43)

where,

0 MW ≤ PH ≤ 1000 MW

The loss equation in order to find the transmission losses

of the network is modeled as the function of the hydro power

and is given as follows:

PL = func(PH ) = 0.00008P2H (MW ) (44)

The forecasted solar power for different scheduling inter-

vals for case 1 is listed in Table 6. The different parameters

for case 1 are listed in Table 8. The demand value for different

scheduling intervals is given in Table 9.

2) PARAMETERS FOR CASE 2

For case 2, the cost equation for the thermal generation is

given as follows:

F(PTH ) = 700+ 4, 8PTH + 0.0005P2TH ($/hr) (45)

where,

200 MW ≤ PTH ≤ 1200 MW

In order to find the hydro power from the discharge rate,

following discharge rate characteristics are used:

Dis(PH ) = 260+ 10PH (acre− ft/hr) (46)

where,

0 MW ≤ PH ≤ 350 MW

The loss equation in order to find the transmission losses

of the network is modeled as the function of the hydro power

and is given as follows:

PL = func(PH ) = 0.00008P2H (MW ) (47)

TABLE 10. Load demand for different scheduling intervals for case 2.

The forecasted solar power for different scheduling inter-

vals for case 1 is listed in Table 7. The different parameters

for case 2 are listed in Table 8. The demand value for different

scheduling intervals is given in Table 10.

D. RESULTS

This section covers the results of both cases, which includes

the optimal power contribution of each energy source along

with the analysis of the desired system parameters at the end

of the scheduling problem. The test cases are solved using

both conventional and dynamically search space squeezed

modified firefly techniques while using different population

size.

1) RESULTS OF CASE 1

The convergence characteristics are determined for case 1

using both conventional and modified firefly algorithms.

Fig. 11 shows the convergence of the total fuel cost for

case 1 using both techniques.

From the convergence graph, it is evident that the total

fuel cost converges to a relatively lower value in case of

the modified firefly algorithm as compared to the simple

firefly. Fig. 12 shows the optimal contribution of each energy

source for different scheduling intervals for both techniques.

The optimal power contribution of different PV plants during

various scheduling intervals is equal to the forecasted values

given in Table 6. The cumulative sum of the power contri-

bution of each energy source during a particular scheduling

interval equals the sum of the demand value and the transmis-

sion losses for that interval.

Table 11 summarizes the results of the case 1 using the sim-

ple firefly technique for a population size of 5 fireflies. From

Table 11, it is evident that the transmission losses depend

upon the hydro power share for a particular scheduling inter-

val. The greater the hydro power for a given interval, the more

will be the network losses for that interval.Moreover, the end-

ing volume for case 1 equals the desired value of 6000 acre-ft

which satisfies the ending volume constraint of the reservoir.

The hydro power, the solar power and the thermal power

are within the defined limits as described in the previous

section for each scheduling interval. The discharge rate for

each interval is computed by using the equation of continuity

while taking into account the two consecutive volume values.

For interval 1, the initial volume of the reservoir is used for

computing the discharge rate. Table 12 summarizes the results
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TABLE 11. Complete results of case 1 using simple firefly algorithm for population size of 5 fireflies.

TABLE 12. Complete results of case 1 using modified firefly algorithm for population size of 5 fireflies.

FIGURE 11. Convergence of the total thermal cost for case 1 using
different techniques. (a) Simple firefly algorithm. (b) Modified firefly
algorithm.

of case 1 using modified firefly algorithm for population size

of 5 fireflies. From Table 12, it is clear that the suggested

modified firefly technique converges to a lower thermal cost

for this particular sample. The power limits constraint, the

reservoir constraints and the power balance constraint are all

satisfied for case 1 while using modified firefly technique.

The solar power share for different scheduling intervals

and the total solar cost remain same for both techniques

whereas the thermal cost converges to a lower value in case

of modified firefly algorithm.

2) RESULTS OF CASE 2

Fig. 13 shows the convergence behavior of the simple firefly

algorithm for case 2 using the different number of fireflies.

Fig. 14 shows the convergence behavior of the modified

firefly algorithm for case 2 using the different number of

fireflies. From both Fig. 13 and Fig. 14, it is evident that

the modified firefly algorithm converges to a relatively lower

fuel cost as compared to the simple firefly technique for

different number of fireflies. The convergence behavior of

the simple firefly algorithm in case of the population size

of 5 fireflies is better than the modified firefly technique as

evident from the graphs. Fig. 15 shows the optimal power

contribution of different energy sources for each scheduling

interval. Table 13 summarizes the results of conventional

firefly technique for case 2. The final volume of the reservoir

in this case equals the desired value of 12000 (acre-ft) and

hence the final volume constraint is satisfied. The sum of the

optimal power contribution of each energy source during the

particular interval equals the demand plus the transmission

losses for that interval. The discharge rate for each scheduling

interval is computed by using the equation of continuity
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FIGURE 12. Optimal power contribution of each energy source for
different scheduling intervals using both techniques. (a) Simple firefly
algorithm. (b) Modified firefly algorithm.

FIGURE 13. Convergence of the total thermal cost for case 2 using simple
firefly.

as described previously. For interval 1, the initial volume

of the reservoir is used for determining the discharge rate.

The transmission losses depend upon the hydro power for

particular scheduling interval.

Table 14 shows the complete results for case 2 using the

modified firefly algorithm. The final volume constraint, the

power limits constraint and the power balance constraint are

all satisfied for case 2 while using the modified firefly algo-

rithm. The solar cost remains constant for both techniques

FIGURE 14. Convergence of the total thermal cost for case 2 using
modified firefly.

while the total fuel cost converges to a lower value in case

of the simple firefly algorithm for this particular sample.

This completes the results of both cases using the simple

and modified firefly algorithm. The next section introduces

the statistical comparison of both techniques for each case

in order to compare the performance parameters of the two

algorithms statistically.

V. RESULTS OF STATISTICAL COMPARISON

The meta-heuristic algorithms have certain random part in

their update criteria while shifting the possible solutions in

the search space of the objective function. This results in the

different final convergence results for each trial. Therefore,

in order to compare the performance of a particular algorithm

with the other, certain statistical measures are required to

comprehensively compare both algorithms over a particular

sample size. This research suggests the comparison of the

average of two algorithms for different population sizes and

then uses the independent t-test results to statistically prove

the existence of the significant mean difference between the

two techniques. The final comparison is made by taking into

account both the average mean cost and the results of the

independent t-test results. Moreover, the average generation

cost for different number of fireflies is considered to be the

final solution for the suggested algorithms for each case.

In references [9]–[25], the authors compare the different tech-

niques by comparing their mean cost. However, in majority

references only a slight improvement in the mean cost is

shown by the authors which is not statistically significant to

prove the significance of the suggested technique. Therefore,

while comparing different meta-heuristic methods, certain

statistical methods should be used to statistically prove the

significance of the suggested method. This research uses

the independent t-test results to compare the mean and the

variance of the algorithms statistically. The two major parts

of the independent t-test results are the Levene’s test for

comparing the variance and the t-test for comparing the mean

of the algorithms. For both Levene’s and t-test results, if the
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TABLE 13. Complete results of case 2 using simple firefly algorithm for population size of 5 fireflies.

TABLE 14. Complete results of case 2 using modified firefly algorithm for population size of 5 fireflies.

TABLE 15. Statistical comparison between firefly and modified firefly for case 1 using 30 samples.

TABLE 16. Statistical comparison between firefly and modified firefly for case 2 using 30 samples.

significant value is larger than the critical value of 0.05, the

two algorithms have same variance and mean statistically

for 95 % confidence level. Table 15 shows the comparison

of the algorithms for case 1 using 30 samples. The algo-

rithm is tested for different population sizes to increase the

diversity of the fireflies and to suppress the effect of the

premature convergence on the final converged solution. It is

evident from the Table 15, that the suggested modified firefly

algorithm outperforms the simple firefly by giving the lower

mean generation cost and the execution time. Moreover, the

significant values for both Levene’s and the t-test are less

than the critical value of 0.05 for majority of the cases,

therefore the algorithms are statistically different from each

other for case 1. Only for population size of 50 fireflies,

the significant value for the Levene’s test is greater than

0.05, which suggests that the two algorithms have same vari-

ance statistically for population size of 50 fireflies. Table 16

shows the comparison of the algorithms for case 2 using
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FIGURE 15. Optimal power contribution of each energy source for
different scheduling intervals using both techniques for case 2.
(a) Simple firefly algorithm. (b) Modified firefly algorithm.

30 samples. From Table 16, it is evident that the suggested

firefly algorithm outperforms the simple firefly technique

by giving lower generation cost and execution time. More-

over, the significant values for Levene’s and t-test suggest

that the two algorithms are statistically different from each

other.

VI. COMPARISON WITH OTHER TECHNIQUES

The suggested modified firefly algorithm is compared with

other promising techniques in literature to further validate its

significance. The methods used for the comparison purpose

are PSO, Accelerated PSO (APSO) and Improved Accel-

erated PSO (IAPSO). The mentioned methods are tested

for the same problem under the same conditions and the

results are shown in the Table 17. From Table 17, it is evi-

dent that the suggested firefly algorithm outperforms some

other conventional and promising techniques in literature

for the suggested hybrid system. The performance of sug-

gested modified firefly is comparable with the conventional

PSO, since PSO also depends upon both exploration and

exploitation properties of the particles. The absence of the

local search component in APSO and IAPSO results in

relatively higher mean generation cost for this particular

problem.

TABLE 17. Comparison between suggested firefly and different
techniques for population size of 50 particles/fireflies.

VII. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

To summarize, following are the major findings of this

research

1) This research suggests a modified dynamically

search space squeezed firefly algorithm which uses

multi-update criteria to shift the fireflies in the search

space of the objective function by taking into account

the influence of the global best solution for each itera-

tion.

2) The proposed firefly technique is implemented on a

novel dispatch problem which consists of a thermal

unit, a hydroelectric energy source and multiple PV

plants of different rated capacity. To model the inter-

mittent nature of the PV source, combination of frac-

tional integral polynomial method and ARIMA model

is implemented to find the PV power share towards the

dispatch problem.

3) The suggested firefly technique successfully solves a

highly non-linear andmulti-modal dispatch problem by

giving the optimal power share of each energy source

for different scheduling intervals.

4) Moreover, the performance of the two algorithms for

different test cases is compared statistically using the

independent t-test results. Based on the statistical anal-

ysis, the performance of the suggested modified firefly

is enhanced by a substantial factor as compared to the

simple firefly. The suggested technique proves to be

optimal one for the given dispatch problem by giving

lower generation cost and execution time.

Following are some of the practical limitations of the pro-

posed research:

1) For photovoltaic system, the effect of the partial shad-

ing on themaximum power of themodule is not consid-

ered extensively. The suggested system considers that

each module is operating at maximum power point and

there is only single global peak for the power curve.

1936 VOLUME 9, 2021



S. Liaquat et al.: Application of Dynamically Search Space Squeezed Modified Firefly Algorithm

2) The duration for which the forecasted parameters of

the photovoltaic system remain constant is considered

to be 1 hour. In practical scenarios, the irradiance and

temperature levels can change with in the considered

time duration.

3) Certain contingencies like removal of the transmission

line, the removal of certain generating unit can affect

the suggested operational strategy.

4) Resilience of the suggested system against the certain

instabilities can improve the efficiency of the suggested

dispatch strategy.

Based on the mentioned limitations, the future work

involves the following major tasks:

1) Test the robustness of the suggested novel firefly tech-

nique on a more complex hybrid energy system while

considering the security and emission constraints.

2) Model the power system to include the resilience

against the disruptions to suggest a more practical oper-

ational strategy.

3) Consider the partial shading effect on the maximum

power of the PV source. Decrease the time duration

for which the forecasted parameters remain constant for

the photovoltaic system.

4) Check the robustness of the suggested firefly algorithm

on different forms of economic dispatch problems.
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