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A �nitemixture of logistic regressionmodel (FMLR)was applied to analyze the heterogeneitywithin themerging driver population.
�is model can automatically provide useful hidden information about the characteristics of the driver population. EM algorithm
and Newton-Raphson algorithm were used to estimate the parameters. To accomplish the objective of this study, the FMLR
model was applied to a trajectory dataset extracted from the NGSIM dataset and a 2-component FMLR model was identi�ed.
�e important �ndings can be summarized as follows: �e studied drivers can be classi�ed into two components. One is called
Risk-Rejecting Drivers. �ese drivers are consistent with previous studies and primarily merge in as soon as possible and have
a distinct preference for the large gaps. �e other is the Risk-Taking Drivers that are much less sensitive to the gap size and pay
more attention to surrounding trac conditions such as the speed of front vehicle in the auxiliary lane and lead space gap between
the merging vehicle and its leading vehicles in the auxiliary lane. Risk-Taking Drivers use the auxiliary lane to get to the further
downstream or less congested area of the main lane. �e proposed model can also produce more precise predicting accuracy than
logistic regression model.

1. Introduction

Congestion has become one of the most serious economic
and social problems and has drawn great attention from
the public, transportation research scientists, transporta-
tion managers, and so on. Understanding the causes and
mechanism of trac congestion can help trac managers
formulate targeted policies to make better use of the existing
transportation infrastructures.

Merging areas are the bottleneck of freeway. Merging
behavior is one of the typical mandatory lane changes when
vehicles have to move from an on-ramp to the main road.
It has been claimed in some studies that merging behavior
at merging areas a�ects trac operations and may trigger
trac congestions and breakdowns [1, 2].�us it is important
to analyze the merging behaviors to help understand the
mechanism of trac jams to some extent from amicroscopic
viewpoint and build more accurate trac simulation models.

Recently, driver heterogeneity has drawn great attention
in microscopic trac �ow studies. Several studies investi-
gated the driver heterogeneity during car-following process

[3–6]. Accommodating heterogeneity within the driver pop-
ulation is important in building microscopic trac models.
To investigate the heterogeneity inmerging behaviors, a �nite
mixture of logistic regression (FMLR)model was proposed in
this paper. �is model can incorporate the unobserved het-
erogeneity and automatically segments the merging drivers
into di�erent homogeneous populations. More speci�cally,
this paper aims to achieve the following objectives:

(i) Prove the existence of heterogeneity among merging
drivers.

(ii) Identify di�erent driving styles and attitudes during
merging process.

(iii) Model the merging behavior more accurately.

�epresent study is organized as follows.�enext section
will provide a critical review on the existing relevant literature
followed by Section 3, which describes the NGSIM data used
in this paper. Section 4 gives the methodology to build FMLR
model. Results and discussions are presented in Section 5.
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Finally, the conclusions and future work are presented in
Section 6.

2. Literature Review

Several methods have been adopted tomodelmerging behav-
ior, among which gap acceptance theory was the most widely
used method [8–13]. �e most important assumption in gap
acceptance theorywas that a drivermakes a lane changewhen
both the lead and lag gaps in the target lane are larger than
the so-called critical gap.�e critical gap is determined by the
characteristics of the drivers, trac conditions, and so on [14].
Gap acceptance models were initially built to estimate the
capacity of unsignalized intersections. Di�erent distributions
of critical gaps were assumed in various studies [15–17].
Gipps [18] �rst used the gap acceptance theory to propose a
comprehensive framework of lane-changing model. Gipps’s
framework has been widely used in several merge models
[19, 20] and microscopic trac simulation so�ware [21, 22].
Di�erent de�nitions of critical gap were used in these models
and so�ware.

Gap acceptance theory was o�en criticized as its basic
assumption is o�en inconsistent with the real world observa-
tion because some lane change behaviors occurred when only
the lead or lag gap or even none of them are larger than the
critical gap [14, 23, 24]. To overcome this de�ciency, discrete
choice models such as binary logit model were used by some
researchers [14, 25–27]. Built upon a series of studies [9,
10, 28], a framework for merging behavior with latent plans
was introduced by Choudhury et al. [29]. Normal merge,
merge with courtesy, and forced merge were considered in
this framework. However, Marczak et al. [14] pointed out
that in this framework only accepted gaps were considered
and rejected gaps were ignored; and some of the estimated
coecients in the model were not signi�cant.

Trac behaviors are always uncertain and variable and
heterogeneity cannot be ignored in trac studies. Some stud-
ies investigated the heterogeneity among the macroscopic
trac �ow [30, 31]. Others studied the heterogeneity in car
following behaviors from microscopic viewpoint by deriving
the joint distribution of model coecients depending on an
empirical basis [4, 5, 32–34]. However, only a few studies were
found to investigate driver heterogeneity in lane changing
models. A two-step clustering analysis was proposed by
Li and Sun [35] to analyze heterogeneity of the merging
maneuvers. However, this study ignored the heterogeneity
during gap selection and decision process. An empirical
analysis conducted by Daamen et al. [23] showed that
di�erent merging strategies might be adopted by di�erent
drivers under di�erent trac conditions. It has been pointed
out by Keyvan-Ekbatani et al. [36] that di�erent strategies
might be used during gap selection process; however the
sample size was too small to perform statistically relevant
tests and build merging model.

�us, a FMLR model was introduced in this paper to
model the gap selection behaviors during merging process
and investigate the heterogeneity amongmerging drivers.�e
FMLR model takes the advantage of two techniques: cluster-
ing and regression analysis. �emodel naturally incorporates
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Figure 1: �e section of US 101 [7].

the unobserved heterogeneity into logistic regression model
and automatically segments the drivers into di�erent homo-
geneous populations. �e proposed FMLRmodel can explain
the di�erent strategies in merging behaviors.

3. Data Preparation

�eNGISM dataset has been widely used for trac �ow and
trac simulation studies and proved to have high accuracy.
�us, in this paper, the vehicle trajectory data in NGSIM
dataset collected on a segment of southbound U.S. Highway
101 (Hollywood Freeway) in LosAngeles, CA, are chosen [37].
Figure 1 shows the site for U.S. Highway 101. �is US-101
section is 640 meters long and has �ve main lanes and one
auxiliary lane. �e vehicle trajectories were collected from
7:50 a.m. to 8:35 a.m. on June 15, 2005. �e road section was
covered by eight cameras and the dataset was updated at a
resolution of 10 frames per second [7]. �e dataset has three
data subsets, all of which were collected in 15 minutes.

In this study, we focus on the behavior ofmerging vehicles
and only trajectory data in the weaving section were used.
However, it has been pointed out that the original trajectory
data contain some noise and errors, which are caused by the
system errors and tracking errors [38–41]. Several methods
have been proposed to �lter the data [38–40] or re-extract
the trajectory data [41]. Re-extracting can produce the most
accurate data especially the acceleration data, which however
would also make too much e�ort. In this paper, a smoothing
method called sEMA developed by �iemann et al. [38] is
applied to reduce the noise and errors. �e sEMA method is
also adopted in other studies of merging behaviors and has
been proved to be able to provide enough precision for lane
change studies [42–44]. �is data smoothing technique was
applied as follows:

(1)�e velocities and accelerations of vehicles are directly
estimated from the longitudinal positions.
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Table 1: Examples with the same global coordinates in the �rst and second subsets.

Data Point
Sub dataset 1 Sub dataset 2

Vehicle ID Frame ID Local x Local y Vehicle ID Frame ID Local x Local y

1 33 424 54.612 1397.746 36 847 54.612 1438.019

2 33 429 54.687 1420.332 1070 4878 54.687 1460.518

2 63 290 67.936 514.811 1472 5857 67.936 550.085

Table 2: Examples with the same global coordinates in the �rst and third subsets.

Data Point
Sub dataset 1 Sub dataset 3

Vehicle ID Frame ID Local x Local y Vehicle ID Frame ID Local x Local y

1 42 446 53.395 1449.048 1721 8609 53.395 1483.814

2 63 483 41.056 1494.004 1280 6744 41.056 1528.773

3 296 967 53.8340 1389.247 905 4719 53.834 1424.013

(2) �e locations (both local lateral and longitudinal
coordinates), velocities, and accelerations of vehicles are
smoothed by the symmetric exponential moving average
�lter (sEMA) proposed by �iemann et al. [38] to decrease
measurement errors in the data. �e smoothing times of
sEMA method are set as the suggested values for the U.S.
Highway 101 dataset in �iemann et al. [38].

Although the random errors can be reduced by the
smoothing process, there are still some errors in the data.
�us, the following heuristic rules are applied to �lter the
datasets:

(1) Filter out the trajectories when there are no putative
leading vehicles or putative following vehicles on the
adjacent main lane. Such trajectories are recorded at
the beginning or ending of the video tape and cannot
provide the interactions ofmerging vehicleswith their
surrounding vehicles.

(2) Filter out the trajectories when putative leading or
putative following vehicle of a merging vehicle runs
around the lane boundary (it keeps touching the
lane boundary before lane change or turns back the
original lane in about 1 second).�ese trajectories are
always caused by the tracking errors.

A�er �ltering, a searching process was conducted to
check the consistency of the local coordinates and global
coordinates. Linear regression was performed between local
coordinates and global coordinates for each subdataset.�ree
linear relationships were obtained for each subset:

������1 = 0.3209���	��
1 − 1.1326���	���1 (1)

������2 = 0.3291���	��
2 − 1.1334���	���2 (2)

������3 = 0.3209���	��
3 − 1.1333���	���3 (3)

�2 of three linear relationships are 0.9996, 0.9997, and
0.9997, respectively. It means that the local y of three subsets
inUS-101 datasets are inconsistentwith each other.We cannot
�nd simple linear relationship between local x and global
x in US-101 dataset. �is could be caused by the speci�c

coordinate systemused and the special geometric shape of the
road sections. It also could be caused by measuring errors.

To further verify the inconsistency of the US-101 dataset,
several data points that have the same global coordinates
among the three subsets were searched and obtained. By
checking the local coordinates (local x and local y), it was
found that the three subsets of US-101 dataset are consistent
in local x, but inconsistent in local y. Tables 1 and 2 show the
examples having the same global coordinates in the �rst and
second subsets and in the �rst and third subsets.

One can �nd that, for the points with the same global
coordinates, the three subdatasets have the same local x, but
di�erent local y. In the local longitudinal coordinate, the
upstream edge (0m) in datasets 1 is at 12.275m indataset 2 and
10.598m in dataset 3.�us, the three datasets must be uni�ed
by using the local coordinates of one of the three subsets.

At every instant when o�ered a new gap, a merging
vehicle driver assesses trac conditions to decide whether
to accept the o�ered gap or not. One merging vehicle could
only accept one gap but could reject several gaps. A�er data
processing, trajectories of 374 merging vehicles consisting
of 925 observations were extracted from the dataset. �e
explanatory variables that may a�ect a driver’s merging deci-
sion used as candidates for analyzing the merging behavior
model are shown in Table 3.

4. Methodology

4.1. Finite Mixture of Logistic Regression. �e FMLR model
is based on the idea that the observed data come from a
population with several subpopulations or components [45,
46]. �e overall population is modeled as a mixture of the
groups using �nite mixture models.

Let X and Y denote random vectors with� samples and
each sample has � observations (x�, y�) (� = 1, . . .�, � =1, . . . �). Here, the response vector Y has values inR� and the
explanatory vector X has values inR

�. �en, a FMLR with�
components has the form

ℎ (y | x, �) = �∑
�=1
��� (y | x, ��) (4)



4 Journal of Advanced Transportation

Table 3: Descriptions of the explanatory variables.

Variable Descriptions

���(m) �e size of the ��ℎ o�ered gap of merging vehicle �
���(m/s) �e speed of merging vehicle � at ��ℎ o�ered gap.

���(m) �e longitudinal position of the merging vehicle � to the start of the auxiliary lane.
Δ���
�(m/s) �e speed di�erence between the putative leading vehicle and the merging vehicle � at o�ered gap �.
Δ���
�(m/s) �e speed di�erence between the putative following vehicle and the merging vehicle � at o�ered gap �.
� Existence of a lead vehicle in the merge lane. If there is a lead vehicle in the merge lane, � = 1; otherwise,� = 0.Δ��� lg(m) Lead gap of merging vehicle � in the auxiliary lane at o�ered gap �.
������ (m) �e speed of the leading vehicle in the auxiliary lane at o�ered gap �.
Δ������(m/s)

�e speed di�erence between the leading vehicle in the auxiliary lane and the merging vehicle � at o�ered
gap �.

�∑
�=1
�� = 1, �� > 0 (5)

where ℎ(y | x, Ψ) is the conditional density of y given
x and ��, �� is the mixing proportion, �� is the component-
speci�c parameter vector for the density function �, and � =(�1, . . . , ��, �1, . . . ��) is the vector of all parameters.

Several �nite mixture models can be extended based on
(4) and (5). For multivariate normal �and x ≡ 1 we get a
�nite mixture of Gaussians without a regression part, also
known as model-based clustering. If � is a univariate normal

density with component-speci�c mean ���x and variance �2�,
we have �� = (���,�2�), and (4) describes a �nite mixture
of linear regression, also called latent class linear regression
model or cluster-wise regression [47]. If � is a member of the
exponential family, we get a FMLR models [48, 49].

�e analyst does not observe directly which component,� = 1, ..., �, generated observation y� .�emodel assumes that
individuals are distributed heterogeneously with a discrete
distribution within the population. In order to impose the
constraints in (2), the mixing proportions are parameterized
with a multinomial logit form [50, 51]:

�� = exp ( �)∑��=1 exp ( �) ,  � = 0 (6)

�e constraint on  � is imposed because only � − 1
parameters are needed to specify. �e last proportion is one
minus the sum of the �rst � − 1.

If individual speci�c characteristics are provided, the
mixing proportions are extended as [50, 51]

��� = exp (��z�)∑��=1 exp (��z�) , �� = 0 (7)

where �� is the vector of component-speci�c parameters and
z� is an optional set of individual-speci�c characteristics for
observation �.

For the observed random sample, (x�, y�) (� = 1, . . . �),
the log likelihood function for � is given by

log � (�) = �∑
�=1

��∑
�=1

log ℎ (y� | x�, �)

= �∑
�=1

��∑
�=1

log( �∑
�=1
��ℎ (y� | x�, #�))

(8)

�e maximum likelihood (ML) estimate of � is given by
an appropriate root of the likelihood equation,

% log � (�)
%� = 0 (9)

�e conditional probability that observation (x�, y�)
belongs to component & is given by

' (& | x�, y�, �) = ��� (y� | x�, #�)
∑��=1 ��� (y� | x�, #�) (10)

�e conditional probabilities can be used to segment
data by assigning each observation to the component with
maximum conditional probability [50, 51]. A probabilistic
segmentation of the data into� components can be obtained
in terms of the �tted conditional probabilities. In the FMLR
model we consider the latent component-indicator variables/̂� = /̂�1, . . . , /̂��, � = 1, . . . , �, to classify each single
observation:

/�� = {{{
1, if �� belongs to component �
0, otherwise

(11)

�e estimator of /��, /̂�� is
/̂��
= {{{

1, if �̂� (y�; Ψ̂) ≥ �̂ℎ (y�; Ψ̂) , (ℎ = 1, . . . , �; ℎ ̸= �)
0, otherwise

(12)

4.2. Model Parameter Estimation. Parameters of FMLRmod-
els can be eciently estimated through the EM algorithm
[52].
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(1) Initialization Step. Start with an initial seed (guess) for the
parameter �̂ using the K-means clustering algorithm [53].

(2) E-Step. Estimate the conditional component probabilities,�̂��, for each observation using (7) and derive the mixing
proportions as

�̂� = 1�
�∑
�=1
�̂�� (13)

(3) M-Step. Maximize the log-likelihood for each component
separately using the conditional probabilities as weights:

max
��

�∑
�=1
�̂�� log (y� | x�, #�) (14)

�eEMalgorithmalternates between the expectation and
themaximization steps until the likelihood improvement falls
under a prespeci�ed threshold or a maximum number of
iterations are reached.

But the drawbacks of EM algorithm are its possible slow
convergence rate and long processing time in computer.
�us, in this paper, Latent GOLD 5.0 is used to estimate
the parameters. Latent GOLD 5.0 can take the advantages of
both EM and Newton-Raphson algorithms. It �rst uses EM
algorithm to get close to the �nal solution and then switches
to Newton-Raphson to �nish estimation [54].

�e most important and dicult step in building FMLR
model is to determine�, the number of components. Since�
is not a parameter, hypotheses on� cannot be tested directly.
BIC or AIC [50, 51, 55, 56] are generally used as criterion to
determine�. In this study, we determined � based on BIC:

@ABmodel = −2�� + D log (�) (15)

where �� is the log-likelihood value, D is the number of
free parameters to be estimated, and � is the number of
observations in the data. A lower BIC value indicates a better
model.

5. Results and Discussion

5.1. Results. To select an optimal model, we apply the FMLR
model having an increasing number of components from 1
to 4 to �t, and apply Bayesian Information Criterion (BIC)
as the indicator to select the most appropriate number of
components. Table 4 shows the BIC values of models for
di�erent number of components. It can be observed from
Table 4 that the lowest BIC value occurs at� = 2. Hence, it is
plausible to select� = 2 as a proper number of components.

To select the model variables, the forward-selection
method is adopted in this paper. It starts with no variables
in the model, tests the addition of each variable using Wald-
statics, and adds the variable that gives the most statistically
signi�cant improvement of the �t. In this paper, variables will
be added one by one until none produce a signi�cant Wald-
statistic in all components.

Table 5 shows the estimation results. For comparison, the
result of logistic regression is also provided. In this paper, the

Table 4: BIC value of FMLR model.

�e Number of Components BIC Value

� = 1 790.2955

� = 2 773.3871

� = 3 808.3826

� = 4 843.3061

component mixing proportions are a set of �xed constants
(see (6)), as no sociodemographic characteristics of drivers
are available in this dataset. �e proportion of merging
vehicle drivers in each component as indicated by E value
in Table 5 is 67.2% and 32.8%, respectively.

By using (10)-(12), 374 drivers are classi�ed into two
components. One is the larger component, comprising 298
drivers and 612 observations, and the other is the smaller
component, containing 75 drivers and 314 observations. To
better understand the classi�cation results, the mean values
and standard deviations of related attribute variables are
shown in Table 6.

5.2. Discussion. As seen from signi�cance levels of param-

eters of Component 1 in Table 5, Δ���lg and Δ������ fail
to be signi�cant at the 99% level. �ese suggest that front
vehicles in auxiliary lane do not alter drivers’ merge decisions
in this component. Another impressing characteristic of this
component is that the drivers have a distinct preference
for the larger gaps. �e negative sign of ��� indicates that
drivers in this component tend to decrease their speeds
duringmerging process. Consistentwith previous studies, the
decrease of speed di�erence between merging vehicle and
putative leading vehicle and a gap located further towards
the end of the auxiliary lane also increase the probability of
accepting the current gap.

It is interesting to �nd that the parameter of ��� in
Component 2 is much smaller than that in Component 1,
which means the drivers in Component 2 do not pursue
larger gaps as drivers in Component 1. In addition, speed
di�erence between merging vehicle and putative leading
vehicle is still important during merging process. Di�erent

from Component 1, Δ���lg and ������ are considered by

drivers in Component 2. �e sign of the parameter for Δ���lg
is positive, suggesting that space in the auxiliary lane also
a�ects the merging behaviors of drivers in Component 2 and
the merging vehicle has a high probability of accepting a
gap when there is an adequate space in front of the merging
vehicle. One interesting �nding from Table 5 is that the sign

of the parameter for������ is negative, suggesting that drivers
in Component 2 are more likely to delay merge when the
leading vehicle moves too fast. One possible reason for this
result might be that when the leading vehicles move faster in
the auxiliary lane, the drivers are provided more space in the
auxiliary lane and they are using the auxiliary lane to reach
further downstream in the main lane.

As illustrated in Table 6, the related variables show
obvious di�erences across the two components. �e average
numbers of rejected gaps of the two components are 1.05



6 Journal of Advanced Transportation

Table 5: Model estimation results of FMLR model.

Variables
Logistic Regression

FMLR(K = 2)

component 1(0.672) Component 2(0.328)

Parameter Parameter Parameter

��� - -0.1810∗ 0.1063∗Δ���
� -0.40848∗ -0.3903∗ -0.2557∗��� .05490∗ 0.1895∗ 0.0158∗��� .01345∗ 0.0109∗ 0.0105∗������ -.07111∗ -0.0400 -0.0568∗Δ���lg .01370∗ 0.0037 0.0113∗
Constant 1.26281∗ 0.8417∗ -1.7619∗

Note: ∗means that the parameters are signi�cant at 99% level.

Table 6: Mean values and standard deviations of related variables in each component.

Variables

Component 1 Component 2

Rejected Gaps (Standard
Deviation)

Accepted Gaps (Standard
Deviation)

Rejected Gaps (Standard
Deviation)

Accepted Gaps (Standard
Deviation)

���(m/s) 15.050 (3.196) 13.418 (3.107) 13.505 (2.852) 14.272 (3.466)

Δ���
�(m/s) 8.611 (3.825) 1.985 (2.766) 5.375 (3.698) 3.187 (2.908)

���(m) 10.068 (5.274) 33.14 (22.32) 17.468 (15.175) 27.09 (23.65)

������(m/s) 9.841 (7.114) 11.627 (6.671) 10.529 (6.420) 8.062 (8.100)

Δ��� lg(m) 43.42 (47.04) 44.83 (42.99) 33.05 (35.06) 26.79 (35.46)

Merge Location(m) 41.66 (57.87) 108.58 (64.19)

Number of Rejected
Gaps

1.05 3.19

and 3.19 and the average merge location is 41.66m and
108.58m, which indicates that drivers in Component 2 tend
to choose gaps further downstream and rejected more gaps
than drivers in Component 1. �e average rejected gap of
Component 2 (17.468 m) is much bigger than Component
1 (10.068m) while the average accepted gap of Component
2 (27.09 m) is much smaller than Component 1 (33.14 m),
indicating the inconsistency of gap acceptance theories. One
can also �nd that the drivers in Component 2 increase their
speeds during their merging process from 13.505m/s to 14.272
m/s, while drivers in Component 1 decrease their speed
from 15.050 m/s to 13.418m/s, and in Component 2, the
speed di�erence between the putative leading vehicle and
the merging vehicle for accepted gaps is 3.187m/s, which is
much bigger than Component 1, both of which indicate that
drivers inComponent 2 aremore aggressive thanComponent
1. It is interesting to �nd that the standard deviations of the
speeds for rejected gaps and accepted gaps in Component
1 are similar, which is not the case in Component 2. And
one can also �nd that the standard deviation of rejected gaps
for Component 2 is much bigger than that in Component 1.
�ese �ndings indicate that the merging process of drivers
in Component 2 is much more complicated than drivers in
Component 1.

Figure 2 shows the relation between the gap size and
location for the rejected and accepted gaps in the two
components. One can �nd that the accepted gaps of drivers
in Component 1 are almost all located in the beginning
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Figure 2: Relation between the gap size and location for the rejected
and accepted gaps.

of the auxiliary lane while the accepted gaps of drivers in
Component 2 are scattered along the lane. It is obvious that
the rejected gaps of drivers in Component 2 are much larger
than in Component 1 and are overlapped with the rejected
gaps, while the overlapping area in Component 1 is much
smaller.

Figure 3 shows the box plot of the reverse succession of
o�ered gaps. �e x-axis in Figure 3 is the reverse number
of o�ered gaps before merging, in which 0 means the
�nally accepted gap and 1 means the last rejected gap before
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Figure 3: Box plot of the reverse succession of o�ered gaps.

Table 7: Comparison of estimated and observed values of logistic
regression model.

Estimated

Observed Reject Accept Total

Reject 484.0 68.0 552.0

Accept 92.0 281.0 373.0

Total 576.0 349.0 925.0

Table 8: Comparison of estimated and observed values of FMLR-2
model.

Estimated

Observed Reject Accept Total

Reject 510.0 42.0 552.0

Accept 39.0 334.0 373.0

Total 547.0 378.0 925.0

merging. One can �nd that drivers in Component 2 might
have several choices before merging, which indicates that
drivers in Component 2 prefer to use the auxiliary lane to get
further downstream.

Comparing the two components, drivers in Component 1
prefer larger gaps and lower speed di�erence, while drivers
in Component 2 pay more attention to better surrounding
trac conditions and may sacri�ce larger gaps to save
travel time and get better trac conditions. �us, in this
paper, Component 1 is named as Risk-Rejecting Drivers and
Component 2 is named as Risk-Taking Drivers.

5.3. Accuracy of Developed Models. Tables 7 and 8 show
the comparison of estimated and observed values of logis-
tic regression model and 2-component mixture of logistic
regression (FMLR-2)model. From theses tables, the proposed
model improves the predicting accuracy from 82.70% to
91.24%. It can be concluded that the proposed model has
better predictive power than logistic regression model.

6. Conclusions

To incorporate the unobserved heterogeneity into merge
model, the present study builds a FMLR model which uses
BIC to determine the proper number of mixing components

and performs parameter estimation by using Latent GOLD
5.0.

GivenU.S.Highway 101 data, the identi�ed optimalmodel
is a 2-component mixture of logistic regression model, which
means the drivers can be divided into two components
characterized by the driving behavior heterogeneity. One is
the Risk-Rejecting Drivers whose drivers are consistent with
previous studies and primarily merge in as soon as possible.
Drivers in this component have a distinct preference for
the larger gaps. �e decrease of speed di�erence between
merging vehicle and putative leading vehicle and a gap
located further towards the end of the auxiliary lane also
increase the probability of accepting the current gap. Contrast
to Component 1, Component 2 is constituted with the drivers
that are much less sensitive to the gap size and have more
emphasis on surrounding trac conditions such as the speed
of front vehicle in the auxiliary lane and space gap between
the merging vehicle and its leading vehicles in the auxiliary
lane. �ese drivers are using the auxiliary lane to get to the
further downstream or less congested area of the main lane.
�us they are called Risk-Taking Drivers.

In addition, the proposed model can produce more
precise predicting accuracy than logistic regression model.

However, more empirical studies are needed to apply this
method to datasets in other siteswith di�erent demographics,
climate, and geometric parameters in order to fully assess the
e�ect of the factors a�ectingmerging behaviors aswell as fully
understand the strengths and weaknesses of the proposed
model.
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