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The finite element method is applied to the spatial variables of multi-group neutron

transport equation in the two-dimensional cylindrical (r,z) geometry. The equation is 

discretized using regular rectangular subregions in the (r,z) plane. The discontinuous 

method with bilinear or biquadratic Lagrange's interpolating polynomials as basis func-

tions is incorporated into a computer code FEMRZ. Here, the angular fluxes are allowed 

to be discontinuous across the subregion boundaries.

Some numerical calculations have been performed and the results indicated that, in

the case of biquadratic approximation, the solutions are sufficiently accurate and numer-

ically stable even for coarse meshes. The results are also compared with those obtained 

by a diamond difference Sn_code TWOTRAN-II. The merits of the discontinuous method 

are demonstrated through the numerical studies.
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I. INTRODUCTION

The finite element method (often simply

called FEM) has been well known as a power-

ful tool to get the numerical solution of 

many physical problems. It was originally 

developed in the field of structural analysis(1). 

The scope of its applications is now quite 

diverse and its characteristics, especially in 

comparison with the finite difference method, 

have been gradually clarified.

In the field of reactor physics, it has been

very popular to use the finite difference 

method for spatial variables and the discrete 

ordinate Sn approximation for angular vari-

ables. Many computer codes based on the

algorithms have been widely used in reactor 

design and shielding calculations(2)~(4).

On the other hand, the finite element

method has not been so much familiar to 

reactor physicists, but has some advantages 

over the finte difference method in neutron 

transport calculations. They are summerized 

as follows :

(1) Any order of approximation can be 
 achieved by suitable basis functions. 

(2) Any complex geometrical configura-
 tions can be simulated accurately. 

(3) Ray effect familiar to the Sn method 
 can be mitigated through the use of

* Tokai-mura , Ibaraki-ken. 
** Ozenji, Tama-ku, Kawasaki-shi.
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angular finite elements.

In 1971 Ohnishi applied the finite element

method to the neutron diffusion and trans-

port equations in two-dimensional (x,y) geom-
etries. The triangulation technique is used 
at first only to the spatial variables(5), and 
then also to the angular variables in the 
transport equations(6).

In 1973 Reed et al. published a two-dimen-

sional Sn transport code TRIPLET(7) which 

deals with triangular meshes in planar ge-

ometry. During the past several years, some 
other authors also have developed new finite 

element techniques to solve neutron diffusion (8
)~(10) and transport equations(11)~(17) .

In diffusion problems, some real computa-

tional advantages over finite difference meth-

od have been confirmed for the fast and 

thermal reactor calculations(9)(18), whereas in 

transport problems, a number of attempts 

have been made to improve the technique 

through the use of angular finite elements(11) 
 ~(16)

, super elements(14) or elements with curv-

ed interfaces(17). Most of them are reviewed 

and discussed by Froehlich(19) and Gelbard'(20).

We have chosen a two-dimensional (r, z)

geometry, from a practical point of view 

and from our intention to proceed further 

to space dependent kinetics problems. Since 

only the case of two-dimensional planar(7)(13) 
 (15) or one -dimensional geometries(12) have 

been treated as yet, this work also gives a 

further insight into the FEM calculations.

The spatial finite element method associ-

ated with the angular Sn method is incorpo-
rated into a computer code FEMRZ for 
solving multi-group neutron transport equa-
tions in the two-dimensional (r, z) geometry. 
Main postulations for our formulation are 
as follows :

(1) We divide the whole system into a
number of regular axisymmetric tori, or 
finite elements, with rectangular cross 
sectional subregions in the (r, z) plane as 
shown in Fig. 1.

(2) Four and nine nodes are considered in
each subregion as illustrated in Fig. 2, 

corresponding to the 1st (bilinear) and 

the 2nd order (biquadratic) Lagrange's 
interpolating polynomials, respectively'''.

Fig. 1 Definition of rectangular

subregion in (r, z) plane

Fig. 2 Node arrangement in subregion for
bilinear and biquadratic approximation

(3) Spatial distribution of the angular flux
is approximated by a linear combination 

of these basis functions with coefficients 

which represent nodal values of the an-

gular fluxes.

(4) The discontinuous method which al-
lows the discontinuity of the angular 

fluxes at the boundaries of the subregion 
(7)(22) is used .

(5) Galerkin-type scheme in which weight
functions are Lagrange's interpolating 

polynomials themselves is adopted for 

eliminating the residual, or for yielding 

a set of algebraic equations for the un-

known nodal values of the angular fluxes.

Some modifications and reformulations

have been applied to the original formulation 
 (21) for the sake of the convenience of num -

erical treatments and programming tech-

niques and they are discussed in Chap. N. 

Detailed numerical methods are described in 

Chap. II. Resultant algebraic matrix equa-
tions are solved by the Crout's method(23). 

Iterations are accelerated by the whole system 
or coarse mesh rebalance methods. In the 

latter the rebalance regions are allowed to
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be set up arbitrarily.

Several typical calculations are illustrated

in Chap. III and the results are compared 

with those obtained by the diamond differ-

ence Sn code TWOTRAN-II(3).

 II. SOLUTION ALGORITHMS

Except for geometrical constraints, the

computational functions of FEMRZ and phys-

ical quantities obtained by it are all the same 

as those of TWOTRAN-II(3). Descriptions 
of boundary condition, convergence criteria 

etc. of FEMRZ are slightly different from, 

but are specified analogously to TWOTRAN 
 -II .

1. Fundamental Equations

Using the same notations and coordinate

 system (see Fig. 3) as those used in Ref. (3), 
the time independent two-dimensional trans-

port equation in the (r, z) geometry is written 
as follows :

 (g=1-1GM), (1)
where

Fig. 3 Angular coordinate system
in (r, z) geometry

Under the assumption of the go-symmetry

of the angular flux 0, we have from Eq. (1)

 (g=1~IGM, m= 1~MMT), ( 2 )

where the discrete ordinate Sn approximation 
 (3) is used for angular variables

. (The unit 

sphere is partitioned into 2 x MMT sections.) 

Angular dependent quantities are defined by

respectively. Because there is no net particle 

loss due to angular redistribution, the initial 

values am-1/2 vanish on each e level in the 

last equation(3). (see Fig. 4)

Fig. 4 Order of sweep in discretized angular
variable (m) for MMT=-12 (dark point 

is a initial sweep angle in each e level)

2. Flux and Source Approximations

Now, let us recall Lagrange's interpolating

polynomials. The NP-th order polynomial 
 LS(r, z) is defined in each rectangular sub-

region with NPT nodes so that it has the 
value unity at the /-th node and zero at all 
the other nodes*. Using these polynomials 
and coefficients pglm, we can give an approxi-
mate expression pgm,(r, z) to the unknown dis-
cretized angular flux pgm(r, z) in Eq. ( 2 ) in 
the form of a linear combination ;

(3)

* The NP is the polynomial order in each vari-

able. From the explicit representations which 
are given in Appendix 1 of Ref. (21), the poly-

nomial is called here bilinear or biquadratic, 
corresponding to NP=1 or 2, respectively.
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This expression is for a local subregion, but 

we can easily give the global expression by 

indexing the nodes through the whole system. 

We, however, need only the local expressions 

as shown below. The coefficient pglm can be 

interpreted, by definition, as the value of the 

angular flux at the 1-th node. Unknowns are 

now pglm's, which are determined by a weight-

ed residual method described later on.

Now, we attempt to approximate the

source term Sgmg=Sgm(r, z) in Eq. ( 2), which is 
assumed to be known. In preparation for 
this purpose, let us define moments (the coeffi-
cients in spherical harmonics expansion) of nodal 
flux pglm as

The functions Rmnk=Rnk(mm,pm) are the spher-
ical harmonics of order n(3). This implies 
that the moments of exact angular flux :

are approximated by

Under the assumption that related cross sec-

tions are constant in the subregion, moments 

of nodal source are represented (compared 
with Ref. (3)) as

 l =1~NPT), (4)

where the Qglnk's are also the nodal values of 
moments of fixed source. For saving the 
computer core memory, we store the moments 
of the fluxes pglnk instead of the angular fluxes 

O.Thus a spherical harmonic expansion of 
the source term is approximated by

(g=1~IGM, m=1~MMT). (5)

Finally, we impose constraints to fluxes in

Eq. ( 2 ) by the following relation"' :

 (l=1~NPT), (6)

where the fluxes pglm-1/2 are regarded to be 

known. For the initial angle of the sweep

in each )e level, an assumption

 (7)

is used(3).

3. Discontinuous Method with

Galerkin-type Scheme

In this section, we describe the solution

algorithm for Eq. ( 2 ), which is based on the 
discontinuous method'(7)(22) and the Galerkin-
type scheme. The sweepings of space and 
angle are made along the neutron flight di-
rection similarly to those of TWOTRAN-II(3).

In the beginning, let us consider an (i, j)
 subregion ;

which belongs to the i-th interval in the 
r-direction and the j-th interval in the z-direc-
tion*. Let L, R, B and T be the sets formed 
from the nodes which belong to the left , 
right, bottom and top boundaries of the D,,, 
respectively. Two kinds of one variable 
Lagrange's interpolating polynomials ;

are constructed from the function L1.

With the above notations, we define the

following three kinds of inner products in 

the Dtj:

The following nine inner products :

* In the local expression
, the NPT nodes are 

 arranged in the subregion in the same number -
 ing as shown in Fig. 2.
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are enough for working with the discontinu-

ous method with Galerkin-type scheme. 

Furthermore, some relations, for instance,

simplify the calculations. (Details are shown in 

Ref. (211.)

Now, let us return to Eq. (2). Taking
account of the possible discontinuity, our 
approximation procedure (see Eqs.(3), (5) 
and (6)) defines the residual Rgm=Rgm(r,z) of 
Eq. (2) as follows :

 (g=1~IGM, m=1~MMT), (8)

where the ddd, are the Kronecker's deltas in 
which d refers to a direction of the sweeps 
as shown in Fig. 5 and the (pglm- pglm) is the 
difference of two values of the angular fluxes

Fig. 5 Value of d corresponding
to sweep direction

at the same node l, S: one defined in the 

subregion Dij, and the other in one of the 

surrounding subregions.

It is obvious that only two of the first

four terms always exist simultaneously for 

any direction of the sweep (see Fig. 6). They 

give the contribution due to the flux gap and 

 hence disappear in the continuous method(7) 
 (21)(22) which does not allow the flux discon -

tinuity.

Fig. 6 Some allocations of related fluxes
on boundaries of subregion Dij,

In Eq. ( 8 ), the residual Rgm contains NPT
unknowns oz, if we assume the outside values 

 pglm to be known already for fixed suffices g, 

 i,j and m. Here, the well-known Galerkin's 
method

(9)

is applied to yield a set of simultaneous equa-
tions of the NPT unknowns. After dividing 
the Eq. ( 9 ) by om, for simplicity, we get the 
following NPT dimensional linear system*:

(10)

The explicit expressions of the matrix A 
 =(al,l) and the column vector b=(bl1) are ;

* This system corresponds to the set of simultane -

 ous equations of all the unknowns in the global 

 expression.
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If the suffix m corresponds to the initial angle 
in each e level, the terms with coefficients_a 
are to be eliminated from both sides of Eq. 

(10) because of the assumption made in Eq. 
 ( 7). Thus the formulation of the disconti-

nuous method with Galerkin-type scheme has 
been established. Here it should be noted 
that the matrix A is not symmetric.

Before finishing this section, we describe

some specifications in FEMRZ code.

(1) Boundary condition : if the top bound-
ary is vacuum, it is specified by

at any node on the top boundary.

(2) The neutron flow crossing, for in-
 stance, the right boundary of a subregion 

 from the right to the left is obtained by

It is used in coarse mesh rebalance calcu-

lations. In FEMRZ code the rebalancing 

coarse subregions are taken arbitrarily, 

whereas in TWOTRAN- II their bounda-
ries must coincide with some material 

coarse mesh boundaries.

(3) Provision is made for input of the 
 moments Qglnk of fixed source at each node 

 in a subregion. (see Eq. ( 4 ))

(4) Convergence of the inner iteration is 
 tested by

where the p(p)ij is a scalar flux averaged 
in the subregion Dij in p-th inner iter-

ation :

(5) The Crout's method is used to solve 
 the asymmetric matrix equation, Eq. (10). 

 FEMRZ is not equipped with negative 
 flux control scheme.

 111. NUMERICAL EXAMPLES

We have performed calculations for sev-

eral model and real scale problems while 

developing the computer code FEMRZ. Prob-

lems, for which the conventional Sn calcula-

tions are known to yield negative fluxes 

easily or to show poor convergences, are 

included to demonstrate the effectiveness of 

the FEMRZ algorithm compared with the 

TWOTRAN- II .

Example 1 : This is a problem which yields

easily negative fluxes in coarse mesh calcu-

lations if no recipe for them performed. The 

configuration is shown in Fig. 7. The macro-
scopic cross sections used for this example 

are given in Table 1 (but those of succeeding 

examples are given in Ref. (24)). The eigenvalue 

(effective multiplication factor) are calculated 
varying the number of subregions.

Fig. 7[Model_problem configuration

and computational conditions 
for P0, S4 and 3•energy-
groupIsample calculations

The solutions shown in Fig. 8 indicate that

the bilinear approximation and the diamond 

difference scheme give the same order of 
accuracy, while the biquadratic approximation 

gives more accurate solutions with coarser 
meshes. As it is shown in Table 2, however, 
FERMRZ requires now more running cost 

compared with TWOTRAN-II on the similar 

computing condition. In the case of 7 x 7
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Table 1 Neutron cross sections (cm-1) of Example 1 (see Fig. 7)

Fig. 8 Dependence of eigenvalue 
on number of subregions N

Table 2 Running cost of Example 1 on 
 a similar computing condition 

 (see Fig. 8)

subregions bilinear approximation, the nega-

tive fluxes are found to appear only in the 

first outer iteration.

 Example 2: This problem is for a tast

reactor illustrated in Fig. 9, which has a 

somewhat large core. We present here the 

first group scalar flux along a radial direc-

tion. Figure 10 shows that the solution based 

on the biquadratic approximation agrees well 

with the fine mesh solution obtained by 

 TWOTRAN-II. It may be natural that the 

coarse mesh solution obtained by TWOTRAN 

 -II can not follow well a correct behavior 

near the core boundary.

Fig. 9 Fast reactor configuration 
 and computational conditions 

 for PI, S4 and 3-energy-group 
 sample calculations

Fig. 10 Comparison of 1st group scalar fluxes 
 along radial direction (see Fig. 9)

It may be worthwhile to mention here one

of our experiences on a large heterogeneous 
thermal reactor with the size of 140 cm x 161.5 

cm and 13 material regions. The computa-

tional conditions were composed of 9-group, 
 P1, S8 and average mesh width of 10 cm. 

The TWOTRAN-II calculation of the system
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with uneven coarse meshes failed to converge 

due to the divergence of the coarse mesh 

rebalance factors. On the other hand, we 

have attained the convergence by FEMRZ 

without regard to the sizes of subregions.

Example 3: The main object in taking up
this system shown in Fig. 11 is to examine 

the feature of discontinuity at the material 

boundary where the flux changes steeply.

Fig. 11 Reactor configuration containing 
 control rod and computational 

 conditions for P0, S4, 2-energy-

 group sample calculations

Figure 12 shows that the continuous solution 

of TWOTRAN-II at the B4C-core boundary

Fig. 12 Comparison of second group scalar 
 fluxes in neighborhood of boundary 

 of control rod (see Fig. 11)

is bounded from above and below by the 

FEMRZ solutions determined by discontinu-

ous method. The effects of the discontinuity 

are seen only in the very vicinity of the 

boundary.

 IV. DISCUSSIONS AND CONCLUSIONS

In two-dimensional cylindrical geometries,

we rarely need to solve neutron transport 

problems with a complicated geometrical 

arrangement. Therefore, it is sufficient to 

use the regular rectangularization to divide 

the whole system into subregions. This makes 

it simple also to sweep the region in the 

direction of the neutron flight.

In the finite element method, arbitrary

basis functions can be used. The choice of 

Lagrange's interpolating polynomials is due 

to the definiteness of physical meaning of 

their coefficients and the discrepancy between 

them at the subregion boundary. A higher 

order approximation than biquadratic is so 

complex that the formulation becomes too 

cumbersome for a practical use. It should 

be carefully inspected which is more appro-

priate to use a higher order approximation 

than biquadratic with coarser meshes, or to 

employ finer meshes with a lower order ap-

proximation.

It is pertinent to explain here about two

items which have been taken up in the 

original formulation(21) but not incorporated 
into the FEMRZ code. One is a degenerated 

biquadratic approximation which does not 

consider the central node. (see Fig. 2) It re-

quires so many arithmetic operations as the 
usual biquadratic approximation but it may 

fail to simulate flux distributions with a step 

peak near the center of a subregion(21). The 
other is the continuous method. It has been 

indicated in Ref. (22) that the method brings 

into the finite element algorithms the instabil-

ity due to the appearance of negative fluxes. 

Whenever the negative fluxes appear some 

artificial negative flux controls such as "set-
flux-to-zero-and-correct" recipe or the use of 

finer meshes, are necessary to restore the 

convergence.

The discontinuous method is rather trou-

 g
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blesome to formulate and requires relatively 

a large amount of computer core memory, 

but it is sufficiently accurate and stable(7)(22) 

as shown in Chap. IL But mathematical 

foundations of the stability have not been 

established yet.

As to weight functions, we would be able

to choose four polynomials, 1, r, z and rz, as 
TRIPLET for instance, instead of L1, L2, L3 
and L4 in the case of bilinear approximation. 
But the former choice makes Eq. ( 9 ) nearly 
degenerate, as is shown in the following. For 
brevity, let us consider the case of quadratic 
approximation on one-variable r. Each set of 
the weight functions, then, is (1, r, r2) and 

 (L1r,L2r,L3r), respectively. Figure 13 shows 
that the function r2 behaves similarly to the 
r. As can be easily noticed, differences among 

the successive weight functions become small-
er as the order increases. This fact alone 
sufficiently justifies the application of the 
Galerkin-type scheme to the residual in the 

present formulation.

Fig. 13 Two sets of weight functions 
 in quadratic approximation 

 on one variable g

Because the matrix equation, Eq. (10),

which is asymmetric and well-conditioned, is 

to be solved very many times changing the 

right side of the equation, it is necessary to 

solve it as quickly as possible. We therefore 

developed a deviced subroutine based on the 

no pivoting (on purpose) Crout's method(23). 

This leads to a saving of 5 to 10% in com-

puting time.

We are interested in the comparison of

the efficiency between the bilinear and bi-

quadratic approximation on the same number 

of nodes. The eigenvalue and flux calcula-

tions of previous examples have ascertained 

that the latter is more or equally efficient in 

comparison with the former, as it has been

shown also in the case of the triangular mesh 

for the diffusion problem(9).

We summarize the above discussions as

 follows :

(1) Optimizations on both computing time 
 and core memory have not yet been 
 completed, so that the FEMRZ code is 

 more time consuming compared with 
 TWOTRAN-II .

(2) Owing to the numerical stability and 
 accuracy, however, the discontinuous 

 method with biquadratic basis functions 

 guarantees reliable results even for 
 coarse meshes chosen not so carefully. 

 On the other hand, as is discussed in 
 Ref. (22), the continuous method does not 

 always give the reliable results for coarse 
 meshes, and its finer mesh calculation 

 may have to be tried depending on the 
 circumstances.

Our efforts will be directed to revise

FEMRZ to make it more efficient.
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