
181
© The Author(s) 2020. Published by Oxford University Press on behalf of Zhejiang University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial 

re-use, please contact journals.permissions@oup.com

Article

Application of electronic nose and  

GC–MS for detection of strawberries  

with vibrational damage

Jingshan Rao, *,† Yuchen Zhang,*,† Zhichao Yang,* Shaojia Li,*  

Di Wu,*,**,  Chongde Sun*,  and Kunsong Chen*

*College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative 

Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality 

Improvement, Zhejiang University, Hangzhou, China and **Zhejiang University Zhongyuan Institute, Zhengzhou, 

China

†Jingshan Rao and Yuchen Zhang contributed equally to this work.

Correspondence to: Di Wu, College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural 

Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality 

Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China. E-mail: di_wu@zju.edu.cn

Received 17 August 2020; Revised 8 September 2020; Editorial decision 9 September 2020.

Abstract

Objectives: This study evaluated the potential of using electronic nose (e-nose) technology to non-

destructively detect strawberry fruits with vibrational damage based on their volatile substances 

(VOCs).

Materials and methods: Four groups of strawberries with different durations of vibrations (0, 0.5, 

1, and 2 h) were prepared, and their e-nose signals were collected at 0, 1, 2, and 3 days after 

vibration treatment.

Results: The results showed that when the samples from all four sampling days during storage 

were used for modelling, both the levels of vibrational damage and the day after the damage 

happened were accurately predicted. The best models had residual prediction deviation values 

of 2.984 and 5.478. The discrimination models for damaged strawberries also obtained good 

classification results, with an average correct answer rate of calibration and prediction of 99.24%. 

When the samples from each sampling day or vibration time were used for modelling, better 

results were obtained, but these models were not suitable for an actual situation. The gas 

chromatography–mass spectrophotometry results showed that the VOCs of the strawberries varied 

after experiencing vibrations, which was the basis for e-nose detection. 

Limitations:  The changes in VOCs released by other forces should be studied in the future.

Conclusions:  The above results showed the potential use of e-nose technology to detect 

strawberries that have suffered vibrational damage.
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Introduction

Strawberries (Fragaria  ×  ananassa Duch) are members of the rose 

family and are cultivated worldwide. This fruit is widely appreci-

ated for its pleasant aroma, colour, and taste; it is also a low-calorie 

and low-sugar fruit. Moreover, strawberries are rich in many sub-

stances, such as vitamin C, folates, carotene, anthocyanin, and min-

erals, among which vitamins and polyphenols have antioxidant 

and anti-in�ammatory effects, giving the fruit a large market and 

great commercial value (Aaby et al., 2005; Giampieri et al., 2012). 

Strawberries are consumed popularly as jam, ice cream, pies, and 

milkshakes. Arti�cial strawberry �avourings and aromas are often 

used in the production of cakes, lip glosses, cosmetics, and soaps, 

and fresh strawberries are also widely enjoyed by consumers.

Due to their soft texture, many fruits can easily become mech-

anically damaged in their supply chains (Li ZG et al., 2013). 

Physiological deterioration will occur after such damage. After being 

damaged by squeezing and vibrations, tomatoes had lower �rm-

ness, greater PME activity, and juice consistency (Aaby et al., 2005). 

Held et  al. (2015) found that after 60 days of storage, mechanic-

ally damaged Yali pears had a 20.7% higher water loss rate and a 

4.2% lower �rmness than normal pears, with a signi�cantly reduce 

acid-sugar ratio. Cosmetic defects in fruits can also be attributed to 

mechanical damage. As a critical determinant of fruit quality, ap-

pearance can signi�cantly in�uence a consumer’s desire to purchase 

(Kader, 2002) and affect the potential possibility of repeated pur-

chases (Jaeger et al., 2016). Strawberries are especially delicate, are 

susceptible to squeezing and vibration, and have a high respiration 

rate, which makes strawberries dif�cult to store and causes heavy 

economic losses (Liu et al., 2018; Nguyen et al., 2020).

In the postharvest supply chains, such as in cold storage rooms 

or on trucks, the rapid freshness evaluation and mechanical damage 

detection of fruit are important for the early determination of fruit 

quality deterioration, which closely relates to subsequent fresh-

ness preservation and retail strategies. Currently, the detection of 

mechanical damage to fruit is mainly carried out by measuring the 

sizes and shapes of bruises, such as the bruise area, bruise volume, 

bruise number, bruise diameter, bruise depth, bruise proportion, and 

bruise index (Li and Thomas, 2014). Nevertheless, such measure-

ments are time-consuming, and labour-intensive, and some of them 

are destructive. Moreover, these measurements involve selective 

inspection. This means that only a few samples will be measured. 

In practical industrial applications, participants in all links of the 

supply chain, such as growers, distributors, sellers, and customers, 

are accustomed to observing the decay and damage of fruits directly 

with the naked eye, but with inevitable de�ciencies such as being 
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subjective, time-consuming, and boring. Therefore, it is necessary to 

�nd a detection technology that can quickly determine the quality 

deterioration of postharvest fruits in their supply chains, to provide 

information to ensure prompt changes in transportation, storage, 

and retail decisions. This is an important step for realizing the in-

telligent control of postharvest fruit supply chains, thereby ensuring 

fruit quality, reducing fruit losses, and improving ef�ciency.

Because they are rapid and non-destructive, spectroscopy or im-

aging technologies, such as computer vision, visible and near-infrared 

spectroscopy, and hyperspectral imaging techniques, are often used 

for the detection of fruit freshness and mechanical damage (Wu and 

Sun, 2013a, 2013b, 2013c). Nevertheless, in their supply chains, 

fruits are commonly packaged in containers made of corrugated 

�breboard or plastic, covered by inner packaging materials, and are 

then placed in dark environments, such as cold storage or carriage 

without light sources, which all make it dif�cult to judge whether 

postharvest fruits were damaged through spectroscopy or imaging 

inspection in their supply chains. Consequently, we need a technique 

that can remain effective for the detection of damaged fruits even 

when the fruits are packaged in the dark.

Volatile substances (VOCs) are key indexes in fruit quality assess-

ment and important considerations for customers. There are various 

kinds of VOCs in fruit, including aldehydes, esters, lactones, and 

terpenes. These VOC substances are closely related to many factors, 

such as fruit cultivation conditions, harvest maturity, and postharvest 

environment. Although VOCs only occupy 0.001–0.01% of straw-

berries by weight, VOCs are signi�cant components that determine the 

�avour of strawberries (Larsen and Poll, 1992). More than 360 kinds 

of VOCs are found in fresh strawberries, including esters, alcohols, ke-

tones, furans, terpenes, aldehydes, and sulfur compounds (Zabetakis 

and Holden, 1997). Of all the compounds above, esters are the richest 

and the main source of the fruit and �ower fragrances of strawberries, 

accounting for 10 of the 15 most common VOCs in strawberries (Jetti 

et  al., 2007). Cultivars, cultivation conditions, mechanical damage, 

storage time, and pathogenic fungal disease also effect the VOCs of 

strawberries (Hamiltonkemp et al., 2003; Pan et al., 2014; Xing et al., 

2018; Parrapalma et al., 2019). As there is a correlation between VOCs 

and the quality deterioration of the fruit, VOCs could be an indicator 

to determine whether the fruit has been mechanically damaged.

The electronic nose (e-nose) is a widely used bionic olfactory 

system with high ef�ciency and simplicity. This system can imitate 

human olfactory sensors for online and non-destructive odour rec-

ognition. An e-nose instrument consists of a sampling system, a signal 

processing system, and the core part, a gas sensor array, which is de-

cisive to the system’s sensitivity and accuracy. There are many kinds 

of gas sensors, including conductivity sensors, piezoelectric sensors, 

�eld-effect sensors, optical �bre sensors, and metal sensors, which are 

most popular for their low cost and high sensitivity (Srivastava and 

Sadistap, 2018). E-nose has been used to classify fruit grades and pre-

dict fruit quality. Centonze et al. (2019) used an e-nose instrument to 

classify oranges with three different geographical origins and found 

that the combination of the stepwise decorrelation of the variables 

and linear discriminant analysis (SELECT/LDA) offered the best ac-

curacy. Liu et al. (2018) discriminated peaches with pathogenic fungi 

contamination using an e-nose, and colony counts were predicted with 

a residual prediction deviation (RPD) of 2.80–4.16. Xing et al. (2018) 

developed a portable e-nose system for strawberry quality classi�ca-

tion, achieving higher accuracy (96.9%) than a commercial e-nose 

system (94.4%), though the former’s cost was nearly 30-fold lower 

than that of the latter. In our previous research, e-nose technology 

was used to measure the VOCs in peaches and to determine whether 

the fruit was decayed, obtaining a correct answer rate (CAR) of pre-

diction of 95.83% (Wei et al., 2018). In another study, we used e-nose 

technology and near-infrared spectroscopy to predict the number of 

days left before the decay of peach fruit; the best prediction model 

had a CAR of 82.26% (Huang et al., 2017a). To the best of our know-

ledge, e-nose technology has not been used to detect strawberries with 

mechanical damage. Moreover, in previous studies, the collection of 

e-nose signals from fruit with mechanical damage was mainly con-

ducted shortly after the fruit was damaged. Moreover, these studies 

did not consider a situation in which the quality of the fruit continues 

to deteriorate, resulting in its appearance and VOC content changing. 

Indeed, the VOCs of a damaged fruit are usually different at different 

times after the fruit is damaged. It is also dif�cult to determine when 

fruit became damaged and collect the e-nose signal immediately after 

that damage in practical applications. Therefore, for the study of fruit 

mechanical damage detection and to make the established model more 

suitable for actual situations, it is necessary to collect e-nose data at 

different times after the fruit is mechanically damaged.

The objective of this work is to evaluate the potential of using 

e-nose technology to non-destructively detect vibrational damage 

in strawberries. The speci�cally established chemometric models in-

clude one for predicting the levels of vibrational damage, one for 

distinguishing the damaged fruit, and one for predicting the day after 

the damage happened. Moreover, the variational patterns of VOCs 

due to the vibrational damage of strawberries were characterized by 

a gas chromatography–mass spectrophotometry (GC–MS) analysis. 

Notably, in the actual supply chain process, the detection of volatile 

substances in fruits should be non-destructive; otherwise, the tested 

fruit cannot be sold later. Therefore, in this work, the acquisition of 

the VOCs of the damaged strawberries for both the GC-MS meas-

urements and e-nose detection was based on examining the whole 

fruit in a non-destructive way. In addition, a GC–MS measurement 

was also carried out on the ground fruit �esh to further analyse the 

variation of VOCs in the damaged fruits.

Materials and Methods

Sample preparation

Hongyan strawberries (Fragaria ×  ananassa Duch) were harvested at 

commercial maturity from an orchard in Hangzhou, Zhejiang prov-

ince, P.R. China, in March, 2018, and were transported to a laboratory 

in Hangzhou, Zhejiang province, P.R. China, on the same day. In the 

experiment, 264 strawberries that were uniform in size and without 

mechanical damage were selected. The strawberries were divided into 

four groups with different durations of vibrations to simulate dif-

ferent transport distances—namely, a group of strawberries without 

vibrations (0 h, Group I), a group of strawberries placed under vi-

brations for 0.5 h (Group II), a group of strawberries placed under 

vibrations for 1 h (Group III), and a group of strawberries placed 

under vibrations for 2 h (Group IV). A TH-600 vibration test system 

(Suzhou Sushi Testing Instrument Co., Ltd., Suzhou, China) was 

used, and the vibration frequency was set to ASTM D4728 Section 

6 (ASTM, 2016), which is the standard for the random vibration de-

tection of transport containers and can simulate mechanical damage 

during transportation. After corresponding treatments, all groups of 

strawberries were placed into a cold room for further storage. The en-

vironment for both the vibration test and storage was maintained at 

a temperature of 15 °C and humidity of 90–95%. The e-nose signals 

were collected at 0 days (right after vibration treatment), 1, 2, and 

3 days after the vibration treatment. At each sampling day, the e-nose 

signals for 30 strawberries were measured in each group.
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E-nose instrument and data acquisition

A Fox 4000 e-nose system (Alpha MOS, Toulouse, France) was 

used for e-nose acquisition. This system consists of three parts: a 

gas sampling system, a sensor chamber, and data analysis software. 

The sensor chamber is divided into three chambers (T chamber, P 

chamber and LY chamber), and all chambers contain six metal oxide 

gas sensors (MOS), each of which is a round or �at ceramic substrate 

coated with a metal oxide semiconductor �lm (mainly zinc oxide, 

tin dioxide, and titanium dioxide, or iron (III) oxide). Before data 

measurement, the MOS sensor was calibrated with standard samples 

(n-propanol, acetone, and isopropanol) to ensure its stability. To en-

sure the accuracy of the collected data, after each measurement, the 

sensors were cleaned with dry and puri�ed air processed by an air 

generator with a CaCl
2
 dehydration column.

Before e-nose acquisition, the single whole fruit was placed into 

a 100 ml clean beaker, which was sealed with para�lm and left to 

stand for 30 min to give enough time for the VOCs in the headspace 

to reach a dynamic balance. After sealing, a 2.5 ml syringe was used 

to puncture the para�lm and repeatedly pump and inject the gas 4–5 

times to disperse the VOCs evenly. After that, 2 ml of the gas was 

pumped out of the beaker and injected into the injection port of the 

e-nose system. Then, the gas was pumped into the sensor chamber at 

a consonant rate of 150 ml∙min−1. The detection time was 120 s, and 

the cleaning time was 240 s. A �gure of the sensors signals in e-nose 

for one typical sample is shown in Figure 1.

Multivariate data analysis

The measured e-nose signal (0 to 120 s) was exported from the con-

trol software for model calibration (Xin et al., 2018). The complete 

data (ENAll) collected in these two minutes contained over 2000 

variables. Some of these variables could contain redundant noise sig-

nals, which would increase the modelling time and reduce the ac-

curacy of the model. Extracting the features of the e-nose data and 

searching for valuable data for calculations can simplify the model 

prediction process. In this study, a total of eleven features were ex-

tracted: 1.  the data of the response curve at the 10th, 20th, 40th, 

60th, 80th, 100th, and 120th s, named EN10, EN20, EN40, EN60, 

EN80, EN100, and EN120, respectively; 2.  the area between the 

response curve and the X-axis (ENSUM); 3. the maximum value of 

the response curve (ENMax); 4. the minimum value of the response 

curve (ENMin); and 5.  the difference between the maximum and 

minimum values of the response curve (ENDiff).

Two algorithms were used for model calibration: partial least 

squares regression (PLSR) and least squares support vector machine 

(LS-SVM). PLSR is a multivariate statistical linear regression method 

that is widely used to establish reliable regression models (Huang 

et al., 2017b; Chen et al., 2020). The min principle of PLSR is to ex-

tract the orthogonal factors of latent variables (LVs) and establish the 

regression relationship between the data set and the corresponding 

reference value. LVs are obtained by simultaneously decomposing 

the e-nose data (dependent variable) and the damage levels or storage 

time (independent variable), as in this work. Therefore, PLSR can 

be regarded as a hybrid calculation of PCA, canonical correlation 

analysis (CCA), and multiple linear regression, thus combining all 

their advantages. LS-SVM is a classic nonlinear regression method 

suitable for the calculation of small sample data (Huang et al., 2015; 

Wei et  al., 2018). It commonly uses a radial basis function (RBF) 

kernel to map the input features into a high-dimensional feature 

space, thereby transforming linear inseparable problems into con-

strained quadratic programming problems (Li et al., 2007). A grid-

search technique with leave-one-out cross-validation was used to 

obtain the optimal values of the regularization parameter γ and the 

RBF kernel function parameter σ 2 in the LS-SVM model. In addition, 

the samples for calibration and prediction were selected by a sample 

set partitioning based on the joint X-Y distance (SPXY) algorithm 

(Galvao et al., 2005).

The performance of the models in predicting the level of vibra-

tional damage and the day after the damaged happened was evaluated 

by the root-mean-square error of calibration (RMSEC) and the correl-

ation coef�cient of calibration (Rc) during the calibration process and 

the root-mean-square error of prediction (RMSEP), the correlation 

coef�cient of prediction (Rp), and RPD during the prediction process. 

In addition, the absolute difference between RMSEC and RMSEP 

(AB_RMSE) was used to evaluate the robustness of the established 

regression model. The smaller the AB_RMSE value, the better the ro-

bustness of the model. A good model should have higher Rc, Rp, and 

RPD values and lower RMSEC, RMSEP, and AB_RMSE values. The 

performance of the models in distinguishing the damaged fruit was 

evaluated by their CAR. The correct answer rate is the ratio of the 

number of correctly classi�ed samples to the number of all samples.

GC–MS measurement

7860N-5973-C (Agilent, Wilmington, USA) was used for the GC-MS 

measurement, which was carried out at 2, 4, 6, and 8 d after vibra-

tions. Two sampling methods were adopted in the GC–MS measure-

ments. One was based on non-destructive sampling, which measured 

the VOCs in the headspace of intact strawberries without grinding 

the sample. The other was based on destructive sampling, which 

measured the VOCs of the ground fruit �esh. At each sampling day, 

three strawberries were used for non-destructive GC–MS measure-

ments and nine strawberries were ground for destructive GC–MS 

measurement.

The non-destructive GC-MS measurement used manual injec-

tion. A single whole strawberry was placed in a 100 ml beaker and 

sealed with para�lm for 30 min. A �bre (PDMS/DVB, 65 μm, capil-

lary column, USA) was used for the Headspace Solid Phase Micro-

Extraction (HS-SPME) for 30 min and was then inserted into the inlet 

and desorbed at a temperature of 240 °C for 5 min for the GC–MS 

measurement. The main parameters for gas chromatography included 

high-purity helium as the carrier gas at a �ow rate of 1.0 ml/min and 

a DB-WAX quartz capillary column (30 m, 0.25 mm, 0.25 µm) as 

the column model, whose temperature was initially 40 °C and then 

increased to 100 °C at a rate of 3 °C/min; the temperature then kept 

increasing up to 245 °C at a rate of 5 °C/min. The parameters of the 

mass spectrometer were an electron impact ion source (EI ion source) 

ionized at an electron energy of 70 eV, with a transition temperature 

of 250 °C and an ion source temperature of 230 °C.Figure 1. Sensors signals in electronic nose (e-nose) for one typical sample.
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The destructive GC–MS measurement used automatic injec-

tion. The strawberries were chopped and frozen in liquid nitrogen 

and then ground into powder under low temperature. Each group 

of strawberry samples contained three experimental replicates and 

three biological replicates. Strawberry powder (5 g) was placed in 

a 20  ml special headspace bottle supplemented with 5  ml of sat-

urated calcium chloride solution (Prat et  al., 2014) and 20  µL of 

2-octanone at a concentration of 0.8 mg/ml (Li L et al., 2013) as an 

internal standard. After being shaken evenly, the bottle was placed in 

the automatic sample tray and pierced by the extraction �bre with a 

depth of 40 mm for 30 min for SPME at 45 °C. Then, the �bre was 

inserted into the inlet and desorbed for 5 min under a temperature 

of 240 °C. The parameters for the destructive GC–MS measurement 

were as same as those for the non-destructive GC–MS measurement.

Results

Detection of levels of vibrational damage

To evaluate whether e-nose technology can be used to detect the 

level of vibrational damage suffered by strawberry fruits, prediction 

models were established based on the full e-nose variables called 

ENAll and the extracted eleven features. The durations of vibrations 

were used as the reference data of the levels of vibrational damage. 

Table 1 shows the results of the detected levels of vibrational damage 

based on strawberries under all storage times (360 samples were 

used for calibration and the remaining 120 samples for prediction). 

The average Rc and Rp were used as the standard to evaluate the es-

tablished models. The PLSR-ENAll model was shown to be the best 

PLSR model, whereas the PLSR-ENMax model was the best PLSR 

model based on the extracted features. However, in comparison, the 

results of the LS-SVM models were signi�cantly better than those 

of the PLSR models, except for the LS-SVM-ENDiff model. The 

average Rc and Rp for all LS-SVM models (except the LS-SVM-

ENDiff model) was 0.951, whereas that of all the PLSR models was 

only 0.589. Although the AB_RMSE values of the LS-SVM models 

were generally higher than those of the PLSR models, they were 

still in an acceptable range. According to RPD and AB_RMSE, the 

best model for predicting the level of vibrational damage was the 

LS-SVM-ENAll model. Nevertheless, this model showed over�tting. 

Therefore, the LS-SVM-ENSum model was considered to be the best. 

The above results show that e-nose technology can be used to detect 

the level of vibrational damage, while the LS-SVM algorithm was 

more suitable for analysing e-nose data than PLSR in this case.

Besides the samples under all storage times used for modelling 

(Table 1), models were also established based only on samples whose 

e-nose signals were collected at 0 days (right after vibration treat-

ment), 1, 2, or 3  days after vibration treatment, and their results 

are shown in Table 2. On each sampling day, 90 samples were used 

for the calibration and another 30 samples for the prediction, and 

only the results for the ENAll model and the best model based on 

the extracted variables are given. Based on the samples just after the 

vibration (0 days), the prediction accuracy of the four models was 

similar, where the RMSEC and RMSEP values were both below 0.3, 

and their AB_RMSE values were also lower than 1. For the sam-

ples only one day after the end of the vibrations, the accuracy of 

the models was generally better than that for the samples at 0 days. 

Based on samples taken 2 days after the end of the vibrations, the 

results of the four models were better than those of other days, and 

the RPDs were all above 4.5. For the samples on the third day after 

vibrations, the PLSR models were slightly worse than those for the 

samples on the second day, whereas the accuracy of the LS-SVM 

models was about the same. In general, when considering samples 

with different days of storage, ENAll-based models and the models 

established based on feature variables can accurately predict the 

Table 1. Detected levels of vibrational damage based on strawberries under all storage times.

Feature variables Calibration method

Calibration Prediction

AB_RMSE
R

c
Rc2 RMSEC R

p
Rp2 RMSEP RPD

ENAll PLSR 0.686 0.471 0.824 0.655 0.394 0.836 1.290 0.012

ENMax PLSR 0.616 0.379 0.893 0.709 0.432 0.809 1.342 0.083

ENMin PLSR 0.602 0.362 0.905 0.593 0.319 0.886 1.213 0.019

EN
Sum

PLSR 0.593 0.352 0.912 0.604 0.339 0.873 1.235 0.039

ENDiff PLSR 0.455 0.207 1.008 0.445 0.154 0.987 1.096 0.021

EN
10

PLSR 0.604 0.365 0.902 0.630 0.333 0.877 1.233 0.026

EN
20

PLSR 0.590 0.349 0.914 0.595 0.322 0.884 1.223 0.030

EN
40

PLSR 0.545 0.298 0.949 0.575 0.296 0.901 1.197 0.048

EN
60

PLSR 0.577 0.333 0.925 0.555 0.290 0.905 1.190 0.020

EN
80

PLSR 0.590 0.349 0.914 0.579 0.313 0.890 1.209 0.024

EN
100

PLSR 0.592 0.350 0.913 0.556 0.299 0.899 1.197 0.014

EN
120

PLSR 0.594 0.353 0.911 0.590 0.331 0.878 1.223 0.033

ENAll LS-SVM 0.998 0.996 0.073 0.955 0.910 0.321 3.363 0.249

ENMax LS-SVM 0.980 0.959 0.228 0.935 0.872 0.384 2.804 0.156

ENMin LS-SVM 0.975 0.948 0.259 0.924 0.853 0.411 2.611 0.152

EN
Sum

LS-SVM 0.973 0.945 0.266 0.942 0.881 0.370 2.984 0.104

ENDiff LS-SVM 0.441 0.102 1.073 0.000 0.000 1.131 0.965 0.057

EN
10

LS-SVM 0.979 0.955 0.240 0.886 0.781 0.502 2.147 0.262

EN
20

LS-SVM 0.986 0.970 0.198 0.921 0.844 0.424 2.535 0.226

EN
40

LS-SVM 0.965 0.927 0.305 0.919 0.842 0.427 2.518 0.121

EN
60

LS-SVM 0.978 0.954 0.242 0.931 0.855 0.409 2.717 0.167

EN
80

LS-SVM 0.971 0.941 0.275 0.900 0.806 0.473 2.294 0.198

EN
100

LS-SVM 0.982 0.963 0.218 0.918 0.840 0.430 2.524 0.212

EN
120

LS-SVM 0.974 0.945 0.265 0.923 0.847 0.419 2.567 0.154

LS-SVM, least squares support vector machine; PLSR, partial least squares regression; R
c
, correlation coef�cient of calibration; RMSEC, 

root-mean-square error of calibration; RMSEP, root-mean-square error of prediction; R
p
, correlation coef�cient of prediction. AB_RMSE: the 

absolute difference between RMSEC and RMSEP.
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vibration levels of strawberry fruits. In the early storage period after 

vibration, the results of the PLSR and LS-SVM models were not very 

different. However, in the later stages of storage, the LS-SVM models 

were better than the PLSR models. For comparison, the accuracy of 

the models in Table 2 is generally higher than the accuracy of those 

in Table  1. In Table  2, the average RPD values of the PLSR and 

LS-SVM models (all being the best models) are 3.918 and 4.155, 

respectively, whereas the RPD values of the best PLSR and LS-SVM 

models in Table 1 are 1.290 and 2.984, respectively. As the models 

in Table 2 are calibrated based on the samples whose e-nose data 

were measured at different days after damage, whereas the models in 

Table 1 are calibrated based on the samples whose e-nose data were 

measured at all four sampling days, this means that the models cali-

brated at different days after damage predicted vibrational damage 

more accurately than those based on all days. Our previous research 

also found that when the e-nose signals measured at different times 

after damage were used for modelling at the same time, the predic-

tion accuracy of the model will be lower than that of the models 

based on the signal measured at each time point (Yang et al., 2020). 

This might occur because after the fruit suffers mechanical damage, 

its VOCs change over time; meanwhile, the release of VOCs in the 

fruit is related to the level of mechanical damage that the fruit suf-

fered. In other words, the quality of damaged strawberries continues 

to deteriorate, so that the VOCs in the fruits with less vibrational 

damage in the late storage period could be similar to the VOCs in 

the fruits with greater vibrational damage in the early storage period. 

Therefore, when the calibration was based on the samples at all sam-

pling days, the VOCs of the fruits at different times after vibration 

could have interfered with the model calibration, making the per-

formance of the models generally poorer than that of the models 

established based on the samples at each sampling day, especially for 

the PLSR algorithm. Nevertheless, the detection accuracy of the sam-

ples from all days, when based on the LS-SVM algorithm, was still 

satisfactory in the current study. Moreover, from the perspective of 

industrial applications, samples from different times after vibration 

should be considered when modelling, rather than just collecting 

e-nose signals from fruits that recently suffered mechanical damage.

Discrimination of strawberries with or without 

vibrational damage

In practical applications, sometimes it is not necessary to know the 

damage level but only to judge whether or not the strawberries are 

mechanically damaged. Therefore, models were established to classify 

the strawberries based on the samples from days 0, 1, 2, and 3 and from 

all 4 days (Table 3). For days 0, 1, 2, and 3, 90 samples were used for 

the calibration and another 30 samples for the prediction. For all four 

days, 360 samples were used for the calibration and another 120 sam-

ples for the prediction. Compared to other e-nose features, the results 

of ENDiff were signi�cantly worse. Therefore, the results of the ENDiff 

models were excluded in the subsequent analysis. When samples from 

all days were used for modelling, the average CAR of both the cali-

bration and prediction of all PLSR models was 84.99%, whereas that 

of all LS-SVM models was 96.92%. The best PLSR model was the 

PLSR-ENAll model, whose average CAR of calibration and prediction 

was 87.61%; meanwhile, the LS-SVM-ENMin and LS-SVM-EN120 

models were the best LS-SVM models, with an average CAR of cali-

bration and prediction of 99.24%. Therefore, when samples from 

different storage times after vibration were considered, LS-SVM was 

suggested to be used for model calibration. On the other hand, when 

samples from different days were considered for modelling separately, 

there was little difference between the PLSR models and the LS-SVM 

models. The above results are similar to those for detecting the levels 

of vibrational damage. In addition, for the samples on days 0, 1, and 

2, some models had a CAR of both calibration and prediction that 

reached 100%, but for the samples on day 3, there was no such model.

Prediction of time after vibrational damage

Predicting when vibrational damage occurs is important for 

identifying the cause of the damage and optimizing the supply chain. 

Based on the �ve sample sets (namely, the three sample sets of fruits 

vibrated for 0.5, 1, and 2 h, the fruit set without damage (0 h), and 

the combined sample set), the prediction models for the occurrence 

time of vibrational damage (0, 1, 2, and 3 d) were established by 

both the PLSR and LS-SVM algorithms. The reference data were the 

Table 2. Detection of levels of vibrational damage based on strawberries with different storage times

Time Feature variables Calibration method

Calibration Prediction

AB_RMSE
R

c
Rc2 RMSEC R

p
Rp2 RMSEP RPD

0 d ENAll PLSR 0.974 0.949 0.260 0.956 0.908 0.285 3.328 0.025

0 d EN
Sum

PLSR 0.974 0.948 0.264 0.955 0.905 0.290 3.302 0.026

1 d ENAll PLSR 0.959 0.919 0.320 0.974 0.929 0.266 3.995 0.054

1 d ENMin PLSR 0.964 0.930 0.298 0.961 0.916 0.289 3.566 0.009

2 d ENAll PLSR 0.973 0.947 0.253 0.977 0.946 0.251 4.654 0.002

2 d EN
Sum

PLSR 0.972 0.944 0.260 0.976 0.945 0.253 4.590 0.007

3 d ENAll PLSR 0.978 0.957 0.236 0.967 0.928 0.289 3.890 0.053

3 d EN
Sum

PLSR 0.973 0.946 0.263 0.972 0.937 0.271 4.016 0.007

0 d ENAll LS-SVM 0.982 0.964 0.219 0.962 0.912 0.280 3.388 0.061

0 d EN
80

LS-SVM 0.990 0.980 0.165 0.962 0.923 0.261 3.648 0.096

1 d ENAll LS-SVM 0.970 0.941 0.273 0.961 0.908 0.304 3.570 0.030

1 d ENMax LS-SVM 0.990 0.981 0.157 0.961 0.907 0.304 3.632 0.148

2 d ENAll LS-SVM 0.997 0.994 0.087 0.981 0.959 0.217 5.112 0.130

2 d EN
60

LS-SVM 0.996 0.992 0.101 0.978 0.953 0.235 4.717 0.134

3 d ENAll LS-SVM 0.990 0.980 0.162 0.983 0.962 0.208 5.448 0.046

3 d ENMax LS-SVM 0.990 0.980 0.162 0.965 0.927 0.291 3.726 0.129

LS-SVM, least squares support vector machine; PLSR, partial least squares regression; R
c
, correlation coef�cient of calibration; RMSEC, 

root-mean-square error of calibration; RMSEP, root-mean-square error of prediction; RPD, residual prediction deviation; R
p
, correlation co-

ef�cient of prediction. AB_RMSE: the absolute difference between RMSEC and RMSEP.
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time after vibrational damage, which was 0 days (right after vibration 

treatment), 1, 2, and 3 days. For 0, 0.5, 1, and 2 h, 90 samples were 

used for the calibration and another 30 samples for the prediction. 

For all four days, 360 samples were used for the calibration and an-

other 120 samples for the prediction. Table 4 shows the results for 

the best e-nose feature model and ENAll model in each sample set. 

When the PLSR algorithm was used for model calibration, the fruit 

without vibration treatment obtained the best results, with an RPD 

over 7, showing that as the time after harvest increased, the VOCs 

of the strawberries changed, such that the e-nose could distinguish 

between different storage times. As the vibration duration increased 

from 0.5 to 2 h, the prediction accuracy of the models gradually de-

creased (the RPD decreased from 7.603 and 7.574 to only 3.233 and 

3.591). When the samples from all vibration times were considered, 

the RPD values further decreased to only 2.955 and 2.675. When 

the LS-SVM algorithm was used for model calibration, the results, 

similar to those of the models based on samples with less vibration 

time, obtained better predictions. As the time that the fruit was sub-

jected to vibrations increased, the prediction accuracy of the model 

gradually decreased. Moreover, the results of the models based on the 

samples from all vibration times were relatively poorer than those 

based on the samples from each vibration time. Nevertheless, the re-

sults of the LS-SVM models were generally better than those of the 

PLSR models, especially for the models based on the samples from all 

vibration times, showing that LS-SVM is more suitable than PLSR for 

calibrating hybrid samples. Comparing Tables 2 and 4, it can be seen 

that predicting the time after the occurrence of vibration obtained 

better results than predicting the level of vibrational damage.

GC–MS analysis

The relative contents of the VOCs obtained by the non-destructive 

GC-MS measurement at 0, 2, 4, 6, and 8 days under different levels 

of vibration are shown in Figure 2. The relative content of esters in 

strawberries after 0.5 h of vibrations was about 60%. As the vibra-

tion time increased to 1 and 2 h, the relative content of esters rose 

to about 90%. There were about 30% alkenes in the strawberries 

after vibrations for 0.5 h, and their content did not change notably 

with storage time. No alkenes were detected in the strawberries that 

were vibrated for 1 and 2 h just after the vibrations (0 days), and the 

content of alkenes at the other times after vibration was about 5%. 

In addition, some alcohols were also detected in the strawberries that 

were subjected to vibration, the content of which was the highest just 

after the vibrations (0 days), accounting for about 4% and gradually 

decreasing to about 1% with an increase in storage time.

After further analysis of the speci�c changes in the content of 

VOCs acquired by the non-destructive GC–MS measurement, it 

can be seen that after the fruit was mechanically damaged by vi-

brations, the content of some substances changed (Figure  3). The 

content of methyl butanoate was positively correlated with the level 

Figure 2. Non-destructive gas chromatography–mass spectrophotometry 

(GC–MS) detection results for the relative content of volatile substances 

(VOCs) from strawberries with different vibration levels.

Table 4. Prediction of time after vibrational damage for strawberries with vibration damage

Time
Feature  

variables

Calibration  

method

Calibration Prediction

AB_RMSE
R

c
Rc2 RMSEC R

p
Rp2 RMSEP RPD

all ENAll PLSR 0.967 0.936 0.288 0.941 0.882 0.339 2.955 0.051

all ENMax PLSR 0.953 0.907 0.346 0.928 0.851 0.382 2.675 0.036

0 h ENAll PLSR 0.995 0.990 0.116 0.993 0.983 0.127 8.215 0.011

0 h EN
Sum

PLSR 0.993 0.987 0.132 0.992 0.982 0.131 7.554 0.001

0.5 h ENAll PLSR 0.994 0.988 0.125 0.991 0.979 0.137 7.603 0.012

0.5 h EN
Sum

PLSR 0.993 0.986 0.135 0.991 0.977 0.140 7.574 0.005

1 h ENAll PLSR 0.990 0.980 0.156 0.990 0.976 0.177 6.411 0.022

1 h ENMax PLSR 0.981 0.963 0.212 0.980 0.960 0.226 5.028 0.014

2 h ENAll PLSR 0.990 0.979 0.168 0.955 0.904 0.266 3.233 0.098

2 h ENMax PLSR 0.983 0.966 0.214 0.972 0.922 0.240 3.591 0.025

all ENAll LS-SVM 0.999 0.998 0.055 0.980 0.959 0.201 4.993 0.146

all ENMax LS-SVM 0.999 0.997 0.059 0.983 0.967 0.180 5.478 0.121

0 h ENAll LS-SVM 1.000 0.999 0.027 0.993 0.985 0.123 8.258 0.096

0 h ENMax LS-SVM 1.000 1.000 0.002 0.992 0.983 0.129 7.840 0.127

0.5 h ENAll LS-SVM 0.999 0.999 0.039 0.993 0.984 0.119 8.529 0.080

0.5 h ENMax LS-SVM 1.000 0.999 0.030 0.993 0.985 0.113 8.368 0.082

1 h ENAll LS-SVM 0.998 0.997 0.065 0.991 0.979 0.163 7.412 0.098

1 h EN
120

LS-SVM 1.000 1.000 0.000 0.993 0.986 0.135 8.478 0.135

2 h ENAll LS-SVM 1.000 0.999 0.029 0.976 0.951 0.190 4.552 0.161

2 h ENMax LS-SVM 1.000 1.000 0.005 0.991 0.981 0.119 7.389 0.114

LS-SVM, least squares support vector machine; PLSR, partial least squares regression; R
c
, correlation coef�cient of calibration; RMSEC, 

root-mean-square error of calibration; RMSEP, root-mean-square error of prediction; RPD, residual prediction deviation; R
p
, correlation co-

ef�cient of prediction. AB_RMSE: the absolute difference between RMSEC and RMSEP.
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Figure 4. Relative content of some volatile substances (VOCs) of strawberries with different vibration levels measured by the destructive gas chromatography–

mass spectrophotometry (GC–MS) measurement.

Figure 3. Relative content of some volatile substances (VOCs) of strawberries with different vibration levels measured by the non-destructive gas chromatography–

mass spectrophotometry (GC–MS) measurement.
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of vibrations at the early time-points after vibrations. However, this 

difference was not obvious in the later stages of storage (Figure 3a). 

The content of methyl hexanoate, during the entire storage period, 

had a correlation with the level of vibrations (Figure 3b). When the 

fruit was subjected to severe vibrations (1 and 2 h), the content of 

(4R)-1-methyl-4-prop-1-en-2-ylcyclohexene was signi�cantly lower 

than that of the fruit that experienced light vibrations (0.5 h) during 

the whole storage period (Figure 3c). For ethyl 3-methylbutanoate, 

there was no difference in content in the fruits treated with different 

vibration levels at 0 d, but their content was related to the vibration 

level after two days of storage (Figure 3d).

Figure  4 shows the changes of some VOCs in strawberries 

obtained by the destructive GC–MS measurement after different 

mechanical damage treatments during storage. The content of me-

thyl butanoate was low in the early storage period and then in-

creased in the later storage period; however, the increase of content 

in fruits with more severe vibrational damage was not as high as 

that in fruits with less damage (Figure  4a). Conversely, the con-

tents of 4-methoxy-2,5-dimethylfuran-3-one (Figure  4b), nonanal 

(Figure  4c), and (6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol 

(Figure 4d) also increased in the late storage period, but the more 

severe the damage was, the more the contents increased.

Discussion

Previous studies showed that the VOCs of fruit can be affected by 

many factors, including fruit development and ripening, postharvest 

treatment, and pathogenic fungal diseases and pests. A study on per-

simmons by Taiti et al. (2018) showed that when the fruits were ripe 

enough to eat, their concentrations of terpenes, sulfur compounds, 

lactones, and green leaf volatiles were low, whereas those of short-

chain alcohols and aldehydes were relatively high. By using GC-IMS 

technology to characterize the VOCs of avocado, Liu et al. (2020) 

found that the content of phenol and acrolein gradually decreased 

and �nally disappeared during the ripening process. According to Cai 

et al. (2020), besides enhancing the chilling tolerance of peach, nitric 

oxide treatment can lead to higher emissions of some VOCs, such as 

straight-chain esters and lactones, by regulating the synthesis of fatty 

acids. In another work, exogenous melatonin treatment delayed 

strawberry deterioration and did not signi�cantly affect the abun-

dance of VOCs, except for two important ones, 2-methylbutanoate 

and ethyl hexanoate (El-Mogy et  al., 2019). Chalupowicz et  al. 

(2020) observed that fungal infection changed the VOCs of citrus, 

especially limonene, and is thus a promising marker for pathogen 

activity. Gong et  al. (2019) identi�ed some VOCs released by in-

oculated apples and found that apples with different susceptibilities 

showed related VOC changes under pathogen infection. In addition 

to the above factors, when fruit is mechanically damaged, its VOCs 

will also change. Thus, researchers are interested in what occurs to 

the VOCs released by the fruit after suffering mechanical damage. 

For blueberries, the impact made the fruit more susceptible to fungal 

infection and caused changes in VOCs, such as increased aldehyde 

content (Polashock et al., 2007). Our previous research found that 

when yellow peach fruit suffered compression damage, the rela-

tive content of 2(3H)-Furanone, 5-hexyldihydro-, 2H-Pyran-2-one, 

tetrahydro-6-pentyl, and pentadecane decreased with an increase in 

the level of compression damage; the relative content of ethyl cap-

roate, ethyl acetate, and ethyl trans-4-decenoate increased with an 

increase in the level of compression damage, and the relative con-

tent of 4-Octenoic acid, methyl ester, (Z) was related to the level 

of compression damage immediately after the damage (Yang et al., 

2020). In the current study, the data from GC–MS indicated that the 

types and contents of VOCs in strawberries can be affected when 

the fruit suffers vibrational damage, as well as during storage. These 

changes allowed e-nose technology to detect strawberries that suf-

fered mechanical damage. Moreover, to study what happens to the 

VOCs released by the whole fruit rather than the tissue homogenate, 

this study used a non-destructive method to obtain the GC–MS 

signal. To monitor the changes of VOCs in the fruit throughout the 

supply chain, more research is needed based on an analysis of the 

whole fruit (instead of obtaining a homogenate of the fruit tissue 

through a destructive method), followed by using GC–MS to analyse 

the changes of VOCs in the fruits that suffered mechanical damage.

Compared to GC–MS technology, which is often used to sep-

arate and determine speci�c VOCs, e-nose technology mainly ana-

lyzes and detects VOCs as a whole. In studies on fruit VOCs, e-nose 

is often used for species classi�cation, quality prediction and disease 

and freshness detection. In the area of damage detection, Demir et al. 

(2011) acquired an e-nose signal from blueberries on different days 

after impact damage and obtained 100% correct classi�cation rates 

for days 2, 10, 17, and 24. In another study, Ren et al. (2018) released 

apples at different drop heights to simulate various degrees of mech-

anical damage, and then collected the e-nose data and classi�ed the 

damaged apples using a back-propagation neural network. In a pre-

vious study, we used e-nose technology to detect yellow peaches with 

compression damage (Yang et  al., 2020). The results showed that 

the RPD values of the best prediction models for damage level and 

time after damage were 2.139 and 2.114, respectively, and the best 

CAR for discriminating the damaged fruit was 93.33%. However, 

the results of this study also showed that good predictive results 

could be obtained based on the data acquired at only 24 h after the 

compression damage occurred. When the data were acquired at 4 

or 8 h after the compression damage occurred, the predictive results 

were not good. In the current study, we found that the vibrational 

damage detection models established at 0, 1, 2, and 3 h after the oc-

currence of vibrations all obtained good detection results. Moreover, 

in selecting a metrology modelling algorithm for analysing an e-nose 

signal, this study found that nonlinear LS-SVM modelling is better 

than using the linear PLSR algorithm, which is similar to the results 

of our previous research (Huang et al., 2015; Wei et al., 2018; Yang 

et al., 2020).

There are still some problems to be solved before e-nose tech-

nology can be used for practical applications. First, most studies, 

including the current study, primarily analyse whether e-nose tech-

nology can detect damaged fruit when the fruit suffers a certain type 

of mechanical damage, such as an impact, vibration, or compression. 

However, in industrial practice, there are several mechanical forces 

acting on the fruit at the same time, and the changes in VOCs released 

by these forces should be studied. Secondly, factors like fruit variety, 

orchard, cultivation method, and harvest year may have an in�uence 

on the changes in VOCs after the fruit is mechanically damaged. 

Therefore, it is necessary to collect more comprehensive samples for 

modelling for the model to be used in practice applications. Third, 

many current studies are based on large desktop e-nose instruments, 

which are not suitable for use in the fruit supply chain. It is neces-

sary to develop miniaturized and low-cost e-nose instruments that 

are more suitable for monitoring fruit VOCs in transportation and 

storage environments. In addition, environmental temperature and 

humidity can also affect the collection of e-nose signals, so further 

research is needed in this area.
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Conclusions

This study demonstrated the potential of using e-nose technology 

to rapidly and non-destructively predict the levels of vibrational 

damage of strawberries, distinguish the damaged fruit, and predict 

the day after the damage happened. When the samples from all four 

sampling days were considered for modelling, the LS-SVM-ENSum 

model obtained the best results for predicting the damage level, 

with an RPD value of 2.984 and an RMSEP of 0.370. On the other 

hand, when the models were established based on the samples from 

one sampling day after vibrations, the results were generally better 

than those of the all-sample models, but the prediction accuracy of 

the latter was still satisfactory. Notably, samples contained in the 

latter model were more similar to an actual situation. The models 

for discriminating whether the fruit was damaged by vibrations also 

obtained good detection accuracy. The best LS-SVM model for the 

total samples from all sampling days provided an average CAR for 

calibration and prediction of 99.24%, where that of the best PLSR 

model was 87.61%. The LS-SVM algorithm also obtained the best 

results, with an RPD value of about 5 when predicting the days after 

vibration, especially when the total samples were used for modelling. 

Both the non-destructive and GC–MS measurements show that the 

content of some VOCs changed after the fruit suffered vibrational 

damage, including methyl butanoate, methyl hexanoate, (4R)-1-

methyl-4-prop-1-en-2-ylcyclohexene, ethyl 3-methylbutanoate, 

4-methoxy-2,5-dimethylfuran-3-one, nonanal, and (6E)-3,7,11-

trimethyldodeca-1,6,10-trien-3-ol. Although there was not a clear 

relationship between the change in content and the vibration level 

or time, these changes were the basis for e-nose technology to de-

tect fruits damaged by vibrations. These �ndings illustrate the novel 

promise of using e-nose technology to rapidly and non-destructively 

detect damaged fruit in the postharvest supply chains.
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