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Application Of Faceted Yield Surfaces For Simulating Compression 
Tests Of Textured Materials 

P. J. Maudlina , S. I. Wrighta, G. T. Gray IIIa, and J. W. House b 

Constitutive modeling used for  most forming calculations 
assume an isotropic yield function with isotropic hardening. This 
assumption usually takes the form of an isotropic elastic stiffness 
tensor, a realistic flow stress model and a von Mises yield function. 
Real materials deviate from isotropy both in elasticity and plasticity. 
The calculations described here relax the assumptions of isotropic 
elasticity and plasticity by utilizing direct measurements of the elastic 
stiffness tensor and anisotropic representations of yield surfaces, in 
particular surfaces tessellated from direct measurements of material 
texture. This effort validates the use of such constitutive modeling 
by simulating quasi-static, uniaxial stress compression and Taylor 
Cylinder impact, and comparing their cross-sectional “footprints” to 
experimental data.  

1. INTRODUCTION 

Most metallic materials used in high-rate forming are polycrystalline 
aggregates having a mechanical response that is strongly dependent on 
dislocation distribution, dislocation interactions with interstitial atoms and other 
barriers, and a variable crystallographic texture. The elastoplastic constitutive 
description needed for accurate simulation of high-rate forming must include a 
strain-rate dependent flow stress model and often some description of the 
anisotropic yield behavior resulting from the material’s texture. A directionally 

averaged behavior for a given material can be described with a flow stress (CY) 

model representing the isotropic yield response as a function of work hardening, 
strain-rate hardening, and thermal softening. Such flow stress models range from 

simple forms1 to more complicated path dependent descriptions with internal 

state variables such as the Mechanical Threshold Stress2 (MTS) model. 
The directionality of yield behavior as determined by grain orientation 

(texture), grain size, or grain aspect ratio can be described by a anisotropic yield 
surface shape that can evolve with deformation. If it is assumed that the yield 
surface shape is dominated by textural effects, this shape can be computed from a 

polycrystalline average, taken over a range of grain orientations, of the 

a Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

Wright Laboratories, Munitions Directorate, Eglin Air Force Base, Florida 



A 
microscopic behavior of 
embodied in a polycrystal 

The combination of a 

constituent grains. It is this type of modeling that is 

plasticity code such as LApp314. 

rate-dependent flow stress model2 describing isotropic 

hardening and a tessellated5 or fitted yield surface form (quadratic6 or piece- 

wise7~819~10) providing a shape, both coupled together in a continuum mechanics 
code, represents an improved computational capability for simulating forming 
problems. 

2. YIELD SURFACE REPRESENTATION 

In general, yield functions can be viewed as five dimensional in terms of 
deviatoric stress components Sij, i.e., 

where this tensor has five independent components (recall skk = 0). Therefore the 
stress components (sill s22, s12, ~ 1 3 ,  s23) define the general five-dimensional space 
that needs to be spanned by some convex yield function, constraining the 
magnitude of the stress state during plastic flow. 

Now consider the 5D case where a set of stress points are generated by 
repetitive polycrystal probes of a measured material orientation distribution 
function (ODF). This set of points can be tessellated (a linear fitting complete with 
associated connectivity) into a piece-wise surface in five space using a tessellation 

algorithm6, the whole of which can be mathematically expressed (using indicia1 
notation) as the set: 

{ fP = a; "sj - 8 = 0, p = 1,2 ,..., 

The linear functions (say M hyperplanes) appearing in Eq. (2) are expressed in 

normal form that defines the a& as coefficients of a vector normal to the 

hyperplane and 8 as the minimum distance between the origin and the p 
hyperplane. 

The yield function given by Eq. (2) represents only a normalized yield shape 

and thus needs to be scaled with a flow stress function11 0 (in equivalent stress 

units) to obtain the absolute surface ( in terms of sij, d ) in deviatoric stress space, 

i.e., 
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where the quantities overscored with a tilde represent normalized variables: the 

results of tessellated polycrystal calculations. The average Taylor Factor a 
appearing in Eqs. (3) corresponds in direction to that of the uniaxial stress data 

obtained to characterize the flow stress 0. 
Tessellation of a general 5D yield surface.from a set of stress points to obtain 

the coefficients needed for Eq. (2) can be a difficult process. Under the assumption 
of mirror plane symmetry (orthotropy) and sign independence for the yield 

surface, Canova, Kocks and Tome4 have shown that the 5D surface can be 
decoupled into two closed subspaces of lower dimension: a 2D subspace 

represented on the n-plane and a 3D shear subspace. The n-plane contains the 
yield envelope for the normal stress components, and the shear subspace contains 
the yield envelope for the shears. An example of such a yield surface tessellation 
is shown in Figs. 1, which is a tantalum (BCC) yield surface corresponding to a 
uni-directional rolling texture and thus closely approximates an orthotropic 

mechanical response. Figure l a  presents the E-plane yield surface for Ta being 
compared to a von Mises circle, and Fig. lb  shows the shear surface; an isotropic 
von Mises shear response in this subspace would be a sphere. The round symbols 
in Fig. la  and the vertices in Fig. l b  are the stress points generated via a polycrystal 

code4, probing a discrete Ta ODF with a set of strain increments in the context of a 
polycrystal calculation. 
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Figiire I: a)  Normal subspace (E-plane) comparison of a piece-wise Tantalum yield siirface (shown by 

the solid lines and points) with a von Mises function (dotted curve). b) Shear subspace 

( X , y , Z :  i,12,s,3,$3 ) perspective of a piece-wise Tantnlitm yield surface. This siirfnce contains 800 

stress verfices and 628 planes. 



Under the assumptions of orthotropy and sign-independence, the yield 
function given by Eq. (2) mathematically decouples into the two sub-functions 

where the linear functions are expressed in normal form defining I;& and a! as 

coefficients of a vector normal to the line or plane, respectively, and OB as the 

minimum distance between the stress origin and the p line or plane. The 2D yield 
function represented by Eq. (4a) and Fig. l a  is basically a linear interpolation of 36 

n-plane stress points into 36 lines, and the 3D yield function represented by Eq. 
(4b) and Fig. l b  is a linear interpolation of 800 shear stress points into 628 planes. 

3. MULTISURFACE PLASTICITY THEORY 

The set of piece-wise linear functions represented by Eqs. (4) and Figs. 1 were 

utilized in a three-dimensional continuum mechanics code (EPIC-9212) in a 

multisurface elastoplastic constitutive algorithmlo. This algorithm is based on the 

multisurface plasticity theory of Koiter7 and Simo* with modifications that 
facilitate its use in the constitutive framework of an explicit continuum code 
whose purpose is high-rate applications. The multisurface plasticity algorithm 
was described in detail in Ref. 10 for the case of a general 5D yield function; here 
we only indicate the modifications associated with the orthotropic simplification. 

The multisurface plasticity theory follows classical associated flow theory 

starting with an anisotropic form of Hooke's law, S, = Eij,eL, written in terms of a 

deviatoric stress rate and strain rate e i j  (deviatoric portion of the symmetrical part 

of the velocity gradient tensor), where E,,, is a symmetric elastic constant 

(stiffness) tensor. Assuming the standard practice of partitioning the strain-rate i i j  

into elastic, e:,  and plastic parts, e; ,  the flow rule for the plastic part is expressed 

as a summation of contributions from those linear functions7.8 which are active: 
(hence the subscript "act"): 

Here kp is a time dependent proportionality scalar. Note that the stress gradients 

in Eq. (5) are just the constants a& or <[ since the individual fP(sij) functions are 

linear; thus we have for our particular choice of Eqs. (4): 



where 6, is the Kronecker delta function. 

The next step is the standard enforcement of yield surface consistency by taking 
the time derivative of Eqs. (4) and substituting for the stress rate and the plastic 
strain rate using Hooke's law and Eq. (6), respectively. This process is straight- 

forward associative flow treatment that results in a system of (matt + nact) linear 

equations for (m, + n,) unknowns Ap's. The mathematical advantage of using 

the orthotropic and sign-independence assumptions is the decoupling of the 
normal and shear equation sets: The use of the general yield function given by Eq. 

(2) results in a set of Mac, (where Ma, = mact +nact) coupled linear equations, 

whereas the use of the orthotropic yield functions given by Eqs. (4) results in two 
uncoupled systems of equations (matt and nact, respectively) that can be solved 
independently. 

As might be anticipated, most of the work associated with the use of this 

algorithm involves identifying the active linear functions (mact,naCt) out of a total 

population of functions (m,n) that can be made arbitrarily large for numerical 
accuracy. The logic for discriminating the active linear functions is discussed in 
some detail in Ref. 10. 

4. RESULTS: UNIAXIAL COMPRESSION TESTS AND TAYLOR CYLINDER 

TESTS 

Consider a plate of tantalum having a right-handed material coordinate 
system (axes l', 2', 3') where the 3' axis is thru-thickness and the 1' and 2' axes are 
both in plane; it is in such a coordinate system that the stresses of Figs. 1 are cast. 
This tantalum plate was subjected to a cross-rolling process that produces an 
orthotropic material texture. A cylindrical compression specimen was cut from 
this plate for a so-called in-plane (IP) orientation (the axis of the cylindrical 
specimen is parallel to the 1' or 2' direction). Consider also a fixed laboratory 
reference frame (axes x, y, z) representing the principle axes of the uniaxial 
compression such that for the IP specimen the loading is applied along the 
laboratory z-axis (cylindrical specimen centerline) that is identical to the material 

2'-axis, and the y-axis is identical to the 3'-axis. The Fig. l a  n-plane yield function 
indicates that the 3' direction is the "hard" direction, since the distance between 
the stress origin and the yield function is at a maximum, and the 1' or 2' 
directions are "weaker." 

A uniaxial compression test was simulated with the explicit, finite-element 
EPIC92 code using the orthotropic elastoplastic modeling discussed above and in 
Ref. 10. Since the test was quasi-static, the strain-rate and thermal dependencies of 

the used flow stress model were constrained to 10-3 s-1 and room temperature, 
respectively. The specimen (L/D = 1.196, L = 7.615 mm) was spatially modeled 



with about 5200 tetrahedral elements. The specimen was loaded uniaxially 
between two elastic tool steel platens. Since an explicit, time-dependent code 
cannot economically simulate the specimen deformation quasi-statically, the 
platens were accelerated from zero to 100 m/s until the experimentally measured 
axial displacement (3.307 mm) was achieved; stress wave effects were thus 
minimized. 

Figure 2a presents a computed final IP specimen geometry compressed to a 
axial true strain of -77%. The specimen's footprint is elliptic with a calculated 
eccentricity (ratio of major to minor axes) of 1.33. Superimposed on the calculated 
footprint is the experimental result (digitized footprint interface) that has an 
eccentricity of 1.34; the experimental footprint matches closely the calculated 
result in the y (3') direction, and is slightly larger in the x (1') direction. 
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Figure 2: Comparison of a ( a )  uniaxial stress compression (b)  Taylor Cylinder simulation results 
showing the cylinder footprint at late-times with experimental footprint from fhree tests. The 
tantalum elastic stiffness tensor given in Ref. 10, the yield functions shown in Figs. 2 ,  a Mie- 
Griiniesen equation-ofstate, and the MTS flow stress model given in ReF 11 (characterized for the 
this Ta) were used in the simulations. The material axes f o r  the initial cylinder are rotated 90" (in 

the 1' - 3' plane) from the laboratory impact axes. 



A Taylor Cylinder test series was conducted that consisted of three shots using 

tantalum 30 caliber (7.62 mm diameter) cylinders 1.5-inch long (38.1 mm). The 
cylinders were launched using powder gun propellant from a caliber 30 Mann 
barrel. The velocity of the projectiles was measured by both pressure transducers 
and parallel laser beams crossing the flight path. Velocities determined from the 
two systems were about 175 m/s, agreeing to within +/- 3.0 m/s. The target was 
constructed of 4340 steel heat treated to a surface hardness of Re 58. After testing, 
geometric data of the deformed specimen was generated using an optical 
comparitor. The data consist of three digitized footprints that define the cross- 
sectional area at the impact interface, and are shown as points in Fig. 2b. 

The Taylor cylinders were initially cut from the same Ta plate in the same 
orientation as discussed above for the compression specimens. Assuming 
isotropic strength (or even anisotropic strength with transverse isotropy), a Taylor 
impact event is normally an axisymmetric problem that can be simulated with a 
continuum code with two space dimensions. However, with the introduction of a 
directionally dependent constitutive description using an orthotropic yield 
surface, the Taylor problem will develop a three-dimensional deformation 
distribution that needs to be simulated in three dimensional space. 

The Taylor Cylinder tests were simulated with the EPIC-92 code using the 
orthotropic yield functions of Figs. 1. The simulated impact results are shown in 
Fig. 2b in terms of late-time cylindrical footprints at the impact interface and 
compare well with the experimental data. The elliptical footprint shown in Fig. 2b 
has an eccentricity of 1.15 that compares to 1.17 for the experimental footprints; for 
isotropy the footprint would be round with an eccentricity of 1. 

5. CONCLUSIONS 

A faceted, two-subspace yield function representation for rolled orthotropic 
tantalum was successfully used as the constitutive description in three 
dimensional simulations of uniaxial stress compression tests and Taylor Cylinder 
tests. These calculational results were in good agreement with the experimental 
footprint data. It should be noted that the material texture in these simulations 
was assumed to be constant with respect to material deformation, where in reality 
some texture evolution certainly would have occurred, changing the shape of the 
Figs. 1 yield functions. The good agreement between simulations and experiments 
indicates that the texture evolution was small for these specific problems. 
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