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Abstract

Background: ChIP-Seq is widely used to detect genomic segments bound by transcription factors (TF), either directly

at DNA binding sites (BSs) or indirectly via other proteins. Currently, there are many software tools implementing

different approaches to identify TFBSs within ChIP-Seq peaks. However, their use for the interpretation of ChIP-Seq data

is usually complicated by the absence of direct experimental verification, making it difficult both to set a threshold to

avoid recognition of too many false-positive BSs, and to compare the actual performance of different models.

Results: Using ChIP-Seq data for FoxA2 binding loci in mouse adult liver and human HepG2 cells we compared FoxA

binding-site predictions for four computational models of two fundamental classes: pattern matching based on existing

training set of experimentally confirmed TFBSs (oPWM and SiteGA) and de novo motif discovery (ChIPMunk and diChIP-

Munk). To properly select prediction thresholds for the models, we experimentally evaluated affinity of 64 predicted

FoxA BSs using EMSA that allows safely distinguishing sequences able to bind TF. As a result we identified thousands

of reliable FoxA BSs within ChIP-Seq loci from mouse liver and human HepG2 cells. It was found that the performance

of conventional position weight matrix (PWM) models was inferior with the highest false positive rate. On the contrary,

the best recognition efficiency was achieved by the combination of SiteGA & diChIPMunk/ChIPMunk models, properly

identifying FoxA BSs in up to 90% of loci for both mouse and human ChIP-Seq datasets.

Conclusions: The experimental study of TF binding to oligonucleotides corresponding to predicted sites

increases the reliability of computational methods for TFBS-recognition in ChIP-Seq data analysis. Regarding

ChIP-Seq data interpretation, basic PWMs have inferior TFBS recognition quality compared to the more sophisticated

SiteGA and de novo motif discovery methods. A combination of models from different principles allowed identification

of proper TFBSs.
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Background
Identification of transcription regulatory elements in a

genome is an actively evolving topic in modern molecular

biology. The major class of these elements is represented

by transcription factor (TF) binding sites (TFBSs), short

DNA segments of 10-20 bp specifically recognized by TFs.

Modern high-throughput techniques, such as chromatin

immunoprecipitation (ChIP) followed by microarray

hybridization (ChIP-chip) or by massively parallel sequen-

cing (ChIP-Seq), allow genome-scale mapping of TF occu-

pancy in a given cell type and state [1]. To date, thousands

of binding loci for a large number of TFs have been re-

vealed for various cell types [2]. However, both ChIP-Seq

and ChIP-chip technologies are not able to distinguish dir-

ect TF binding to DNA from indirect binding mediated by

other chromatin proteins including other TFs bound to
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cognate DNA sites (the so-called tethered or “piggy back”

binding) [1,3]. Prediction of the genome-wide TF binding

landscape, i.e. identification of the entire set of TFBSs

existing in a particular genome irrespective to the cell type

and state, is also unlikely to be done without proper TFBS

modeling in silico. Furthermore, ChIP-Seq identifies exact

locations of TFBSs only indirectly and cannot discriminate

between closely spaced multiple sites within DNA seg-

ments of hundreds of base pairs [4].

To identify TFBSs in a given sequence one applies

computational methods for their recognition. A myriad

of such methods exists today, falling into two main clas-

ses [5,6]. The first class is based on pattern matching,

also called motif finding. In this case, the TFBS recogni-

tion model is constructed on an independent training

set of TFBS sequences obtained from conventional gene-

by-gene experimental studies. The pattern is often repre-

sented as a positional weight matrix (PWM) which

assumes that nucleotides in BS sequence additively and

independently contribute to the total binding energy [5].

The PWM is widely used for TFBSs recognition in gen-

omic sequences, e.g. to interpret ChIP-Seq data. A num-

ber of information resources contain the ready-to-use

TFBS matrices, namely, TRANSFAC [7], JASPAR [8],

ARTSITE [9], HOCOMOCO [10] etc. The performance

of conventional PWMs can be improved if dependencies

between adjacent positions are taken into account, e.g.

using so-called dinucleotide PWMs [11]. The next im-

provement of this approach is a proper selection of matrix

length, i.e. construction of optimized PWM (oPWM)

[12,13]. More sophisticated and much less commonly

used methods do not include “the additivity assumption”,

i.e. nucleotides in different positions may depend on each

other [14,15]. Among these methods is our previously de-

veloped SiteGA, well-proven in recognition of various

TFBSs [12].

The second class of methods is oriented towards de

novo pattern detection, and referred to as motif discovery,

also often utilizing PWMs as the TFBS model. Initially,

motif discovery was proposed to identify TFBSs in pro-

moter sequences of co-regulated or orthologous genes. Al-

though motif discovery algorithms have been shown to

work successfully in bacteria and yeast, they performed

significantly worse in higher organisms [16]. However,

the motif discovery approach has become of extremely

high value with the emergence of ChIP-chip/ChIP-Seq

technologies [17,18]. Currently, many variations of such

methods exist, some of them are presented in well-known

resources. ChIPMunk [19] and diChIPMunk [20] belong

to this class. Using the basic PWM model ChIPMunk per-

formed nicely in several independent benchmarks [21,22],

including the recent one of the DREAM consortium [23].

diChIPMunk uses the same engine as ChIPMunk to pro-

duce dinucleotide PWMs.

It is of great interest to compare the performance of

the motif discovery and motif finding approaches applied

to the same experimental data. However, no such studies

have been carried out until now. Moreover, a compara-

tive analysis of the advantages and shortcomings of dif-

ferent methods is hampered by the lack of direct

experimental verification of predicted TFBSs.

Using a FoxA2 ChIP-Seq data for mouse adult liver

chromatin [24] and human hepatoma cell line chromatin

[25] we conducted a comparative assessment of oPWM

and SiteGA (pattern-matching models), ChIPMunk, and

diChIPMunk (pattern-detection models), which was ac-

companied by experimental verification.

FoxA2 is a member of the FoxA subfamily of winged

helix/forkhead box (Fox) transcription factors playing

important roles at different stages of mammalian life

cycle, including early development, organogenesis, and

metabolism and homeostasis in the adult [26]. FoxA2

was shown to be a pioneer transcription factor [27], thus

indirect (mediated by other DNA-binding proteins)

binding of FoxA2 to chromatin should not be a major

event. With the independent human and mouse liver

ChIP-Seq datasets available FoxA2 is one of the most con-

venient TFs to compare different computer approaches

for prediction of TFBSs.

Results

Identification of FoxA binding sites in promoter

ChIP-Seq loci

Initially, to compare the performance of pattern match-

ing and pattern detection approaches for TFBS predic-

tion in the context of ChIP-Seq data, we applied oPWM

and SiteGA (as representatives of the former class) as

well as ChIPMunk and diChIPMunk (as representatives

of the latter class) to analyze a dataset of 4455 FoxA2-

binding loci (ChIP-Seq peaks with read coverage of at

least 15) in mouse adult liver chromatin [24].

To produce a subset of data for experimental verifica-

tion we restricted the search to FoxA2-binding loci that

overlapped with 1 kb upstream regions of RefSeq genes

(mm8 assembly) and had coverage at least 15 (301 pro-

moters). Totally 466 putative FoxA BSs were predicted

in these regions. Each BS was characterized by a set of

four scores corresponding to the four models used. The

thresholds applied were very low, so that among selected

putative BSs were those with non-consistent functional-

ity. The pairwise comparison of scores (Figure 1) showed

a good agreement between models of the same class

(pattern match or pattern detection). Thus, there was a

strong correlation between predictions of oPWM/SiteGA

(Figure 1A, Pearson correlation coefficient 0.872) and

ChIPMunk/diChIPMunk (Figure 1B, 0.708). The agree-

ment between other pairs of models was notably lower

(with the highest correlation coefficient of 0.625 for
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SiteGA/diChIPMunk; Figure 1C). Although a consider-

able portion of points still landed close to the scatter-

plot diagonal, i.e. many sites are similarly scored even

by principally differing models (Figure 1C-F), there was

a considerable number of sequences with a significantly

higher score assigned by only one of the models, i.e.

displaying incompatible predictions of different models.

Thus, a special interest was to determine whether these

sites were able to bind TFs in practice.

Experimental verification of predicted FoxA binding sites

by EMSA

Out of 466 BSs predicted in promoter regions, 64 were ar-

bitrarily selected for experimental verification by EMSA.

Figure 1 Scores of different FoxA BS recognition models for TFBSs derived from ChIP-Seq data [24]. Six panels from A to F denote all

possible pairwise combination of ChIPMunk, diChIPMunk, SiteGA and oPWM models. Black dots denote the sample of 466 potential BSs: (A) sites

mapped in promoter regions located in 1000 bp upstream regions of RefSeq genes; (B) binding sites lying in peak regions with peak height of

15 or higher. The 64 BSs selected for experimental verification are shown as grey crossed squares, brown triangles and red circles, corresponding

to the EMSA scores below 0.25 (non-sites), in the range from 0.25 to 0.75 (weak sites) and above 0.75 (strong sites). Solid lines mark the model

thresholds selected to discard non-sites.
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Among them there were the sites quite differently evalu-

ated by the models used (Figure 1). The main advantage

of EMSA is unambiguity in interpretation of the results.

This method records the fact of the TF binding to the

oligonucleotide corresponding to a predicted site, thereby

making it possible to set the threshold directly and restrict

the false-positives [3]. In this study, double-stranded oligo-

nucleotides for 64 selected FoxA sites were individually

added in ascending concentrations as cold competitors to

the binding reaction of labeled oligonucleotide corre-

sponding to a well-known FoxA site from mouse Ttr pro-

moter [28] with purified GST-FKH-FoxA2 protein. A

representative autoradiograph of separated complexes is

shown on Figure 2A.

Rough estimate of TFBS affinities relative to that of TTR

oligonucleotide were calculated (further referred to as the

EMSA scores listed in Additional file 1: Table S1). It was

found, that the distribution of estimated the EMSA scores

for 64 tested sites was essentially continuous (Figure 2B;

Additional file 2: Figure S1), which agrees with the previ-

ous data for other TFs [29,30]. Based on the experimental

results, all the studied sequences were divided into three

groups: a) non-sites, EMSA scores below 0.25; b) weak

sites, EMSA scores from 0.25 to 0.75 and c) strong sites,

EMSA scores above 0.75 (Figure 1). Thus, the group of

non-sites consisted of sequences whose ability to bind to

GST-FKH-FoxA2 was not significantly different from the

unrelated sequence.

Comparison of the predictions and the experimental

data are shown in Figure 1. Most of the non-sites receive

low scores from all the models (the bottom left corner

in the scatterplots, Figure 1). In the case of the strong

and the weak sites the picture is different. As expected,

models of the same class (pairs oPWM/SiteGA and

ChIPMunk/diChIPMunk) predicted sites concentrating

in the top right corner of the scatterplot (Figure 1A,B),

i.e. the predictions were mostly consistent. At the same

time, predictions were less consistent for motif discovery

Figure 2 Experimental verification of putative FoxA sites by EMSA. A – EMSA competition of oligonucleotides containing predicted FoxA

sites, with labeled TTR probe for binding to recombinant GST-FKH-FoxA2 (demonstrative autoradiographs). The ascending concentrations (2, 5,

and 20 ng) of cold competitors are shown as triangles at the top of the figure, their IDs and resulting relative EMSA scores are shown at the

bottom. The band corresponding to the DNA-protein complex is marked by the arrow. Unlabeled TTR and PPAR oligonucleotides were used as

positive and negative controls of protein binding. B – Distribution of EMSA scores for 64 potential FoxA binding sites selected for EMSA verification.

Selected BSs had peak height of at least 15 and were located in 1000 bp upstream regions of RefSeq genes. The X and Y axes denote the EMSA score

and the number of sites predicted at a specific EMSA-score threshold. EMSA scores are rough estimates of TFBS affinities relative to that of the positive

control site (referred to as the EMSA scores listed in Additional file 1: Table S1). White, grey and black columns denote the EMSA scores below 0.25

(non-sites), 0.25 to 0.75 (weak sites) and above 0.75 (strong sites).
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versus motif-finding approaches. There were many sites

with high scores from one model and low scores from an-

other (Figure 1C-F), e.g. SiteGA versus ChIPMunk predic-

tions (Figure 1D). These models utilized different training

sets, and algorithms (SiteGA accounts for mutual depend-

encies between arbitrary positions, while ChIPMunk does

not). So, a combination of such fundamentally different

models can be the most effective in analyzing genome-

wide ChIP-Seq data.

For further analysis we selected EMSA score cutoff of

0.25, which allowed determination of the thresholds for

prediction models on a common basis (Figure 2). These

are 0.870, 0.848, 0.710 and 0.703 for ChIPMunk, diChIP-

Munk, SiteGA and oPWM, respectively. For each model,

we selected the threshold value as the highest score for

the subset of non-sites (Figure 1).

Identification of FoxA binding sites in genome-wide

ChIP-Seq data

Figure 3 shows scatterplots of scores of potential FoxA

sites predicted in all 4455 FoxA2-binding loci [24]. As for

the promoter regions, closely related models evaluated

most of the sites in a similar manner (Figure 3A,B),

whereas application of strongly differing approaches re-

sulted in a substantial fraction of sites scoring highly by

only one of them (Figure 3C-F). The use of thresholds,

determined by EMSA (Figure 3, black lines), allowed us to

discard sequences without threshold-passing predictions,

i.e. possibly not capable to bind FoxA directly. As a result,

SiteGA identifies 6884 reliable FoxA sites in 76.7% of

peaks, ChIPMunk – 7000 in 82.7% of peaks, and diChIP-

Munk– 6079 in 78.7% of peaks. However, only 3008 FoxA

sites in 45.1% of peaks are identified with oPWM ap-

proach, i.e. oPWM showed the weakest performance of all

four models. It is worth noting that combined use of the

models significantly increases the resulting number of the

peaks with the identified sites. As expected, among all

combinations the best was SiteGA/ChIPMunk with 90.0%

of peaks (10040 sites) with BSs recognized by at least one

model out of the pair. Another good combination was

diChIPMunk/SiteGA with 88.9% peaks (8985 sites). A de-

tailed analysis of SiteGA/ChIPMunk and diChIPMunk/

SiteGA results showed that the majority of ChIP-Seq peaks

contained more than one site (62.3% and 58.3%, respect-

ively). These results were in agreement with existing obser-

vations that FoxA prefers to bind to clusters of sites in the

regulatory regions of well-studied target genes [31-35].

The results show the high efficiency of the SiteGA

model, as well as both participants from pattern-

detection class (ChIPMunk and diChIPMunk). However,

since the latter models were trained on the same data as

used for the performance evaluation, the correct com-

parative assessment requires an additional independent

control ChIP-Seq dataset.

Application of TFBS models to the control FoxA

ChIP-Seq dataset

The dataset described in [25] was taken as an independ-

ent control and contained 4367 FoxA2-binding loci, with

read coverage of at least 10. In this dataset SiteGA,

ChIPMunk, diChIPMunk and oPWM models recognized

5781 sites in 77.6% of peaks, 5629 sites in 81.5% of

peaks, 4892 sites in 76.6% of peaks, 2394 sites in 43.0%

of peaks respectively, showing almost the same perform-

ance as on Wederell’s data [24]. Note that oPWM again

had the worst prediction rate.

We expected the combination of models from different

classes (pattern matching and pattern detection) would be

more effective for analysis of genome-wide ChIP-Seq data.

To estimate performance of pairwise combinations of our

four models we computed the number of peaks with BSs

recognized by each pairs of models. The following cases

were separately processed: (a) peaks with at least one

(overlapping) BS predicted by two models, (b,c) peaks

with sites recognized by only one of the two models and

(d) peaks with only non-overlapping site predictions of by

two models (Figure 4). Note, that the total sum of these

fractions reflects the total number of peaks where at least

one site was found by any of the two tested models.

For all pairwise combinations the dependence of the

fraction of recognized peaks from the peak height cut-

off demonstrated a non-monotonic behavior, with sig-

nificant growth from approximately 50% of recognized

peaks at a cutoff value of 4 and a nearly uniform distri-

bution at cutoff values of 10 and higher. Basically, this

means that more erroneous peaks or weak sites are de-

tected near the lower peak height of 4, supporting the

choice of the peak height cutoff value of 10 for our

study.

The models from the same class (two pattern match-

ing or two pattern detection models) poorly complemen-

ted each other, giving a moderate rise in the number of

peaks with recognized BSs for the ChIPMunk/diChIP-

Munk pair (joint recognition 85.0% vs. 81.5/76.6% for sep-

arate models, respectively; Figure 4B) and almost no effect

for oPWM/SiteGA as SiteGA managed to recognize al-

most every peak detected by oPWM (joint recognition

78.2% vs. 77.6/43.0% for separate models, respectively;

Figure 4A).

On the contrary, the combination of pattern-matching

and pattern-detection models showed a substantial in-

crease in the number of peaks with recognized BSs.

Among all combinations the best again were SiteGA/ChIP-

Munk and SiteGA/diChIPMunk, with 90.7% and 89.1%

peaks recognized by at least one model out of a pair, re-

spectively (Figure 4C,D). More than a half of detected sites

were recognized by two models simultaneously: 58.1% of

sites (4679) and 58.9% (4196) for SiteGA/ChIPMunk and

diChIPMunk/SiteGA, respectively (Figure 4C,D, red). The
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fractions of peaks solely detected by a particular model

were 9.1% for SiteGA and 13.1% for ChIPMunk (Figure 4C,

blue and green). For another combination, the respective

fractions were 11.5% for SiteGA and 12.5% for diChIP-

Munk (Figure 4D, blue and green). The fractions of simul-

taneously detected peaks with non-overlapped sites were

8.9% and 8.4% (see Figure 4C,D, orange). A more detailed

analysis of SiteGA/ChIPMunk and diChIPMunk/SiteGA

results again shows that the majority of peaks contained

more than one site, 54.0% and 50.1% respectively. These

estimates are very similar to those computed above for

Wederell’s ChIP-Seq data [24].

Figure 3 The scatterplots of scores of different FoxA BS recognition models for BSs derived from ChIP-Seq data [24]. Six panels from

A to F denote all possible pairwise combinations of ChIPMunk, diChIPMunk, SiteGA and oPWM models. Dots denote the subset of 49722

potential BSs that were mapped in ChIP-Seq peaks with heights of 15 and higher. Solid lines mark thresholds corresponding to the EMSA scores

below and above 0.25.
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To get an estimate for the fraction of simultaneously

detected peaks with non-overlapping sites expected by

chance we performed a tenfold simulation on a random

1st order Markov chain background set that was

generated by shuffling full-length peaks. We count ob-

served and expected fractions of peaks with non-

overlapped sites among all peaks detected by two

models. For the SiteGA/ChIPMunk pair the expected

Figure 4 The fraction of ChIP-Seq peaks [25] with recognized sites as a function of the peak height cut-off value. Six panels from A to F

denote predictions computed for all possible pairwise combinations of ChIPMunk, diChIPMunk, SiteGA and oPWM models. The X and Y axes

show the fraction of peaks having at least one FoxA binding site recognized by the respective model and the peak height cut-off value. The

panels from A to F show the comparisons between SiteGA and oPWM, ChIPMunk and diChIPMunk, SiteGA and ChIPMunk, SiteGA and diChIP-

Munk models, respectively. The following grouping of recognized TFBSs is used: loci with TFBSs recognized by both the first and second models

(e.g. D – SiteGA & ChIPMunk, respectively) that either overlap or not, are marked by RED and ORANGE, respectively; loci with at least one FoxA

binding site recognized by the first but not by the second model, or vice versa, are marked by GREEN and BLUE, respectively. Black vertical lines

denote the coverage threshold (peak height of 10).
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fraction was 14.1% and observed one was 23.0% (p < 5E-

12 according to the χ2 test for a 2×2 contingency table).

This provides evidence that these non-overlapping pre-

dictions are likely nonrandom and are due to heterogen-

eity of the FoxA BSs sequences and their preference to

form homotypic TFBS clusters.

Thus, usage of a pair of different models allowed both

an increase in the number of peaks with precisely posi-

tioned sites, and identification of multiple sites within a

single peak. The latter is quite important, since homotypic

clusters of TFBSs are often found in the gene regulatory

regions, underlying a number of mechanistic advantages

[36,37]. These may include favoring high-affinity coopera-

tive TF binding and lateral diffusion of TF binding along

regulatory regions, or simply increasing of the local TF

concentration in the vicinity of these regions and thereby

increase the probability of functional interactions [38-40].

Note that oPWM can also provide a benefit when

SiteGA is not available. For example, oPWM slightly in-

creased the number of peaks with detected BSs (4.6% only

oPWM, 43.1% only ChIPMunk, and 5.9% only oPWM,

39.5% only diChIPMunk, Figure 4E,F: blue and green) and

the number of peaks with non-overlapping sites detected

by different models (8.6% and 8.3%, Figure 4E,F, orange).

Comparison of constructed and existing FoxA TFBS

models

To compare the performance of the four models con-

structed in this study with known TFBS models we used

four additional PWMs: MA0047.2 [41] and MA0148.1

[42] from JASPAR [8], M01261 [43] and M01012 [44]

from TRANSFAC [7]. Among them only the latter was

not derived from ChIP-Seq data. Receiver operating

characteristic (ROC) curves were used to compare eight

models with Wallerman dataset [25] (Figure 5A). False

positive rates were estimated over the first order Markov

chain background-set that was generated by shuffling

full-length peak sequences. ROC curves close to the top

left corner correspond to the models with better per-

formance. Figure 5A clearly shows that the diChIPMunk

model outperformed all others ones. This seems to be a

consequence of the dinucleotide in contrast to mononu-

cleotide statistics used by other ChIP-Seq-derived

models. The TRANSFAC PWM M01012 showed the

worst performance. To compare other models in detail,

we computed the correlation coefficients (CC) that re-

flect the relationship between true and false positive

rates [45]. The CC values were computed for the EMSA-

based thresholds chosen earlier. EMSA thresholds for

additional models were selected as described above (see

Results section “Experimental verification of predicted

FoxA binding sites by EMSA”). The ChIPMunk, JASPAR

and M0148.1 matrices showed similar performance,

leaving TRANSFAC M01261 and JASPAR MA0047.2

the worst among ChIP-Seq-derived models. Note that

the performance of SiteGA was on a par with those for

ChIP-Seq-derived models, outperforming other models

not derived from ChIP-Seq data, oPWM and TRANS-

FAC M01012. Thus SiteGA performed the best among

models not derived from ChIP-Seq data, most probably

because of its additional information relating distant se-

quence positions [12] (Figure 5A,B). To confirm that

the selected EMSA score 0.25 is appropriate, we per-

formed correlation coefficient calculations for two add-

itional EMSA score values 0.17 and 0.34 (Additional

file 2: Figure S2). One can see that for all models except

the worst one (TRANSFAC M01261) CC computed for

EMSA score 0.17 are notably lower than ones for EMSA

scores 0.25 and 0.34. Among the latter two that provide

similar CC values for nearly all models (Additional file 2:

Figure S2) the first EMSA score (0.25) was chosen as less

stringent.

We suspect that several factors are crucial in explain-

ing performance of different models (Figure 5): (a) the

training data-set, either ChIP-Seq derived or not; (b) a

visible improvement for conventional PWMs if dinucleo-

tide statistics are used along with extension of a matrix

length (diChIPMunk vs. ChIPMunk, oPWM vs. Transfac

PWM M01012); (c) accounting for possible distant de-

pendencies (SiteGA vs. oPWM).

Discussion
Computational methods of TFBS recognition provide

important tools to analyze ChIP-Seq data [1,46]. Many

different tools were presented for motif discovery in

ChIP-Seq data, including MEME-ChIP [47], RSAT peak-

motifs [48], Dimont [49]. Yet, it is commonly PWMs

from JASPAR and TRANSFAC that are applied for the

approval of ChIP-Seq data. A few attempts were made to

properly train complex models [50].

However, in the absence of additional experimental veri-

fication of TFBS models, it is difficult to estimate key

model parameters, such as recognition thresholds, which

would correctly separate true-positive from false-positive

predictions. Ignorance of these thresholds, in turn, greatly

complicates both the interpretation of ChIP-Seq data and

the performance comparison of TFBS-prediction methods.

Application of several models for TFBS prediction in

this study allowed us to resolve two important issues: (a)

whether advanced pattern match models (oPWM,

SiteGA), if properly trained on a limited curated TFBS

set, can compete with pattern discovery models (ChIP-

Munk, diChIPMunk) trained on ChIP-Seq data; and (b)

whether these advanced models can complement each

other or commonly applied PWMs (four additional rep-

resentatives from JASPAR and TRANSFAC were tested).

Using FoxA BSs as a case study, we have applied

EMSA to determine thresholds for eight models of TFBS
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recognition. The use of these thresholds in the analysis

of ChIP-Seq profiles for FoxA2 in adult mouse liver [24]

and in human HepG2 cells [25] allowed us to reliably

identify thousands of FoxA BSs within ChIP-Seq peaks

and to conduct an adequate comparison of the computa-

tional models studied.

First of all, in some cases models for TFBS recognition

are able to find trustworthy sites only in a small subset

of peaks, e.g. 29% for TRANSFAC M01012 and 43% for

oPWM (Figure 4A). This fraction is not what one should

expect from a TRANSFAC model, and only performing

the EMSA experiment allowed us to compute an accur-

ate estimate. Application of such models for finding

TFBSs in a major subset of ChIP-Seq peaks would re-

quire too low threshold value giving too many false posi-

tives. Hence, the threshold choice is the key point for

getting trustworthy TFBS-recognition results from

ChIP-Seq pipelines. It is important for different tasks,

e.g. identification of reliable TFBSs in ChIP-Seq data or

studying the ratio of direct and indirect protein binding

to chromatin. While EMSA was used here for selecting

thresholds, there could be other, less labor-intensive ap-

proaches, for example fluorescence correlation spectros-

copy (FCS) [51]. It is noteworthy that once experimental

verification is done for a particular protein, it could be

re-used for defining the thresholds for any correspond-

ing TFBS model and interpreting any ChIP-seq experi-

ment for this protein, as we have demonstrated on the

independent human FoxA2 ChIP-Seq dataset [25].

We conclude that models derived from ChIP-Seq usu-

ally outperformed the others. The important exception

is SiteGA, most probably due to its more complex algo-

rithm of information extraction and recognition. But this

outperformance does not diminish the value of the

models trained on independent data, which provide a

way to verify the results obtained from a ChIP-Seq

pipeline.

We have confirmed the supremacy of dinucleotide sta-

tistics for the TFBS models, showing its advantages for

both classes of methods. An important component of

this advantage comes from the informative data in the

flanking regions of the TFBS “core” sequence. The con-

sequence is typically longer matrix length, e.g. TRANS-

FAC M01012 (18 nt) vs. oPWM (32 nt) and ChIPMunk

(20 nt) vs. diChIPMunk (28 nt).

The models based on different principles complement

each other. Combined use of the models allowed better

identification of FoxA sites in corresponding ChIP-Seq

peaks. The best results for BS prediction in ChIP-Seq

data were achieved by model combinations, e.g. SiteGA

plus diChIPMunk, successfully identifying up to 90% of

FoxA BS-containing loci in both the mouse and human

ChIP-Seq data.

Conclusion

Nowadays ChIP-Seq is the gold standard for studying

TF-chromatin interactions in vivo. Detailed analysis of

TFBS in ChIP-Seq data requires validated computational

TFBS-recognition tools. The choice of the appropriate

thresholds for TFBS models is one of the key steps that

has been often underappreciated. We carried out an ex-

perimental study of FoxA binding to oligonucleotides,

corresponding to predicted sites. This allowed us to de-

termine the thresholds for several ChIP-Seq derived and

conventional models, improving their ability to predict

TFBSs. This also allowed us to compare models accur-

ately using the independent control ChIP-Seq dataset,

and conclude that (a) the weak ability to detect sites

Figure 5 ROC (Receiver operating characteristic) of TFBS models (A) and CC (correlation coefficient) (B). A – ROC curves for 8 recognition

models applied to ChIP-Seq data [25]. ‘J’ - JASPAR PWM, ‘Tr’ - TRANSFAC PWM. The fraction of recognized peaks (X axis) shows the true positive

(TP) rate. The fraction of recognized shuffled peaks (Y axis) shows the false positive (FP) rate. Markers for each model show the point correspond-

ing to the EMSA-derived threshold. B – the correlation coefficients reflect balance between TP and FP rates computed for thresholds derived from

EMSA verification. The values of TP and TP rates are shown in ROC curves (A) by markers.
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properly; (b) although pattern-discovery models derived

from ChIP-Seq in general are better than conventionally

derived pattern-match models, the latter valuably com-

plement the former in annotation of ChIP-Seq data; (c)

integration of different models allows detecting reliable

sites in up to 90% of ChIP-Seq loci.

Methods

Datasets and site prediction tools

Two publicly available ChIP-Seq datasets for FoxA2 TF

were used in this study: for adult mouse liver [24] (4455

mouse loci having base coverage no less than 15) and

for human HepG2 cells (4367 human loci with base

coverage no less than 10) [25]. The sequences were ex-

tracted from the mm8 and hg18 genome assemblies.

To train the pattern-matching models we gathered the

set of 53 known BSs (Additional file 1: Table S2) of FoxA

family TFs. The sequences were extracted from the

TRRD database [52] and by manual literature mining.

The selected BSs were confirmed by at least one of the

following methods: (1) DNase I footprinting using puri-

fied protein, (2) electrophoretic mobility shift assay

(EMSA) with purified protein, and (3) EMSA with nu-

clear extract and specific antibodies.

Sequences were aligned relative to the centrally located

pattern TRTTTRYH (R =A/G, Y = C/T, H =A/C/G) [13]

(Additional file 1: Table S2). The set of aligned sequences

was then used as the training set for the optimized PWM

(oPWM) and SiteGA models [12]. The construction of

oPWM included the search for the optimal matrix length

according to a resampling leave-one-out cross-validation

test (Additional file 2: Figure S3). The SiteGA model takes

into account statistical features of a binding site context

reflecting putative structural interactions within the

core and flanking regions of the site. It uses a genetic

algorithm with a discriminant function of locally posi-

tioned dinucleotide frequencies. The performance test

showed that the SiteGA model slightly outperformed

oPWM (Additional file 2: Figure S4).

ChIPMunk [19] is a fast heuristic DNA motif discovery

tool, which employs a greedy approach accompanied by

bootstrapping. It is able to properly use the ChIP-Seq base

coverage profile (the “peak shape”), producing high quality

motifs as shown in several independent benchmark stud-

ies [21-23,53]. ChIPMunk searches for the gapless mul-

tiple local alignment with the highest Kullback Discrete

Information Content (KDIC) [19], under the common as-

sumption of independence for neighboring nucleotides.

An improved version of the algorithm (diChIPMunk [20]),

uses a dinucleotide alphabet of 16 letters and the TFBS

model accounting for the dependence between nucleo-

tides in neighboring binding-site positions. A criterion for

the alignment optimality, Kullback Dinucleotide Discrete

Information Content (KDDIC), was constructed in the

same way as KDIC using a dinucleotides alphabet. The

matrix lengths for ChIPMunk and diChIPMunk were com-

puted by the jack-knife optimization procedure similar to

that for oPWM [12]. For ChIPMunk, diChIPMunk and

oPWM matrix scores were rescaled as described for

oPWM [12]. ChIPMunk trained on 4455 loci [24] resulted

in 20 nt mono- and 28nt dinucleotide matrices (Additional

file 2: Figure S5) which were in a good agreement with the

TRTTTRYH pattern, determined from our training set as

well as with the known FoxA binding consensus [54,55].

Plasmid construction and purification of GST fusion

protein

The FKH DNA-binding domain of FoxA2 (nt 432–869)

was amplified from rat genomic DNA by PCR using

primers DBD-FoxA2_f (5′-GCGGAATTCCGCTCGGG

ACCCCAAGACGTA-3′, EcoRI site is underlined) and

DBD-FoxA2_r (5′-GCGCTCGAGTCCCCGAGCTGAAC

CTGA-3′, XhoI site is underlined). The PCR product was

then digested with XhoI and EcoRI, and cloned into the

same sites of pGEX-4 T-1 vector (Pharmacia). The recom-

binant plasmid was transformed into E. coli BL21 cells by

electroporation. Expression of GST-fused FKH domain of

FoxA2 protein (GST-FKH-FoxA2) was induced by incuba-

tion with 0.1 mM isopropyl-β-D-thiogalactopyranoside for

3 h at 30°C. The GST-FKH-FoxA2 protein was purified

using a glutathione-sepharose (Sigma) column according

to the manufacturer’s protocol. The purity and size of the

eluted protein were evaluated by separation on SDS-

polyacrylamide gels and Coomassie Brilliant Blue staining.

EMSA

The double-stranded synthetic oligonucleotide probes

(containing predicted FoxA BSs) used for competition

EMSAs are listed in Additional file 1: Table S1. A double-

stranded TTR oligonucleotide containing a strong FoxA

binding site from the transthyretin promoter [26] was la-

beled by filling-in the sticky ends with Klenow enzyme

and [α-32P]dATP and used as DNA probe in EMSAs. In

the competitive experiments, 2, 5 and 20 ng of unlabelled

double-stranded oligonucleotide were added concurrently

with 1 ng of 32P-labeled TTR probe to the reaction mix-

tures containing 25 mM HEPES (pH 7.6), 150 mM KCl,

0.2 mM EDTA, 0.2 mM EGTA, 10% glycerol, 1 mM di-

thiothreitol and 3 μg of GST-FKH-FoxA2 protein and

allowed to incubate on ice for 15 min. Each gel run was

supplemented with TTR self-competition as a positive

control and a competition with PPAR oligonucleotide in

order to control for non-specific binding. Immediately fol-

lowing the incubation, the bound complexes were sepa-

rated from the free probe by electrophoresis on 4%

nondenaturing polyacrylamide gels in 0.5× Tris-borate-

EDTA buffer for 40 min at 4°C. After electrophoresis, the

gels were dried and visualized by autoradiography on
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Retina medical x-ray film. Band intensities were de-

tected and quantified using a Gel-Doc imaging system

and Quantity One software (Bio-Rad). The respective

concentration-response curves for each cold competitor

were subjected to log-transformation and linear regres-

sion and resulting slope values were normalized to that

of positive control (TTR self-competition) to achieve a

rough estimate of the relative FoxA2-binding strength

to the corresponding oligonucleotide (EMSA score,

Additional file 2: Figure S1). For all models the thresh-

old for “non-sites” was set at EMSA score 0.25 based

on the observed technical error multiplied by 1.5.

Additional files

Additional file 1: Hyperlinks to ChIP-Seq datasets [24,25]; Table S1.

Double-stranded synthetic oligonucleotide probes used in competition

electrophoretic mobility shift assays (EMSAs) and their respective EMSA

scores; Table S2. Training data for SiteGA and oPWM models, aligned

FoxA BSs dataset, 53 BSs.

Additional file 2: Figure S1. EMSA score distribution. X axis shows

64 oligonucleotides (potential FoxAsites) that were chosen for EMSA

verification; oligonucleotides are shown in ascending order of EMSA

scores. Y axis shows EMSA scores. Figure S2. Correlation coefficients (CC)

for FoxA recognition models DiChIPMink, ChIPMunk, SiteGA, oPWM,

MA0047.2 [41] and MA0148.1 [42] from JASPAR [8], M01261 [43] and

M01012 [44] from TRANSFAC [7] FoxA recognition models. CC value were

computed as described previously [45] for thresholds of respective

recognition functions, selected to correspond EMSA score thresholds

0.17, 0.25 and 0.34. Higher CC value denotes better performance of a

model. X axis lists recognition models; Y axis shows CC values. Figure S3.

Recognition performance for dinucleotide PWMs as a function of a matrix

width. The X and Y (logarithmic scale) axes respectively show the length

of a matrix and a false-positive (FP) rate for a selected true-positive (TP)

rate (shown in figure legend). Figure S4. The comparison of recognition

performance between oPWM and SiteGA models. Both models are trained

on the same set of 53 FoxA binding sites (Additional file 1: Table S2). True

Positive (TP) and False Positive (FP) rates are fractions of training and back-

ground (shuffled) sets that were recognized at a selected threshold. The TP

and FP rates were evaluated by a standard leave-one-out cross-validation

test. Figure S5. Sequence LOGO representing TFBS models constructed

by ChIPMunk (top) and diChIPMunk (bottom). Mononucleotide LOGO

columns (top) are scaled according to a KDIC [19]. Dinucleotide motif LOGO

of the diChIPMunk motif shows frequencies for dinucleotides (bottom, scaled

according to a KDIDIC, [20]) formed by corresponding mononucleotide

columns (top, scaled according to the KDIC).
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