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Application of Elementary Neural Networks and 

Preview Sensors for Representing Driver Steering 

Control Behaviour 

CHARLES C. MACADAM* and GREGORY E. JOHNSON** 

SUMMARY 

This paper demonstrates the use of elementary neural networks for modelling and representing 
driver steering behaviour in path regulation control tasks. Areas of application include uses by 
vehicle simulation experts who need to model and represent specific instances of driver steeringcon- 
trol behaviour, potential on-board vehicle technologies aimed at representing and tracking driver 
steering control behaviour over time, and use by human factors specialists interested in representing 
or classifying specific families of driver steering behaviour. Example applications are shown for data 
obtained from a driver/vehicle numerical simulation, a basic driving simulator, and a n  experimental 
on-road test vehicle equipped with a camera and sensor processing system. 

1. INTRODUCTION 

This analysis illustrates the use of basic neural network concepts, combined with 

appropriate sensor information, to represent driver steering control behaviour 

in path regulation activities. Identification of driver steering behaviour is the 

goal, based upon "observation" or processing of assumed sensor inputs that 

provide information about vehicle motion and orientation with respect to the 

roadway. Use of time delayed sensor inputs is a key feature of the technique 

proposed here. The motivations for using neural network approaches can 

range widely, but normally stem from some need to represent adaptive control 

system behaviour. For vehicle control applications this frequently means human 

control behaviour. In the area of driverlvehicle simulation, neural networks 

enable the modelling of specific driverlvehicle control interactions. Another 

area of interest is in emerging IVHS (Intelligent Vehicle Highway Systems) 
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4 CHARLES C. MACADAM A N D  GREGORY E. JOHNSON 

on-board control technologies presently being studied and possibly introduced 
into certain vehicle markets. IVHS concepts such as lane departure "co-driver" 

assists [1,2,3,4], aimed at mitigating run-off-road accidents and/or regulation of 
lateral lane position, as well as longitudinal control systems for "intelligent 

cruise" [5], headway control [6], and collision avoidance systems [7], are 
examples of such target applications. Each application is presumed to have a 
need for representing driver control behaviour as part of its basic intelligence 

scheme. In the case of lane departure co-driver assists, future path predictions 
relative to the highway lane depend, in good part, upon the current driver steer- 
ing input. In the case of intelligent cruise control systems, some representation 

or understanding of individual driver longitudinal acceleration preferences 

would be presumed, based upon observations by the system of actual driver 
longitudinal control behaviour. 

The desirability of designing control technologies that mimic human-like 
behaviour is frequently a motivating reason for applying neural network con- 
cepts [3,8,9,10,11,12,13]. The design and creation of control technologies 

compatible with human expectations, in a traditional hur an-machine system, 
are important for the acceptance and use of such new technological assists by 
average drivers [14]. There is also the practical, common sense observation by 

most drivers that we are all different and display individual driving styles. 
Such differences need to be addressed by any control technology expected to 
assist and interact cooperatively with us during the driving experience. The 
issue of adaptive control then becomes a key design element that must be a 
part of any such system intended to provide the necessary robustness when deal- 
ing with the myriad of possible driver behavioural patterns and expectations. 

The well known ability of neural networks to "learn," or to recognize patterns 
of behaviour [3,8,9,10,11,12,13,15,16,17,18,19], is clearly seen as a desirable 
quality greatly benefiting the designer of such human-machine cooperative 

systems. It is this adaptive property of neural networks that is being utilized 
in this paper to illustrate how driver steering control behaviour can be 
modelled and identified over time. For some applications, such as on-board 

systems focused on vehicle control, this may imply some form of periodic updat- 
ing of the driver representation. 

Previous research particularly related to the topic of this paper appears in 
references [3,4,9,10,11,20,2 i ,22,23,24]. Cheng et a1 [20] used a backpropagation 
neural network as a controller for an automated guided vehicle system. Camera 
images were used as inputs to the network to then generate a command refer- 
ence yaw rate signal as a control input for the vehicle. Fujioka and Takubo 
[21] used a neural network approach to model driver steering behaviour using 

driving simulator data to train the network. Kehtarnavaz and Sohn [22] illus- 
trated how neural networks can be used to control the steering of an autono- 
mous vehicle when equipped with passive or active sensors providing range 

and heading angle information. The networks were trained using real data 
obtained from vehicle-tracking test runs. Kornhauser et a1 and Lubin et al 
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NEURAL NETWORKS AND PREVIEW SENSORS 5 

[23,24] used a graphical driving simulator environment to gather human 

response data for training candidate neural networks. The goal was to investi- 

gate various designs of artificial neural networks for processing the resulting 

images and then generating acceptable steering commands for the vehicle. 

Excellent results were reported for both straight and curved road driving scen- 

arios under a variety of conditions. Kraiss and Kuettelwesch [3,4] demonstrated 

how neural networks could be trained to guide a vehicle through an obstacle 
course by emulating a human teacher. A two lane car driving task was also 

used to illustrate the training procedure. Kraiss and Kuettelwesch also pro- 

posed and demonstrated the use of neural networks as an information source 

for driver assistant systems. Recently Neusser et al [9] used measurements of 
human drivers to train a neural network controller to autonomoysly steer 

and guide a vehicle along public highways using optical sensor inputs. Last, 

but not least, the important work of Pomerleau, Thorpe, and others at 

Carnegie-Mellon [10,1 I] using the ALVTNN system for autonomous steering 
control of vehicles, is likewise noted. Recent progress in training efficiency 
has been reported for ALVINN by using human steering response data. Once 

trained for a particular type of road, autonomous control of the vehicle by 

ALVINN has been demonstrated at highways speeds. 

As indicated above, identification of driver steering control behaviour is the 

goal of this paper, based upon neural network processing of assumed sensor 

inputs that provide information about vehicle motion and orientation relative 

to the roadway. A distinguishing feature of this work is the use of time-delayed 

sensor information and the use of driver/vehicle response training data obtained 
from several different sources. The lateral path control problem serves as the 

basis for the discussion that follows. 

2. DESCRIPTION OF ASSUMED SENSOR MEASUREMENTS 

Potential on-board systems focused on lateral control issues are assumed 

to include some form of sensor package that can provide continuous 

information about the motion of the vehicle on which it is mounted relative 

to the roadway. This would likely include lateral displacement information, 

as well as heading or yaw information relative to the roadway orientation. 

The paper assumes a sensor that is capable of looking forward and to the 

side of the vehicle to provide such relative motion information as, for 

example, in [25]. It is also assumed that relative displacement information at 
several distinct points over the look-ahead or preview interval of the sensor 

are its basic outputs. 

The specific sensor pattern described below forms the basis for all sensed 

motion available to, and flowing into, the sensor processing system considered 
here. That is, all relative lateral displacements available from the preview sensor 
(looking forward and to the side of the vehicle), are assumed to be available for 
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body-axis of vehicle 

(sensor measurement) 

sor measurement) 

Left Edge 
of Roadway 

sensor measurement) 

y body-axis of vehicle 

Fig. I .  Overhead view of vehicle with assumed preview sensor measurements. 

several distinct locations ahead of the vehicle in time (or position). The sensor 

measurements are also assumed to be independent of any specific hardware 

implementation (laser, CCD camera, infrared, etc.) In the examples used in 
this paper, three total samplings of relative vehicle positions are assumed avail- 

able; one is very near the front end of the vehicle, and the remaining two samples 

are located at two points ahead of the vehicle (typically separated at 0.2 to 0.5 

second intervals, or corresponding travel distances based upon the speed of the 

vehicle). See Figure 1. 

As seen in Figure 1,  the relative lateral displacements measured by the sensor 

are labeled as si (i = 1, 2, 3) and represent the simple lateral offsets between the 

forward projection of the vehicle longitudinal body axis and some common 

road edge marker (e.g., the typical white fog line used for marking lane edges, 

or some equivalent and generally detectable feature of the road edge). Conse- 

quently, at any point in time, several simultaneous measurements over the 

immediate preview interval are output by the sensor and represent lane edge 

positions of the roadway ahead, relative to the current forward projection of 

the longitudinal body-axis of the vehicle. Note that these displacement measure- 

ments from the sensor are not future path errors (as traditionally described), 
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NEURAL NETWORKS AND PREVlEW SENSORS 7 

unless the vehicle is currently traveling in a perfectly straight, zero-sideslip 

condition with no steering input. (Future path error information can be 

obtained, if needed, by projecting the future path of the vehicle relative to the 

longitudinal body axis of the vehicle, and then subtracting the described sensor 

measurements.) 

To understand the reasoning behind using several previewed sensor inputs, it 

is helpful to note what kinds of additional information are available (in an 

approximate manner) when simple summing and differencing operations are 

performed on these basic sensor outputs. For example, the difference between 

the intermediate sensor measurement and the immediate near-field measure- 

ment, or (s2 - sl), divided by the longitudinal distance between them, is an 

approximate measure of the angle between the current vehicle heading and 

the nearby road orientation, referred .to subsequent1y.a~ "relative yaw angle." 
Likewise, the difference between two nearby relative yaw angles (i.e., second dif- 

ferences), yields some approximate information about upcoming roadway 

curvature. In a similar manner, weighted sums of the same sensor outputs can 

provide lateral displacement information at points between the locations of 

the sensor measurements. For example, the sum of the first two sensor measure- 

ments, divided by 2, provides an estimate of the relative lateral displacement 

midway between these two respective sensor locations. Consequently, "intel- 

ligent" weighting of these basic sensor outputs provide relevant information 

about the vehicle orientation, its location relative to the immediate roadway, 

and upcoming changes in roadway direction. 

To extract tirne derivative information from these same basic sensor measure- 

ments, time-delayed versions of these signals can be utilized. For example, the 

difference between one relative yaw angle measurement and the same yaw 

angle measurement delayed in time, provides a signal estimate proportional to 

the vehicle yaw rate. Similarly, differences between these derived vehicle yaw 

rates in time can provide estimates of vehicle yaw acceleration. Thus, by provid- 

ing an augmented set of network inputs that include the three immediately 

sensed lateral displacement measurements {sl(t), s2(t), s3(t)) and two corre- 

sponding sets of their time delayed responses {sl(t-rl), s2(t-tl), s3(t-TI)}, 

{sl(t-~2), s2(t-~2), s3(t-r2)}, approximate time derivative information becomes 

available to the network as additional inputs. The values r l  and r2 represent 

the time lags of the delayed inputs. 

To understand why such sensor inputs may be desirable, it has been shown 

in numerous prior studies of closed-loop driver modelling research 

[26,27,28,29,30] that driver steering control depends to varying degree upon a 

variety of vehicle motion cues. Key feedback cues used by drivers for path regu- 

lation typically identified in such studies include previewed errors associated 

with vehicle lateral position and yaw angle, as well as driver sensations of 

yaw rate, sideslip, and lateral acceleration. Accordingly, any proposed neural 

network aimed at representing the steering control behaviour of human drivers 

would logically require sensed information consistent with these same types of 
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CHARLES C. MACADAM AND GREGORY E. JOHNSON 

Fig. 2. Single input layer, single output neuron. 

basic vehicle responses, namely, estimates of lateral position, yaw angle, and 

their corresponding rates of change. 

3. NEURAL NETWORK ARCHITECTURES CONSIDERED 

One of the simplest architectures for neural networks [15,16,17] is the so-called 

single-layer structure comprised of several inputs and a single output 

("neuron") shown in Figure 2. 

This type of structure provides a simple mathematical linear relationship 

between the inputs, si, and the output, y, as: 

where C is a constant bias or offset, w, are adjustable weights, and the "neuron" 

is a simple summing junction. By proper selection of the weights, w;, a suitable 

relationship (or linear regression) might be identified for use in certain prob- 

lems. In the case of modelling closed-loop driver-steering response, many 

models, particularly those intended for use within the linear driving regime, 

lend themselves well to forms similar to that given by equation (1). 

By associating y with driver steering response and the si with various sensor 
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NEURAL NETWORKS A N D  PREVIEW SENSORS 9 

Fig. 3. Two-layer, neural network architecture with nonlinear elements 

inputs described above (including the time-delayed sensor inputs), a very simple 

model or relationship can be proposed as a starting point for investigating the 

potential use of neural networks which accept lateral displacement sensor mea- 

surements as their basic input. 

As mild non-linearities are introduced from such sources as steering system 

hysteresis (due to friction or gear box lash) and tire cornering force sensitivities 

(to speed or load), the need arises to extend the neural network architecture 

beyond that of a simple linear relationship in order to properly admit such 

influences. In this case, a two-layer architecture, as seen in Figure 3, might be 

proposed. 

In Figure 3, N sensor inputs are presented to the first layer of the network 

and are processed through weighting values, wk,, and a nonlinear transfer func- 

tion, F1, identified as a sigmoid function, commonly used in neural networks 

[15,16,17]. The weighting value superscript, i, refers to the network layer; the 

kj subscripts denote the respective input (sensor) and output layer indices. 
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10 CHARLES C. MACADAM AND GREGORY E. JOHNSON 

The sigmoid function defined here is output-limited to the range from 0 to 1. 

(This and similar nonlinear "activation functions" used in neural networks 
generally need to be mathematically differentiable to facilitate so-called 

back-propagation algorithms [15, 16, 171 used in the "training," or weight 
adjustment process, of the network.) The outputs of the first layer, yl ... yN, 
act as an input vector to the second layer, which in this case is comprised of a 

single neuron element having a linear transfer function, F2, and a single out- 
put, z. The N nonlinear first-layer outputs lie in the range of 0 to 1 and are 
then combined linearly to produce the final network output, z. If z is associated 

with driver steering response and the si (i = 1, N) inputs associated with the 
lateral path sensor inputs, the simple linear network architecture of Figure 2 
is now extended to include additional nonlinear features. 

Training of the network occurs when time history inputs are presented to the 
network and the resulting output, z, is compared to a desired response (observed 

or measured), referred to as the "target," t, seen in Figure 3. Errors observed at 
the output layer are propagated backward in the network to provide informa- 
tion necessary for then adjusting the various network weights prior to the 
next input/output cycle or time sample [15,16,17]. The goal of most training 
algorithms is to minimize the mean squared error at the output layer. Typi- 
cally, after hundreds or thousands of such samplings and corresponding weight 

adjustments, the network will converge towards a set of network weight values 
that produces a suitable match between the desired target response and the out- 
put response calculated by the network. In this sense, network training algo- 

rithms can be viewed as a time-based parameter optimization procedure. 
Certain specialized numerical software packages exist to perform such calcula- 
tions; reference [31] was used to implement the neural network calculations 

appearing subsequently in this paper. 

4. DATA SOURCES 

To demonstrate the feasibility of using neural networks for representing driver 
steering control behaviour and to study associated sensitivity issues, sample 
data were obtained from three separate sources: (1) numerical simulation of a 

driver-vehicle system with a simulated on-board sensor providing lateral displa- 
cement "measurements" like those seen in Figure 1; (2) use of a desktop driving 
simulator [32], also with a simulated sensor to record the same previewed path 

deviations; and (3) the use of an experimental full-scale vehicle, described in the 
next section, designed to collect data analogous to that seen in Figure 1 using an 
on-board video camera and processing system. In each of these cases, the path 

deviation data (sensor time histories) used as input to the neural network, and 
the corresponding driver steering responses (target time histories), were 
obtained by conducting routine driving maneuvers (lane-changes, curve 
traversals, and straight-line driving scenarios). In the case of the numerical 
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NEURAL NETWORKS A N D  PREVIEW SENSORS 

training response, t 

s 1 

s2 

s3 

s 1 = sensor 1 measurement depicted in Figure 1 
s2 = sensor 2 measurement depicted in Figure 1 
s3 = sensor 3 measurement depicted in Figure 1 

s4 = sl(t-zl) = time-delayed sl(t) signal 
s5 = s2(t-21) = time-delayed s2(t) signal 
s6 = s3(t-21) = time-delayed s3(t) signal 

s7 = sl  (t-22) = time-delayed sl(t) signal 
s8 = s2(t-z2) = time-delayed s2(t) signal 
s9 = s3(t-z2) = time-delayed s3(t) signal 

22 > 21  

Fig. 4. Neural network architecture and sensor inputs used in this study. 

simulations, closed-loop lane change and S-curve path-following maneuvers 

were conducted with a standard driverlvehicle model [29,30,33]. The simula- 

tion was also augmented to record the previewed lane deviations (sensor 
measurements) described earlier in Figure 1 as additional output variables. 

These recorded sensor "measurements" from the various simulated driving 
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12 CHARLES C. MACADAM A N D  GREGORY E. JOHNSON 

maneuvers, along with their corresponding driver steering responses, were used 
as the first example source of time history inputs for training the proposed 

neural network. In the case of the driving simulator example, straight-line 
driving was used to collect similar types of driverlvehicle responses as a second 

independent source of training inputs for the neural network analyses. Lastly, 
on-road data collected by an UMTRI data acquisition system (see next section) 
and a human factors test vehicle [34] , were used to provide yet a third source of 
time history data for training and analyzing the neural network. The on-road 
data provide a practical evaluation of the proposed concept by introducing 
realistic data containing potential nonlinearities and ordinary sensor alignment 

irregularities into the numerical processing procedure used in the neural net- 
work training. 

The following Figure 4 defines the sensor input measurements used from 
each of the above data sources. It also shows the speciJic network architecture 
used in each of the calculation results that follow. 

In general, the same three previewed path sensor inputs were measured/ 

recorded in each of the above scenarios. From each of these three sensor 
inputs, six additional time history inputs were generated as time-delayed ver- 
sions of the three directly measured signals. Three of these signals corre- 

sponded to a delay of T I  seconds; the remaining three additional sensor 
signals corresponded to a delay of ~2 seconds (r2 > ~ 1 ) .  The delay parameters 
T I  and ~2 were typically confined to the range of 0.1 to 0.6 seconds. Note also 
that only three nonlinear outputs are present at the first layer of this architec- 
ture, and that these hidden layer outputs are then further combined through 
a single linear neuron element defining the output, z (desired driver steering 
response). The target training response, t, is compared with z during the net- 
work training process. Initial trials using 2 and 4 neurons in the first layer pro- 
vided similar results. Additional numbers of neurons resulted in somewhat 
longer training times, but more accurate matchings. With fewer neurons, the 

network trained faster, but produced less accurate matchings. Three first- 
layer neurons were selected to provide a balance between training time and 

accuracy for this particular application. Typical training times for most of the 
example calculations appearing in this paper were a few minutes using commer- 
cial neural network software running on common workstations. 

5. SENSOR AND COMPUTER HARDWARE - EXAMPLE O F  AN 
EXPERIMENTAL ON-BOARD VEHICLE SYSTEM 

An experimental UMTRI lane-edge sensor and computer system used to collect 
and process actual on-road image data and convert it to previewed lateral offset 

measurements is described in this section. One of the example neural network 
calculations using sample data collected by this system appears subsequently 
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N E U R A L  NETWORKS A N D  PREVIEW SENSORS 13 

lane sensing camera 

Fig. 5 .  Vidco camcra niounlcd in Jrivcr-sidc mirror pod of k.;t vehicle 

in Scction 6 .  The described system detects white lines along road edges and com- 

putes relative lateral offsets of the vehicle at  three forward locations. 

Hardware 

Thc system input is provided by a relatively small monochrome ( 1  inch 

diatneter) CCD camera mounted in the driver-side mirror housing of the test 

vehicle. See Figiirc 5. 

The cnrnera is equipped with automatic gain control and a 4.8 mm auto-focus 

lens to provide high contrast under diverse lighting conditions. The camera 

produces composite video output at  standard video rates (15 millisecond 

fields). The systeln's processor is a 33 MHz Intel 80486 computer, capable of 

producing lateral posilion mcasuremcnts at 20 Hz. The computer uses a 

simple 8-bit gray scale kame  grabber (512 x 480 pixels) to digitize images. The 

frame grabber only provides digitizi~tion and performs n o  other processing 

function. 

Camera Scene and Image Segmentation 

The camera is oriented to obtain a wide range of road data. An esample scene is 
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14 CIIARLES C. MACADAM AND GREGORY E. JOHNSON 

Fig. 6. Vtdeo camera sccne showing the thrcc sensor processmg regions. 

sccn in Figure 6. The analysis regions extend longitudinally from a position just 

adjacent to the left front wheel out to a distance seventy feet ahead of the 

vehicle. The lateral range covers a width of approximately five feet at thc near- 

est point, to full road widths at larger distances. 

The camera orientation allows near and far field data to be computed using 

only one camera and framc grabber. At close distances the lane line may be 

blocked by the vehicle's front quarter, or may disappear under the tire and he 

obscured. At larger distances the entire road is usually visible. Since the camera 

is tnounted off center from the vehicle's pitch and roll axes and depends upon ii 

spatially fixed calibration procedure. large vehicle motions car1 impart errors 

into Ihc measured data.  These errors can be corrected using ;rncillary trans- 

ducers which describe the vehicle's attitude and correct the calibration accord- 

ingly. This was not done for the relatively small motion data appearing in this 

paper. 

Video Analysis 

To collect data. the image is divided into three trapezoidal analysis regions as 

seen in Figure 6: a near field, a middle nr interinediatc field, and a far field. 

Each field is treated as a separate measurement covering a pre-determined long- 

itudinal and lateral space. The shape and location of each space can be indspen- 

dently adjusted. The analysis proceeds in two steps: 1)  the detection of a lane 
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NEURAL NETWORKS A N D  PREVIEW SENSORS 15 

edge line and its corresponding lateral displacement, and 2) the association of 

displacements to a lane line using the procedure in [35]. Those estimates 

which are correctly associated in the processing scheme represent the final 

sensor outputs. 

Line Detection 

Each trapezoidal sensor region contains a set of evenly spaced rows (image 

raster lines) that are analyzed. Lane edge lines are evident in rows which 

contain squared-off peaks relative to the mean intensity of the row. Peaks 

also have physical characteristics such as expected width and intensity. The 

threshold, TH, for peaks is determined by a multiple of the row standard devia- 

tion, s, offset by a fraction of the difference between the mean and the maximum 

peak value: 

where, 

[(row) is a vector of intensity values for each row 

Imax(row) is the maximum peak value for the row 

E{I(row)) is the mean value for the row 

The parameters K1 and K2 are weights dependent upon (1) the number of 

lane lines being searched (the algorithm can track N lines) and (2) an estimate 

of the ratio of roadway pixel intensities to  lane marker pixels within the row 

[35]. This ratio is relatively constant due to the camera's auto-iris and electronic 

gain control. Although the algorithm can search for N lane markings, short 

rows (in the far field) with large values of N (>  4) can produce frequent false 

targets since the statistics of such markings approach those of road clutter. 

Pixel locations of suspect lane edges are transformed to lateral displacement 

values using a second order function. The coefficients of this function comprise 

the spatially-fixed calibration previously mentioned. Within each sensor region, 

all displacements returned must be associated to a single lane marking before 

being accepted as valid measurements. 

Association 

The association procedure generates a histogram for each sensor region, using 

bins representing one tenth of a foot of lateral displacement. The histogram's 

maximum value indicates the most consistent measurement; all measurements 

in this bin are retained. Other measurements within a fixed region centered 

about this bin are then included. 

The width of the region of inclusion is dependent upon the physical proper- 

ties of the sensor patch, rather than the histogram statistics. Each sensor region 
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16 CHARLES C. MACADAM A N D  GREGORY E. JOHNSON 

has an allowable angular deviation of the lane markings and an acceptable error 

or noise margin. The far sensor region is readily influenced by road curvature (in 

the horizontal plane) and has few pixels per row, thus providing measurements 

with greater deviations and less accuracy than the corresponding near field 

sensor measurements. The near field sensor, however, displays nearly zero angu- 

lar deviation (assuming markings are parallel to the vehicle) and a large number 

of pixels in each row help minimize noise levels. 

Simple linear regression is used to fit the set of validated points from each 

sensor region to a line. Measurements whose residuals fall outside a preset 

value are discarded and the regression is repeated. If the correlation term of 

the second fit is acceptable, all remaining points are considered valid lateral dis- 

placement measurements. If at any time during the association the number of 

validated points falls below three, the sensor is considered to have no data 

for that sample. 

6. DATA PROCESSING RESULTS 

To illustrate the neural network data processing procedure, three example 

calculations are presented below. The data used in each example for training 

the network and deriving the steering control representations were obtained 

from the three separate data sources described above: 1) use of a vehicle 

dynamics numerical simulation to generate the driverlvehicle time history 

responses (and corresponding preview sensor data), 2) use of a desktop driving 

simulator with a human subject during a path regulation driving task and the 

recording of those system responses, and 3) use of the full-scale test vehicle 

and on-board video processing system described above in Section 5. Each of 

these data sources are processed in an analogous manner for these example 

calculations using the neural network architecture identified in Figure 4. Inputs 

to the neural network are the previewed sensor time histories resulting from 

a particular driving maneuver. The target response used in the supervised 

training was the driver steering time history corresponding to the same driving 

maneuver. 

Numerical Simulation Example 

In this first example, a fully nonlinear, closed-loop, driverlvehicle simulation 

[33] was used to generate the appropriate time history outputs used in the 

neural network processing. The vehicle model was augmented to provide 

three preview sensor "measurements" identical to those described in Figure 1. 

The near field measurement provided a sensor output at a point 0.1 seconds 

ahead of the vehicle mass center; the intermediate sensor measurement was 

0.4 seconds ahead; the far field measurement was 0.7 seconds ahead. These 

three time history signals and their time-delayed counterparts described in 

Section 4, were used as a set of nine sensor inputs to the network architecture 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
c
h
i
g
a
n
]
 
A
t
:
 
2
1
:
3
8
 
2
2
 
F
e
b
r
u
a
r
y
 
2
0
1
0



NEURAL NETWORKS AND PREVIEW SENSORS 

Vehicle Speed = 50 mph 

Fig. 7. Closed-loop, double lane change maneuver used in simulation example. 

seen in Figure 4. The corresponding driver steering wheel time history, also gen- 

erated by the model, was used as the target time history during the supervised 

network training calculations described subsequently. Two simulated driving 

maneuvers are used in this first numerical simulation example: 1) a closed- 

loop, double lane change maneuver conducted at 50 mph (see Figure 7) lying 

within the linear operating regime of the vehicle, and 2) a high lateral accelera- 

tion maneuver through an S-shaped curve (see Figure 8) fully exercising the 

nonlinear characteristics of the driverlvehicle simulation. 

Initial Vehicle Speed = 50 mph 

Fig. 8. S-curve geometry / maneuver used in simulation example. 
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18 CHARLES C. MACADAM AND GREGORY E. JOHNSON 

The simulated vehicle weighs 2900 Ib with a 55/45 fore-aft weight 
distribution. Conventional nonlinear tire and suspension characteristics were 

represented within the computer model. The normalized tirelsurface friction 
adhegior, limit was assumed to be 0.8 for the indicated computer runs. Outputs 

3 4 5 

Time (sec) 

Time (sec) 

0 1 2 3 4 5 6 7 8 
Time (sec) 

Fig. 9. Driver/vehicle simulation responses from the double lane change maneuver. 
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2-Layer Backpropagation with Adaptive Learning Rate & Momentum 

Epoch 

9 0.3 

0.1 

3 0 0 
50 100 150 200 250 300 

Epoch 

First Layer Network Weights - 

Second Layer Network Weights - 

Fig. 10. Neural network training results for the double lane change maneuver 
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20 CHARLES C. MACADAM AND GREGORY E. JOHNSON 

from each of these maneuvers is presented below, along with the resulting neural 

network proces~ihg of these numerical simulation results. 

Double Lane Change Maneuver - 

Simulation results from the double lane change maneuver described in Figure 

7 are seen below in Figure 9. The first graph in Figure 9 shows the time history 

outputs from the simulated preview sensor as the driverlvehicle system maneu- 

vers through the double lane change course. 

The three separate lines correspond to the three preview points ahead (in 

time) of the vehicle mass center (Tp = 0.1, 0.4,0.7 seconds ahead). The second 

and third graphs of Figure 9 show the closed-loop driver steering response and 

the vehicle lateral acceleration (mass center) recorded for the maneuver. The 

basic driverlvehicle response seen here is fairly representative of this general 

category of handling maneuvers. 

These recordings were then used as inputs to the neural network architecture 

of Figure 4. The three preview sensor outputs seen in Figure 9 and their time- 

delayed replicates, each delayed by 0.3 and 0.6 seconds respectively, provided 

the nine sensor inputs seen in Figure 4. The driver steering response seen in Fig- 

ure 9 was used as the target training time history at the output port of the neural 

network. These ten time histories were then presented to the network repeatedly 

(each total time history presentation is referred to as an "epoch" here) until a 

suitable matching between the training time history and the network output 
was obtained. These calculations were performed with commercial software 

[3 11 designed for such neural network analyses. 

The results of the neural network training procedure are seen in Figure 10. 

The top graph of Figure 10 shows the sum-squared error at the output port 

(error between the desired target time history and the neural network output) 

during the training procedure. 

The second graph shows how the learning rate used in the neural network 
algorithms varied during the training procedure. (The basic training algorithm 
was "back-propagation with an adaptive learning rate and momentum" [31]) 

The bottom graph shows the match achieved between the target response 
(driver steering response normalized by the steering system gear ratio) and 

the neural network output after 300 training epochs. Numerical values of the 
corresponding network weights (defined previously in Figure 4) are listed at 

the bottom of Figure 10. As seen in the graph, a rather good match between 
the neural network output and the target steering response is obtained. 

Examination of the sum-squared error graph of Figure 10 also suggests that 

nearly the same degree of match could be obtained with approximately half 

as much training. 
With this result, the simulated driver steering behaviour in this particular 

maneuver could then be accurately represented and reproduced with the neural 

network structure presented in Figure 4, using the network weight values listed 

in Figure 10. 
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k 0 2 4 6 8 10 12 
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g 100 = 80 
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Fig. I I .  Driver/vehicle simulation responses from the s-curve maneuver. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
c
h
i
g
a
n
]
 
A
t
:
 
2
1
:
3
8
 
2
2
 
F
e
b
r
u
a
r
y
 
2
0
1
0



CHARLES C. MACADAM A N D  GREGORY E. JOHNSON 

2-Layer Backpropagation with Adaptive Learning Rate & Momentum 

Epoch 

"0 50 100 150 200 250 300 
Epoch 

0 3 6 9 12 
Time (sec) 

First Layer Network Weights - 

Second Layer Network Weights - 

Fig. 12. Neural network training results for the s-curve maneuver. 
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S-Curve Maneuver - 
To examine what might happen if the maneuvering regime for the same 

simulated driverlvehicle system is extended to higher lateral accelerations and 
the recorded time histories reprocessed, the S-Curve maneuver defined in Fig- 
ure 8 was employed. The road course seen in Figure 8 was now driven by the 
same simulated driverlvehicle system at an average speed of 50 mph. The 

time history responses, analogous to those seen in Figure 9 for the double 
lane change maneuver, are shown here in Figure 11. 

For this maneuver, the nonlinear driverlvehicle system is fully exercised as it 

negotiates the S-Curve path. Tire adhesion limits are being reached as evidenced 
by the saturating levels of the lateral acceleration time history (approximately 
0.6 g's seen in the bottom graph). The vehicle is sliding hard through both 
turns and is unable to maintain accurate lateral lane position as the tirelroad 

friction limits are reached. The driverlvehicle system remains directionally 
stable but is incurring large path errors as it proceeds through the turns of 
the S-Curve maneuver. 

The resulting time hstory sensor outputs and the corresponding driver steer- 
ing response taken from Figure 11 were then used in the same neural network 
training procedure as before. These results are seen in Figure 12. 

Again, a reasonably good match is obtained between the desired target steer- 
ing response and the network output. Although the degree of fit is poorer than 

that seen in the previous double lane change maneuver example (by comparing 
the sum-squared mathematical measures), the fit is still well within a usable 
tolerance range for many practical applications requiring approximations or 

estimates of driver steering behaviour under such conditions. These types of 
simulation results also suggest a potential for on-board vehicle technologies 
to perform such calculations "on-the-fly" to mathematically represent driver 
steering behaviour in real time. Such technologies could update changes in dri- 

ver characterizations, and in general, track the adaptive and changing control 
behaviour exhibited by drivers over time as in [1,2,4]. 

Driving Simulator Example 

The next example employs a desktop driving simulator [32] equipped with a 
steering torque motor and steering system model to generate similar driver/ 
vehicle responses for a straight-line driving scenario. The vehicle dynamics 
model of the simulator contains three degrees of freedom (lateral, yaw, and 

roll motions) in addition to the steering system. The example data seen below 
in Figure 13 correspond to a driving scenario in which a test subject is initially 
offset laterally from a designated lane position (approximately 7 feet), and the 

subject then attempts to null the lateral offset through corrective steering. 
The top graph of Figure 13 shows the three simulated preview sensor outputs 

analogous to those described previously in Figures 1, 9, and 11. Following a 
delay of approximately 2 seconds, the subject steers the simulator vehicle to 

the right to null out the initial path offset. The corresponding steering response 
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24 CHARLES C. MACADAM AND GREGORY E. JOHNSON 

recorded for this maneuver is seen in the second graph of Figure 13. The lateral 

acceleration time history is shown in the bottom graph. 

The sensor time histories and recorded driver steering response were then 

input to the same neural network architecture as before and processed in an 

6 
Time (sec) 

0 2 4 6 8 I0 12 
Time (sec) 

.- 

0 2 4 6 8 10 12 
Time (sec) 

Fig. 13. Driverlvehicle responses from the driving simulator example. 
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2-Layer Backpropagation with Adaptive Learning Rate & Momentum 

Epoch 

Epoch 

Time (sec) 

First Layer Network Weights - 

Second Layer Network Weights - 

Fig. 14. Neural network training results for the driving simulator example. 
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identical manner. The results of these neural network training calculations are 

seen in Figure 14. 

Note that the achieved matching between the driving simulator subject 

response and the neural network representation is quite good, including small 

steering peculiarities normally present in experimental human response data 

of this kind. It is evident that the neural network exhibits an ability to not 

only represent the more idealized driver steering behaviour present in a numer- 

ical simulation environment (as in the previous example), but is also capable 

of accurately representing the smaller undulations and other human oddities 
present in more realistic driver steering waveforms seen in this example. 

On-Road Test Vehicle Example 
This last example uses data gathered by the on-road test vehicle and 

Driverlvehicle responses from the on-road test vehicle example. 
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NEURAL NETWORKS AND PREVIEW SENSORS 

2-Layer Backpropagation with Adaptive Learning Rate & Momentum 

v l 0  50 100 150 200 250 300 

Epoch 

50 100 150 200 250 

Epoch 

Time (sec) 

First Layer Network Weights - 

W l l  -> W91: 0.065 0.889 0.385 -1.003 -1.202 -0.133 0.629 -0.932 0.320 
W12->W92: -0.755 1.012 0.786 0.023 -0.226 0.442 0.584 0.268 0.836 
W 13 -> W93: -0.78 1 -0.910 - 1.140 0.549 -0.481 0.3 14 0.802 0.326 0.912 

Second Layer Network Weights - 

Fig. 16. Neural network training results for the on-road test vehicle example. 
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data collection system described in Section 5. Aside from the on-board 

instrumentation system, consisting of the lane-sensing camera and computer 
processing equipment, the vehicle is a conventional passenger vehicle (station 
wagon) weighing approximately 3500 Ib in its tested state. The image data 

was collected and processed in real time to produce the three preview lane sen- 
sor measurements described previously in Section 5. Processing and storing of 

these data were performed at a rate of 10 Hz. The lane sensor and driver steer- 
ing response information was stored to disk as time histories for subsequent 
processing by the neural network analyses. 

An example test run collected by the system is see in Figure 15 for an average 
vehicle speed of 32 mph. The test driver is regulating the vehicle along a straight 

road section using a mild oscillatory steering input to produce the observed 
response. 

As before, three preview sensor measurements are shown in the top graph. 
The three sensor measurements seen here were obtained directly from the on- 

board processing system by averaging the individual raster line measurements 
within each of the three sensor regions (described previously in Figure 6). The 
center of the far field measurement lies approximately 60 feet ahead of the 
vehicle mass center (1.2 seconds ahead); the intermediate measurement is at 
an average distance of 25 feet ahead (0.5 seconds); the near field measurement 
is located approximately 7 feet ahead (0.14 seconds). The measured driver steer- 
ing response is seen in the bottom graph. 

These recorded measurements were then applied as inputs to the same neural 
network structure as used previously and processed in an identical manner. 
Again, the three sensor measurements were each delayed in time by 0.3 and 
0.6 seconds respectively to provide a total of nine sensor inputs to the network 
architecture of Figure 4. The neural network training calculations and the 
obtained results are shown in Figure 16. 

As seen, a good match is achieved between the measured target driver steer- 
ing response and that calculated by the neural network after 300 epochs. The 
corresponding network weights identified for these data are shown at the 
bottom of Figure 16. Thus, use of the neural network structure proposed in Fig- 
ure 4, using the weight assignments listed in Figure 16, could likewise be used to 

model or represent the driver steering response seen in this example. 
Lastly, it should be noted that use of time-delayed sensor inputs was especi- 

ally helpful in improving the network training times and accuracies for both the 
on-road test data example seen here and for the previous driving simulator 
example. 

7 .  CONCLUSIONS 

This paper has demonstrated the basic use of elementary neural networks for 
modelling and representing driver steering behaviour in path regulation control 
tasks. Areas of application include uses by vehicle simulation experts who need 
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to model and represent specific instances of driver steering control behaviour, 

potential on-board vehicle technologies aimed at representing and tracking 

driver steering control behaviour over time, and use by human factors specia- 

lists interested in representing or classifying specific families of driver steering 

behaviour. Extension of this and related work to other technical realms is 

clearly possible, as is the application of this specific work to other vehicle con- 

trol areas such as longitudinal headway control and collision avoidance sys- 

tems. 

A key element in this paper was the use of time delayed sensor information in 

order to permit the neural network to derive necessary time derivative informa- 

tion in its formulations of driver steering control. This technical detail, though 

not especially obvious, is seen as an important reason for much of the indicated 

success presented here. Use of time-delayed sensor information was observed to 

improve training time and accuracy by the neural network representations, par- 

ticularly when utilizing human steering response measurements obtained from 
the driving simulator and test vehicle sources. 

Finally, it should be noted that the results seen here apply to the very specific 

operating conditions of the example cases. However, the variety of driving 

scenarios and data sources considered in the above examples would suggest 

that the adaptive nature of neural networks can be used effectively for represent- 

ing driver steering control behaviour under a wide range of operating condi- 

tions. This could also apply to temporal variations in driver control 

behaviour induced as a result of changing driving conditions or driver proper- 

ties. Further research into issues of practical implementation of neural network 

concepts and adaptive control is anticipated in future work. 
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