
 Open access Proceedings Article DOI:10.1145/1569901.1570092

Application of evolutionary algorithms in detection of SIP based flooding attacks
— Source link

M. Ali Akbar, Muddassar Farooq

Institutions: National University of Computer and Emerging Sciences

Published on: 08 Jul 2009 - Genetic and Evolutionary Computation Conference

Topics: Intrusion detection system, Session Initiation Protocol, Voice over IP, IP Multimedia Subsystem and
Network security

Related papers:

 Monitoring SIP Traffic Using Support Vector Machines

 Evaluating DoS Attacks against Sip-Based VoIP Systems

 Denial of service attacks targeting a SIP VoIP infrastructure: attack scenarios and prevention mechanisms

 Detecting VoIP Floods Using the Hellinger Distance

 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP Based VoIP Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/application-of-evolutionary-algorithms-in-detection-of-sip-
1amtnrb03v

https://typeset.io/
https://www.doi.org/10.1145/1569901.1570092
https://typeset.io/papers/application-of-evolutionary-algorithms-in-detection-of-sip-1amtnrb03v
https://typeset.io/authors/m-ali-akbar-4z6ehdj6cg
https://typeset.io/authors/muddassar-farooq-3w2wwgcgxg
https://typeset.io/institutions/national-university-of-computer-and-emerging-sciences-mnynn7ki
https://typeset.io/conferences/genetic-and-evolutionary-computation-conference-1juywlit
https://typeset.io/topics/intrusion-detection-system-musw5wdq
https://typeset.io/topics/session-initiation-protocol-1vziqqrv
https://typeset.io/topics/voice-over-ip-dwu5dxx0
https://typeset.io/topics/ip-multimedia-subsystem-x7w75yh6
https://typeset.io/topics/network-security-1qcsg9ec
https://typeset.io/papers/monitoring-sip-traffic-using-support-vector-machines-2cijitl9y7
https://typeset.io/papers/evaluating-dos-attacks-against-sip-based-voip-systems-1zd6fhvbhg
https://typeset.io/papers/denial-of-service-attacks-targeting-a-sip-voip-2uq4a8iymt
https://typeset.io/papers/detecting-voip-floods-using-the-hellinger-distance-21vkek9ozk
https://typeset.io/papers/secure-sip-a-scalable-prevention-mechanism-for-dos-attacks-47yt7ebhzb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/application-of-evolutionary-algorithms-in-detection-of-sip-1amtnrb03v
https://twitter.com/intent/tweet?text=Application%20of%20evolutionary%20algorithms%20in%20detection%20of%20SIP%20based%20flooding%20attacks&url=https://typeset.io/papers/application-of-evolutionary-algorithms-in-detection-of-sip-1amtnrb03v
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/application-of-evolutionary-algorithms-in-detection-of-sip-1amtnrb03v
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/application-of-evolutionary-algorithms-in-detection-of-sip-1amtnrb03v
https://typeset.io/papers/application-of-evolutionary-algorithms-in-detection-of-sip-1amtnrb03v

Application of Evolutionary Algorithms in Detection of SIP
based Flooding Attacks

M. Ali Akbar, Muddassar Farooq
Next Generation Intelligent Networks Research Center (nexGIN RC)

National University of Computer & Emerging Sciences (FAST-NUCES)
Islamabad, Pakistan

{ali.akbar, muddassar.farooq}@nexginrc.org

ABSTRACT

The Session Initiation Protocol (SIP) is the de facto stan-
dard for user’s session control in the next generation Voice
over Internet Protocol (VoIP) networks based on the IP Mul-
timedia Subsystem (IMS) framework. In this paper, we first
analyze the role of SIP based floods in the Denial of Ser-
vice (DoS) attacks on the IMS. Afterwards, we present an
online intrusion detection framework for detection of such
attacks. We analyze the role of different evolutionary and
non-evolutionary classifiers on the classification accuracy of
the proposed framework. We have evaluated the perfor-
mance of our intrusion detection framework on a traffic in
which SIP floods of varying intensities are injected. The re-
sults of our study show that the evolutionary classifiers like
sUpervised Classifier System (UCS) and Genetic clASSIfier
sySTem (GAssist) can even detect low intensity SIP floods
in realtime. Finally, we formulate a set of specific guide-
lines that can help VoIP service providers in customizing
our intrusion detection framework by selecting an appropri-
ate classifier–depending on their requirements in different
service scenarios.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General—
Security and protection

General Terms

Experimentation, Security

Keywords

Denial of Service, Network Security, Session Initiation Pro-
tocol, IP Multimedia Subsystem

1. INTRODUCTION
The global communication market is rapidly moving to-

wards the integration of cellular voice networks and the In-
ternet. The driving logic behind this phenomenon is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

easy availability of high-bandwidth Internet connectivity at
much cheaper rates as compared to the cellular network.
The demand for novel Internet-based multimedia applica-
tions is on the rise. To provide the cellular users with trans-
parent access to these IP based services, the operators in
the telecommunication sector are gradually adopting an all
IP standard for multimedia applications known as IP Multi-
media Subsystem (IMS) [15]. IMS provides an architectural
framework for service control using some common Internet-
based protocols. The main function of IMS is the control
and signaling of multimedia sessions. The actual transport
of the multimedia traffic is done independent of IMS.

To handle negotiation and control of user’s sessions, IMS
uses the Session Initiation Protocol (SIP). The core of the
IMS framework consists of three different types of SIP based
components. These SIP servers/proxies are known as the
Call Service Control Functions (CSCFs) [6]. The three CSCFs
are: 1)Proxy CSCF acts as a gateway to the IMS Core and
simply relays incoming SIP requests to the I-CSCF; 2)Inter-
rogating CSCF hides the internal topology of the IMS core,
and 3)Serving CSCF handles the incoming SIP requests and
performs signaling operation like a common SIP server.

SIP protocol–apart from IMS–is also the de facto stan-
dard for session signaling in Voice over Internet Protocol
(VoIP) infrastructures. A reliable VoIP/IMS infrastructure
must guarantee at least 99.9% uptime to stay competitive
in the telecommunication market. Therefore, a smooth op-
eration of SIP servers (CSCFs in IMS) is vital for any ser-
vice operator. However, the popularity of the VoIP and
IMS based services is now receiving an ever increasing at-
tention of imposters or intruders towards these infrastruc-
tures. VoIP servers are among the SANS Top 20 Security
Risks [20]. A successful Denial of Service (DoS) attack on a
VoIP server can result in huge financial losses and seriously
undermines the credibility of an operator. Moreover, it also
adds to frustration of end users.

1.1 Problem Statement
The SIP protocol is vulnerable to the DoS attacks. The

SIP based DoS attacks can be launched in two ways: (1)
the attacker sends a huge burst of SIP messages that simply
overloads the capacity of a SIP server subsequently forcing
it to deny service to the legitimate requests, and (2) the at-
tacker sends one or more SIP requests containing malformed
SIP header fields. These malformed requests exploit vulner-
abilities of the SIP servers. The authors in [12] have shown
that the response time of an open-source SIP server increases
significantly even for low intensity attacks. In this study, to
maintain focus we detect SIP flood attacks only.

1.2 Related Work
In 2003, a comprehensive security framework for IMS was

released by the 3rd Generation Partnership Project 2 (3GPP2)
[1]. Many of the known vulnerabilities in the SIP protocol
are addressed by this framework. However, the framework
specifies no standard security mechanism for the detection
and prevention of flooding attacks. To fill this void, re-
searchers in the recent past have proposed several defensive
measures. Some security frameworks (such as [21], [4] and
[17]) have been proposed for the detection of flooding at-
tacks in IMS. Anomaly detection algorithms (see [2] and
references therein) have been actively used for security in
VoIP networks. Recently, the authors in [12] proposed a
support vector machines based intrusion detection system
for detection of SIP flooding attacks and spam threat.

The evolutionary algorithms have been applied to solve
some real world problems in the domain of network secu-
rity. However, only little work is done on the application of
evolutionary algorithms in detecting DoS attacks on IMS.
The authors of [4] have proposed an artificial immune sys-
tem based algorithm for detection of flood attacks on IMS
and compared it with a signature based algorithm.

1.3 Our Contributions
To the best of our knowledge, this is the first compara-

tive study of evolutionary and non-evolutionary classifiers to
solve the real-world problem of SIP flood attacks in IMS. We
propose a generic intrusion detection system with flexible set
of features and classifiers. In this study, we have used a sub-
set of SIP features presented in [12]. We have selected four
non-evolutionary and six evolutionary algorithms from vari-
ous machine learning schemes. These classifiers are listed in
Table 1. We evaluate these algorithms on ten synthetic SIP
traffic datasets with different levels of attack intensities and
durations. We formulate a number of guidelines on the ba-
sis of the results of our experiments that can help a service
operator to choose the best classifier or set of classifiers for
various application scenarios.

2. INTRUSION DETECTION FRAMEWORK
We present a generic intrusion detection framework for

attack detection in IMS. The framework consists of six com-
ponents that will be shortly introduced. This framework is
the generic form of the intrusion detection system proposed
by the authors of [12]. Our framework is modular in de-
sign that allows the operator to customize it by selecting
appropriate set of features and classifier.

2.1 Components
Figure 1 shows the main components of the framework.

These components are described below:
The packet sniffer captures the online SIP traffic and stores

it in a packet buffer. The captured packets are stored in a
fixed size buffer. The size of the buffer is chosen by making a
trade-off between the processing delay and the significance
of the traffic patterns in the collected data. The size of
the buffer should be small because the buffered packets only
gets service once the buffer is full. However, the number of
packets stored should be large enough to depict the actual
protocol traffic pattern.

As the buffer gets filled, the feature extractor component
analyzes the packets and computes values of different fea-
tures. Then the feature values are passed to the classifier.

Figure 1: Intrusion Detection Framework

The idea of calculation of feature values on fixed number of
packets instead of fixed time interval is proposed in [12]. The
advantage of this approach is that the intrusion detection is
performed more rapidly during an attack and less frequently
in the absence of an attack.

The classifier takes the values of the feature set as in-
put and solves a binary classification (benign vs malicious)
problem with the help of rules (population) stored in the
rules database. In this study, we have evaluated the per-
formance of the intrusion detection framework for different
classification algorithms. These algorithms are described in
Section 3. The classification decision made by the classifier
is used to decide among two alternatives: (1) the packets
are dropped and alarm is raised if the classifier decides that
the packets are part of an attack; (2) otherwise, the traffic
flow continues uninterrupted.

2.2 Process
The process of intrusion detection consists of two phases.

In the training phase, the labeled packets of benign and
attack traffic are passed to the intrusion detection system.
The classifier learns its rules or evolves its population based
on the features of the labeled traffic. For accurate classi-
fication, the intrusion detection system should be periodi-
cally updated to cater for changing usage behavior. Once
the training phase is complete, the intrusion detection sys-
tem performs its operation of classifying the incoming traffic
based on the learned behavior during the training phase.

3. CLASSIFICATION ALGORITHMS
In this paper, we study the feasibility of using evolution-

ary classification algorithms in our framework for detecting
SIP flooding attacks in IMS. We also include well-known
non-evolutionary classifiers in our study to get a better un-
derstanding about the role of classifiers in our framework.
We study the performance of classifiers with respect to their
classification accuracy, and efficiency in terms of processing
speed. The objective is to find a classifier that provides a
consistent detection accuracy under various attack rates in
realtime.

We have selected six well-known evolutionary and four
non-evolutionary classifiers for our study. The criterion for
selecting algorithms is to cover a wide range of classifica-
tion paradigms used in machine learning and evolutionary
computing. We have summarized the paradigms and related
classifiers in Table 1. We now provide a brief description of
each classifier to make the paper self contained. An inter-
ested reader can follow the inline references to find more
details about the algorithms.

Table 1: Machine Learning Paradigms and Selected
Algorithms (Ev=Evolutionary, NE=Non-Ev)

Classification Paradigm Algorithms
Ev Evolving Neural Networks EvRBF
Ev Statistical Learning + GBML Fuzzy AdaBoost
Ev Pittsburgh-Style GBML GAssist-ADI
Ev Michigan-Style GBML XCS, UCS
Ev Ant Colony Optimization c-AntMiner

NE Decision Tree Induction C4.5
NE Support Vector Machines C-SVM
NE Instance Based Learning KNN
NE Statistical Modeling Näıve Bayes

3.1 Evolutionary Algorithms

3.1.1 Evolving Radial Basis Function(EvRBF)

Neural Networks attempt to model the biological neural
networks to solve complex real world problems. The RBF
neural network is a two layer, feed-forward network. In RBF
NNs, the radial basis function of the distance of each hidden
neuron’s central point from the input is calculated. After-
wards, the weighted sum is calculated by the output layer
neurons as a function of the outputs of hidden layer neurons
and the weights of the links connecting them to the output
layer neurons. Evolving Radial Basis Function Neural Net-
works or Ev-RBF [19] make classification process simpler by
automatically determining the values of RBF-NN parame-
ters using evolutionary algorithms.

3.1.2 Fuzzy AdaBoost (Fuzzy-AB)

A fuzzy rule based classifier is defined by a fuzzy rela-
tionship that assigns each instance a degree of membership
to each class; therefore, an instance may belong to multiple
classes with different degrees of compatibility. The fuzzy
classifiers are well suited for classification problems having
imprecise (‘fuzzy’) boundaries. In the Fuzzy AdaBoost algo-
rithm [8], boosting is used to combine multiple weak fuzzy
hypotheses through a genetic iterative learning process to
evolve a hybrid classifier that performs significantly better
than any of the component hypothesis [8].

3.1.3 Genetic Classifier System (GAssist-ADI)

Genetic clASSIfier sySTem (GAssist) [5] is an evolution-
ary classification algorithm belonging to the Pittsburgh style
Genetic-Based Machine Learning paradigm. In Pittsburgh
approach, each individual in the population represents a
‘complete solution to the classification problem’ [5]. GAs-
sist uses genetic algorithm to evolve the individuals–which
represent rulesets–of the population. GAssist uses a fitness
function based on the Minimum Description Length (MDL)
principle to make optimal trade-off between complexity and
accuracy of the rulesets. Generalization of the rulesets is
improved by using the incremental learning with alternat-
ing strata (ILAS) windowing scheme. We have used the
adaptive discretization intervals (ADI) rule representation
because our dataset contains only real values.

3.1.4 eXtended Classifier System (XCS)

XCS [22] is a Michigan style, rule-based, learning clas-
sifier system. In the Michigan approach, each individual
represents a single rule and the whole population defines

the complete ruleset. The initial rules are generated using
a subset of the training data. New rules are periodically
evolved using a niche genetic algorithm. The prediction ac-
curacy of each rule (or individual) defines the fitness of that
individual. The expected payoff values for all possible ac-
tions are stored in a prediction array. XCS algorithm has
the ability to solve real world problems through evolution of
accurate generalizations and real values representation [23].

3.1.5 sUpervised Classifier System (UCS)

UCS [11] is also a Michigan style, rule based, learning
classifier system. It has been derived from XCS. The ba-
sic operation of UCS algorithm is similar to the XCS algo-
rithm. However, there are some differences which separate
UCS from XCS. The major difference between the two al-
gorithms is their learning schemes (reinforcement scheme in
XCS and supervised scheme in UCS). UCS does not main-
tain a prediction array. Since the fitness is defined in terms
of the classification accuracy, UCS guarantees evolution of
accurate classifiers. UCS can learn and evolve rules online,
hence it is well suited for realtime online system.

3.1.6 Continuous Ant-Miner Algorithm (c-AntMiner)

Ant-Miner [14] is a data mining algorithm based on Ant
Colony Optimization (ACO) paradigm. Continuous Ant-
Miner algorithm [13] extends Ant-miner to classify using
continuous (real-valued) attributes. Ant-Miner algorithm
works on the principle of an ant colony’s foraging patterns.
Ants choose random paths in search of food and deposit a
chemical ‘pheromone’ on their paths which evaporates with
the passage of time. The optimal path to a food source–in a
steady state–has relatively greater concentration of pheromone
because more ants traverse on that path. This leads to selec-
tion of the optimal paths. The Ant-Miner algorithm maps
this phenomenon in the classification domain. It begins with
an empty rule set and creates one rule at a time by adding
terms to the partial rule in a probabilistic manner. The
rules are updated and pheromone is added iteratively based
on the quality of the rule. Finally, the rules above a certain
pheromone threshold are selected as the optimal rules [13].

3.2 Non-Evolutionary Algorithms

3.2.1 C4.5 Algorithm

C4.5 classification algorithm [16] builds a decision tree to
solve the classification problem. The algorithm splits the
training dataset into smaller subsets on the basis of each
feature. The feature with maximum information gain is se-
lected as a decision node. The algorithm is then repeated on
the subsets until all the features have been evaluated or no
additional information gain is achieved by splitting data us-
ing the remaining features. After the decision tree is made,
the tree is pruned to remove useless branches.

3.2.2 Support Vector Machine (C-SVM)

Support Vector Machines [10] classify instances by estab-
lishing decision boundaries (hyperplanes) between the in-
stances belonging to different classes. SVM creates the deci-
sion hyperplane by iteratively minimizing the error function
while conforming to certain constraints. Based on the error
function and the constraints, SVM has different variations
of algorithms. The most commonly used SVM based classi-
fication algorithm is C-SVM. The Support Vector Machines

transform complex problems with overlapping instances in
to non-overlapping objects by transforming the instances
from the input space to the feature space using mathemati-
cal functions known as kernels. Some commonly used kernels
are Linear, Polynomial, Radial Basis Function (RBF) and
Sigmoid kernels.

3.2.3 K Nearest Neighbors Algorithm (KNN)

In K-Nearest Neighbors algorithm [7], the training phase
involves only storing feature values and corresponding classes.
The classification is done through the voting of K training
instances which are least distant from the instance under
test. The least distant instances (‘nearest neighbors’) are
identified by calculating distance of the instance under test
from all training instances. The class of the majority of the
nearest neighbors is assigned to the instance under test.

3.2.4 Naïve Bayes Algorithm (NB)

Näıve Bayes algorithm [18] creates a probabilistic model
for classification. Even though all features contribute to-
wards the overall probability of classification, Näıve Bayes
algorithm assumes that the features are statistically inde-
pendent of one another. Although this assumption may not
hold true for all cases, Näıve Bayes algorithm has shown
promising results compared with other well-known classifi-
cation algorithms in real world applications [18]. In technical
terms, if X = (x1, x2, x3, ...) is the feature vector and C is
a class, then the probability that this feature vector belongs
to a class C is given by P (X|C) =

◗
n

i=1
P (Xi|C).

4. PERFORMANCE EVALUATION
In this section, we present our strategy for performance

evaluation and comparison of above-mentioned algorithms.
Our primary objective is not to bias our strategy to a partic-
ular learning paradigm or classifier; therefore, we first pro-
vide performance metrics that help in unbiased evaluation
of algorithms. We then describe our test bed that generates
SIP traffic. We also show how we inject flooding attacks
into the benign traffic. Finally, we show the results of our
experiments.

4.1 Performance Metrics
To compare the algorithms, we use four metrics to evalu-

ate their performance:
True Positive (TP) Rate: The percentage of attack in-
stances correctly labeled as attack,
False Positive (FP) Rate: The percentage of benign in-
stances incorrectly labeled as attack,
Training Time: Time (in seconds) taken by the classifier
to train itself on the provided training dataset, and
Testing Time: Time (in seconds) taken by the classifier
to classify testing datasets. The time is averaged on five
datasets containing benign traffic and different intensities
of attack traffic embedded in it. (An attacker can launch
flood of SIP traffic by exploiting some hardware or software
vulnerability of the SIP devices.)

The True Positive (TP) rate shows the attack detection
accuracy of the classifiers. A higher TP rate indicates bet-
ter attack detection. The False Positive (FP) rate indicates
the false alarms raised by the classifier. A classifier with
high FP rate will deny service to the legitimate users. The
training time is important for an online classifier which pe-
riodically updates its rule-base. The testing time shows the

additional delay introduced in the traffic by the classifier.
These four parameters are effective indicators of the overall
classification accuracy and the speed of classification.

4.2 Testbed Setup
We have decided to synthetically generate SIP traffic in

our IMS laboratory because of unavailability of publicly
available SIP traffic datasets. The testbed simulated user
agents communicating with each other through a SIP server.
The SIP server and user agents are simulated using an open-
source SIPp tool [9]. It has the ability to simulate cus-
tomized SIP scenarios written in eXtensible Markup Lan-
guage (XML) syntax. The SIPp agents can be controlled at
run time using a predefined UDP port. The simulated SIP
server and clients follow a typical SIP call flow as shown in
Figure 2. To instantiate a call, the SIP client sends an IN-

VITE request to the server. When the bell starts ringing on
the callee’s device, the SIP server sends back 180 RINGING

response message. The server sends a 200 OK response mes-
sage when call is picked up. The caller sends an ACK response
and the call has been successfully established. To terminate
a call, the client sends a BYE request. The server responds
with a 200 OK message which means that the call has suc-
cessfully ended. In our testbed, we use constant call duration
of 60 seconds. We have also simulated random packet losses
to simulate the characteristics of a lossy network.

Figure 2: The Typical SIP Call Flow

4.3 Training and Testing Datasets
We used our test bed to generate five benign traffic datasets

that have normal distribution call rates. The duration of
each dataset is one hour. We define the server load as the
mean of the normally distributed call rate. The server load
for benign traffic datasets was set to 500 calls per min.

We divided flood attacks in to two categories based on
the attack duration: 1) Chunk (prolonged) attacks, and 2)
Harmonic (bursty) attacks. The chunk attacks model an at-
tacker who launches a continuous flood of SIP requests for a
long time in an attempt to overload the server. On the other
hand, the harmonic attacks model an attacker who launches
flood attacks in short bursts after frequent intervals.

For both chunk and harmonic attacks, we have also gen-
erated five flood attack scenarios with varying attack inten-
sity. The duration of each chunk attack is on the average
11 min. The harmonic attacks contain multiple bursts each
of 1 minute duration. The simulated attack rates are 10 cps
(calls per second), 25 cps, 50 cps, 100 cps and 500 cps. The
attacks are artificially injected in the benign traffic datasets
after performing some time and user synchronization adap-
tations. In this way, we obtain ten datasets for our exper-

iments. Five datasets belong to chunk attack category and
the remaining five datasets contain harmonic attacks. Each
dataset is of one hour duration and contains attack of dif-
ferent intensities.

4.4 Feature Extraction
Our generic intrusion detection framework can be cus-

tomized to use any feature set. We have chosen a subset
of the list of features presented by authors of [12]. The se-
lected features represent the complete distribution of the SIP
messages, requests and responses, in a given traffic dataset.

The SIP messages can be classified in to two types: Re-
quest messages and Response messages. The request mes-
sages are used to bring some change in the session. For
example, INVITE request is used to initiate a session. Sim-
ilarly, the BYE request is used to signal termination of an
established session. The response messages are used to no-
tify of the result of the SIP request. For example, the 200 OK

message indicates success of the request. The list of features
used in our experiments includes the number of INVITE,
REGISTER, BYE, ACK, OPTIONS, CANCEL, UPDATE, REFER, SUB-
SCRIBE, NOTIFY, MESSAGE, INFO and PRACK requests. These
values are normalized to the total number of SIP request
messages. The features also include the number of Informa-
tional, Success, Redirection, Client Error, Server Er-

ror, Global Error response messages that are normalized
to the total number of SIP response messages. The feature
values are calculated over a buffer size of 500 packets. This
buffer size is chosen as a function of the the average load of
a server under normal no attack scenario. The selected fea-
tures capture the complete pattern of SIP traffic. Any devi-
ation in values of these features reflects change in pattern of
SIP messages. This situation indicates an anomalous– possi-
bly attack–scenario. The feature values are extracted using
a custom code extraction module in C++. The instances are
stored in ARFF format.

4.5 Classification
To evaluate the classifiers (all except cAntMiner), we use

the KEEL software [3]. We have used the cAntMiner imple-
mentation of [13]. All algorithms in KEEL and cAntMiner
are used with their standard parameter values. This is done
to avoid any bias towards a particular classifier. The classi-
fiers are trained using the traffic dataset that contains 100
cps attack. The testing is done in two steps. First, we
perform experiments on the five datasets containing chunk
attacks of different intensities embedded in the benign traf-
fic each of one hour duration. Then, these experiments are
repeated for harmonic attacks. For each set of experiments,
we calculate the performance metrics for each classifier. The
accuracy results are reported in the next section. The tim-
ing analysis is reported by taking average of the time taken
by the classifier on the five datasets.

5. EXPERIMENTAL RESULTS
In this section, we present the results of our experiments.

We discuss in detail the performance of classifiers in terms
of the performance metrics (see Section 4.1). These metrics
include true positive rate, false positive rate, training time
and testing time. The classification accuracy (tp and fp)
results have been summarized in Table 2 for chunk attacks
and Table 3 for harmonic attacks. The efficiency of the
classifiers (training and testing time) is given in Table 4.

5.1 Classification Accuracy
The results for TP and FP rates of the classifiers for the

chunk and harmonic attacks with different variations of at-
tack intensity are discussed below:

5.1.1 Training Accuracy

From Table 2, we can see that all algorithms show good
training accuracy for chunk attacks. Most of the algorithms
achieved 100% TP rate with 0% FP for the training dataset.
The Näıve Bayes algorithm achieved the minimum training
accuracy. However, this is an expected result because the
SIP requests and responses have a certain correlation with
each other. For example, an INVITE request is usually fol-
lowed by a 180 Ringing response. This correlation (or de-
pendence) of SIP messages violates the Näıve Bayes’ primary
assumption of independence of feature values. Despite this
näıvety, the TP rate of 99.50% is still quite high. It means
that an attack of 100 cps has been reduced to only 0.5 cps.

The harmonic attacks are of much shorter duration as
compared to chunk attacks. Moreover, they are distributed
in the whole dataset. This diffused nature of harmonic at-
tacks makes their detection a challenging task. Although all
algorithms show good training accuracy for chunk attacks,
there is significant difference in their training accuracy for
harmonic attacks. Table 3 shows that C-SVM with (RBF
kernel) has the best training accuracy (100% TP rate and
0% FP rate). GAssist-ADI and C4.5 also have 100% TP
rate for the training dataset, they achieve this at the cost of
0.32% and 0.63% FP rate respectively. cAntMiner has the
minimum TP rate of 95.60% on the training dataset. KNN
has the highest FP rate of 0.95%.

5.1.2 Testing Accuracy

First we discuss the testing accuracy of classifiers for the
case of chunk attacks. Table 2 shows the testing accuracy of
the classifiers for the five datasets with chunk attacks. All of
the non-evolutionary algorithms failed to detect a stealthy
flood rate of 10 cps. In comparison, four evolutionary al-
gorithms (Fuzzy-AdaBoost, GAssist-ADI, UCS and XCS)
were able to evolve rules that filtered some of the stealthy
flood attack packets. The detection accuracies of GAssist-
ADI and UCS were significant enough to raise alarm of a
suspicious activity. GAssist achieved the TP rate of 25.32%
for 10 cps attack.

A further look at Table 2 shows a similar trend for attack
rate of 25 cps. Three non-evolutionary algorithms (C4.5, C-
SVM and KNN) and two evolutionary algorithms (Ev-RBF
and c-AntMiner) failed to detect flood attacks as low as 25
cps. Näıve Bayes is the only non-evolutionary algorithm
that partially (14.90%) detects the 25 cps attack. Both
GAssist-ADI and UCS stay on top showing impressive in-
crease (42.15% and 85.53% respectively) in their TP rate.
UCS achieved the highest TP rate (98.19%) for 25 cps at-
tack. The good detection accuracy of evolutionary classifiers
(GAssist-ADI and UCS) for the chunk attacks indicates that
the rules generated through evolution are general enough
to capture all variations of attack. At the same time, the
evolved rules are more accurate than any other algorithm.

Some people may argue that the attack rates of 10 cps
and 25 cps are too low, hence there is no significance of
detection at these rates. We agree that these attack rates are
too low to cause significant DoS effect, yet such a stealthy
attack may signify a suspicious activity e.g. beginning of

Table 2: Classification Accuracy (in %) of selected algorithms for Chunk Flood Attacks
Training Testing

Attack Rate 100 cps 10 cps 25 cps 50 cps 100 cps 500 cps Average
TP FP TP FP TP FP TP FP TP FP TP FP TP FP

EvRBF 100 0 0 0 0 0 87.06 0 100 0 0.12 0 37.44 0

Fuzzy-AdaBoost 100 0 3.80 0 4.22 0 99.00 0 100 0 100 0 61.40 0

GAssist-ADI 100 0 25.32 0 67.47 0 100 0 100 0 100 0 78.56 0

UCS 100 0 12.66 0 98.19 0 100 0 100 0 100 0 82.17 0

XCS 100 0 2.41 0 3.80 0 100 0 100 0 100 0 61.24 0

c-AntMiner 99.51 0 0 0 0 0 99.26 0 99.51 0 99.87 0 59.73 0

C4.5 100 0 0 0 0 0 0 0 100 0 100 0 40.00 0

C-SVM (RBF) 100 0 0 0 0 0 99.50 0 100 0 100 0 59.90 0

C-SVM (Linear) 100 0 0 0 0 0 99.50 0 100 0 100 0 59.90 0

C-SVM (Poly) 100 0 0 0 0 0 96.52 0 100 0 100 0 59.30 0

C-SVM (Sigmoid) 100 0 0 0 0 0 100 0 100 0 100 0 60.00 0

KNN 100 0 0 0 0 0 99.50 0 100 0 100 0 59.90 0

Näıve Bayes 99.50 0 0 0 14.90 0 99.30 0 99.50 0.04 99.90 0.04 62.72 0.02

Table 3: Classification Accuracy (in %) of selected algorithms for Harmonic Flood Attacks
Training Testing

Attack Rate 100 cps 10 cps 25 cps 50 cps 100 cps 500 cps Average
TP FP TP FP TP FP TP FP TP FP TP FP TP FP

EvRBF 97.80 0.32 0 0 0 0 93.44 0 97.80 0.32 99.13 0.32 58.08 0.13

Fuzzy-AdaBoost 98.90 0.32 0 0 31.82 0 95.08 0.32 98.90 0.32 99.13 0.96 64.99 0.32

GAssist-ADI 100 0.32 0 0 79.55 0 93.44 0.32 100 0.32 99.13 0.64 74.42 0.25

UCS 97.80 0.32 0 0 0 0 4.92 0 97.80 0.32 98.84 0.32 40.31 0.13

XCS 97.80 0.32 0 0.32 2.27 0 91.80 0 97.80 0.32 99.13 0.32 58.20 0.19

c-AntMiner 95.60 0.63 0 0.63 95.45 0.63 95.08 0.63 95.60 0.63 98.84 0.96 77.00 0.70

C4.5 100 0.63 0 0 90.91 0.32 95.08 0.63 100 0.63 99.42 0.96 77.08 0.51

C-SVM (RBF) 100 0 0 0 68.18 0.32 95.08 0.63 100 0 99.71 0.96 72.59 0.38

C-SVM (Linear) 97.80 0.63 0 0 31.82 0.32 95.08 0.32 97.80 0.63 99.42 0.64 64.82 0.38

C-SVM (Poly) 98.90 0.32 0 0 20.45 0 63.93 0 98.90 0.32 99.42 0.64 56.54 0.19

C-SVM (Sigmoid) 97.80 0.63 0 0 20.45 0.32 95.08 0.32 97.80 0.63 99.42 0.64 62.55 0.38

KNN 96.70 0.95 0 0 31.82 0 86.89 0 96.70 0.95 99.42 0.64 62.97 0.32

Näıve Bayes 97.80 0.60 0 0 56.80 0.30 95.10 0.60 97.80 0.60 99.40 1.00 69.82 0.50

a DoS or distributed DoS attack, brute force attempts to
hack passwords etc. Therefore, the detection of such stealthy
attacks may prove valuable in certain scenarios.

According to Table 2, C-SVM using sigmoid kernel func-
tion, GAssist-ADI, UCS and XCS detected 50 cps chunk
attack with 100% TP rate. C4.5 algorithm was unable to
detect the 50 cps attack. Although, TP rate of EvRBF im-
proved significantly (87.06%), yet it is far lower as compared
to other algorithms.

All algorithms performed well at chunk attacks of 100 cps
because they are trained for this attack intensity. From Ta-
ble 2, we note that all algorithms (except EvRBF) have good
detection accuracy at 500 cps chunk attack. EvRBF gives
poor (0.12%) TP rate for 500 cps attack. This is an excel-
lent example of the overfitting problem. This means that
the neural network that evolved as a result of training of
RBF classifier, gives good accuracy at (and near) the at-
tack intensity to which it is trained; whereas it gives poor
accuracy when the attack intensity increases or decreases
significantly.

Table 2 shows the average values of the TP rates of all clas-
sifiers for the chunk attacks. The top 3 algorithms are UCS
(82.17%), GAssist-ADI (78.56%) and Näıve Bayes (62.72%).
UCS stands out to be the most accurate evolutionary classi-
fier for chunk attacks while Näıve Bayes turns out to be the
most accurate non-evolutionary classifier for chunk attacks.

Now, we discuss the classification accuracy results of clas-
sifiers for the harmonic attacks. Table 3 shows that none
of the classifiers were able to detect stealthy harmonic at-
tack of 10 cps. This result is not surprising as very low rate

harmonic attacks tend to diffuse in the benign traffic. The
performance of the classifiers has a significant improvement
for 25 cps harmonic attacks. From Table 3, we see that c-
AntMiner has the highest TP rate (95.45%) with an FP rate
of 0.63%. C4.5 is the best non-evolutionary algorithm at this
attack rate with TP rate of 90.91% and FP rate of 0.32%. If
we impose the requirement of zero false alarm rate, GAssist-
ADI shows the best TP rate of 79.55%. EvRBF, UCS and
XCS fail to detect 25 cps harmonic attacks.

All algorithms (except UCS) have good TP rate for 50 cps
harmonic attacks. Table 3 shows that Näıve Bayes has the
best TP rate (95.10%) for an FP rate of 0.60%. EvRBF is
the best evolutionary classifier with 93.44% TP rate and 0%
FP rate. Similarly, for 100 cps harmonic attacks, C-SVM
(with RBF kernel) gives 100% TP rate with no false alarm.
GAssist-ADI is the best evolutionary classifier in this case
(100% TP rate and 0.32% FP rate). C4.5 algorithm also
gives 100% attack detection for 100 cps harmonic attack
at the cost of 0.63% FP rate. From Table 3, we see that all
algorithms successfully detect the 500 cps harmonic attacks.
C-SVM (with RBF kernel) achieved the best TP rate of
99.71% with FP rate of 0.96%. Both EvRBF and XCS show
minimum FP rate of 0.32% and TP rate of 99.13%.

A comparison of the average TP rates of classifiers for the
harmonic attacks in Table 3 shows that C4.5 and cAntMiner
classifiers are the most accurate classifiers for detection of
harmonic attacks. The two classifiers have very close aver-
age TP rates (77.08% for C4.5 and 77.00% for cAntMiner).
GAssist-ADI is at the third position with 74.42% average
TP rate and 0.25% average FP rate.

Figure 3: Correlation of Average TP Rates for Har-
monic and Chunk Attacks

Figure 3 shows correlation of TP rates of classifiers for
chunk and harmonic attacks. Note that most of the TP
rates in the center of the figure are distributed around the
60% mark. The TP rates for chunk attacks are increasing
towards the right and decreasing towards the left. Also note
that the TP rates for harmonice attacks are increasing on
both sides and decreasing in the middle and at the ends.
Therefore, the optimal classification point lies towards the
right side. Figure 3 shows that GAssist-ADI achieves the
optimal accuracy for both chunk and harmonic attacks. If
we restrict ourselves to non-evolutionary algorithms, Näıve
Bayes classifier becomes the optimal choice for the problem
at hand.

5.2 Efficiency (Speed) of Classification
The results for time taken by classifiers in training and

testing phases are as follows:

5.2.1 Training Time

Table 4 shows that the non-evolutionary algorithms out-
perform evolutionary algorithms (except c-AntMiner) in train-
ing time. The training time of KNN is 0 sec because it
performs all computations at the time of classification (i.e.
testing time). The c-AntMiner algorithm has the lowest
training time in the evolutionary classifiers. This is due to
the fact that c-AntMiner uses no mutation and crossover op-
erations which consume most of the time during the training
of other evolutionary classifiers. The Pittsburgh style LCS
(GAssist-ADI) consumes less training time as compared to
the Michigan style LCS (XCS and UCS).

5.2.2 Testing Time

Table 4 shows that C4.5, C-SVM and Näıve Bayes algo-
rithms have very small testing time similar to their smaller
training times. However, KNN has a greater testing time
as it performs all computations at testing time. The c-
AntMiner algorithm has the lowest testing time in the evolu-
tionary classifiers. Other evolutionary algorithms have rela-
tively higher testing time. The Michigan style LCS (XCS
and UCS) have smaller testing time as compared to the
Pittsburgh style LCS (GAssist-ADI).

Table 4: Average Training and Testing Time (in sec-
onds)

Chunk Attacks Harmonic Attacks
Algorithms Training Testing Training Testing

EvRBF 9 2 9 1

Fuzzy-AdaBoost 43 6 17.4 3

GAssist-ADI 73 14 44 7

UCS 119.6 3.3 65.1 0.8

XCS 149.1 4.1 144.6 1.6

c-AntMiner <1 <1 <1 <1

C4.5, C-SVM, NB <1 <1 <1 <1

KNN 0 3.8 0 1.6

6. INFERENCES & GUIDELINES
It is imperative from the results that it is difficult to iden-

tify a single classifier as the best classifier in all scenarios. If
we compare the top three classifiers for chunk attacks (UCS,
GAssist-ADI and Näıve Bayes), UCS is the most accurate
classifier and Näıve Bayes is the fastest classifier. Moreover,
some of the algorithms that perform best for one category
of attack (chunk or harmonic), they have less than ideal
performance for the attacks of other category. UCS is an
example of such algorithms. Although, GAssist-ADI is ac-
curate for both categories of attack, its large testing time
makes it unsuitable for servers handling heavy traffic load.

Now we focus our attention–from the perspective of a
VoIP operator– to a number of real-world scenarios. We ana-
lyze the requirements of each scenario and then present valu-
able guidelines, inferred from the results of our experimental
study, to VoIP operators that will help them in customiz-
ing our framework to their needs before deploying them as
a security firewall in front of their VoIP servers.

6.1 Scenario 1:
We consider the scenario of a small enterprise that has a

local SIP server. The average traffic load on the SIP server
is expected to be relatively small. In this scenario, the sys-
tem administrators are expected to identify a stealthy attack
with the help of a classifier that processes incoming traffic
within an acceptable delay.
Guideline 1. We recommend that UCS classifier is ideally
suited to handle this scenario. It is clear from the results of
our experiments that UCS can detect with relatively more
accuracy the stealthy chunk attacks and it also has relatively
low testing time as well. Consequently, it can raise alarms
in realtime for suspicious activity.

6.2 Scenario 2:
We now consider the scenario of a SIP server that is be-

ing used in a large enterprise. In this case, as expected,
the large volume of VoIP calls would be flowing through the
SIP server. In this situation, the efficiency requirements are
very strict compared with the previous scenario–the classi-
fier should be able to identify stealthy attacks but now at a
relatively higher speed.
Guideline 2: We recommend Näıve Bayes for this scenario
because it provides good detection accuracy at high attack
rates. It can detect a number of stealthy attacks as well
as high rate attacks with a reasonable amount of accuracy.
Moreover, its processing overhead is negligible Consequently,
Näıve Bayes will not put additional processing load on this
relatively highly loaded server and also raise alarms in real
time for malicious activity.

6.3 Scenario 3:
The next scenario is of a backbone SIP server that is han-

dling the traffic load of multiple enterprises. The traffic
volumes are very large and now the classification should
meet very strict timing requirements. The low rate stealthy
attacks cannot degrade the performance of a SIP server;
therefore, this operator is not concerned with detecting SIP
attacks. However, medium and high rate attacks must be
detected at a wire speed and efficiently mitigated in real-
time to avoid overloading of the server to a level where it
can result in a DoS attack.
Guideline 3: We recommend using either Näıve Bayes or
C-SVM (with the RBF kernel) because both of them meet
the strict timing and accuracy requirements of this scenario.
However, our experience is C-SVM (RBF) provides almost
100% detection accuracy at high attack rates. Moreover, it
also has the smallest training and testing times; therefore,
we recommend C-SVM for this scenario.

6.4 Scenario 4:
Finally, we consider the scenario of an operator, which is

carrying an online troubleshooting operation or the offline
analysis of the dumped traffic. The system administrators
routinely do such a forensic analysis to identify attempts of
hacker to launch malicious attacks–both stealthy and high
rate. Moreover, they also identify–using the dumped trace–
malfunctioning device. In this scenario, the timing require-
ments are really not important; however, detection accuracy
is the key requirement.
Guideline 4: We recommend that the forensic expert should
use a team of UCS and GAssist-ADI classifiers for this sce-
nario because these two classifiers have the best accuracy
for stealthy attacks. Their combination will cover stealthy
attacks at 10 cps to very high rate attacks upto 500 cps.

7. CONCLUSION & FUTURE WORK
In this paper, we have presented a generic intrusion de-

tection system with a flexible set of features and classifiers
for SIP floods attacks. We have done a comprehensive study
of six evolutionary and four non-evolutionary classifiers. An
important contribution of this work is a set of guidelines that
VoIP operators–working in the telecommunication industry–
can utilize to customize our generic intrusion detection sys-
tems for their SIP server. To the best of our knowledge,
this is the first investigative study of evolutionary and non-
evolutionary classifiers to develop an online realtime intru-
sion detection system for solving the SIP flood attacks prob-
lem in IMS. The focus of our future work is to study the ef-
fect of selection of feature on the classification accuracy. We
also plan to extend this work for mitigation of other security
threats in IMS.

Acknowledgments

This work is supported by the National ICT R&D Fund,
Ministry of Information Technology, Government of Pak-
istan. The information, data, comments, and views detailed
herein may not necessarily reflect the endorsements of views
of the National ICT R&D Fund.

8. REFERENCES
[1] 3GPP2. IMS Security Framework.

http://www.3gpp2.org, Dec. 2003.

[2] M. Akbar et al. A Comparative Study of Anomaly
Detection Algorithms for Detection of SIP Flooding in
IMS. In IMSAA, 2008.

[3] J. Alcala-Fdez et al. KEEL: A software tool to assess
evolutionary algorithms to data mining problems. Soft
Computing, 2008.

[4] A. Awais et al. Attack analysis & bio-inspired security
framework for IP Multimedia subsystem. GECCO,
pages 2093–2098, 2008.

[5] J. Bacardit. Pittsburgh Genetics-Based Machine
Learning in the Data Mining era: Representations,
generalization, and run-time. PhD disertation, 2004.

[6] A. Cuevas et al. The IMS Service Platform: A
Solution for Next-Generation Network Operators to
Be More than Bit Pipes. IEEE Comm. Mag., pages
75–81, 2006.

[7] B. Dasarathy. Nearest Neighbor (NN) Norms: NN
Pattern Classification Techniques. Los Alamitos, CA:
IEEE Computer Society Press, 1991.

[8] M. del Jesus et al. Induction of fuzzy-rule-based
classifiers with evolutionary boosting algorithms.
Fuzzy Systems, IEEE Trans. on, 12(3):296–308, 2004.

[9] R. Gayraud. SIPp, 2007. http://sipp.sourceforge.net.

[10] P. Lewicki et al. Statistics: Methods and Applications.
StatSoft, Inc., 2006.

[11] E. Mansilla et al. Accuracy-Based Learning Classifier
Systems: Models, Analysis and Applications to
Classification Tasks. Evo. Comp., 11(3):209–238, 2003.

[12] M. Nassar et al. Monitoring SIP Traffic Using Support
Vector Machines. In RAID, pages 311–330.
Springer-Verlag Berlin, Heidelberg, 2008.

[13] F. Otero et al. cAnt-Miner: An Ant Colony
Classification Algorithm to Cope with Continuous
Attributes. In ANTS, pages 48–59, 2008.

[14] R. Parpinelli et al. An Ant Colony Algorithm for
Classification Rule Discovery. Data Mining: a
Heuristic Approach, 208, 2002.

[15] Poikeselka et al. The IMS IP Multimedia Concepts and
Services. John Wiley & Sons, Ltd., 2nd edition, 2006.

[16] J. Quinlan. Improved Use of Continuous Attributes in
C4.5. JAIR, 4:77–90, 1996.

[17] Y. Rebahi et al. Detecting flooding attacks against IP
Multimedia Subsystem (IMS) networks. AICCSA,
2008., pages 848–851, 2008.

[18] I. Rish. An empirical study of the naive Bayes
classifier. In Proc. IJCAI-01 Workshop on Empirical
Methods in AI, volume 335, 2001.

[19] V. Rivas et al. Evolving RBF neural networks for
time-series forecasting with EvRBF. Information
Sciences, 165(3-4):207–220, 2004.

[20] SANS Institute. SANS Top-20 2007 Security Risks,
2007. http://www.sans.org/top20/.

[21] M. Sher et al. Secure Service Provisioning Framework
(SSPF) for IP Multimedia System and Next
Generation Mobile Networks. IWWST’05, pages
101–106, April 2005.

[22] S. Wilson. Generalization in the XCS classifier system.
In Proc. Genetic Programming, pages 665–674.
Morgan Kaufmann, 1998.

[23] S. Wilson. Get Real! XCS with Continuous-Valued
Inputs. LNCS, pages 209–222, 2000.

