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Abstract: Fractures caused by mining are the main form of water inrush disaster. However, the
temporal and spatial development characteristics of fractures of the rock mass due to mining are not
clearly understood at present. In this paper, two geometric parameters, namely, fractal dimension
and fracture entropy, are proposed to determine the spatial and temporal states of rock mass fractures
caused by mining. The spatial and temporal structure characteristics of fractures in the rock mass
due to mining are simulated with physical scale model testing based on digital image processing
technology. A spatiotemporal model is created to examine the spatial and temporal patterns of hot
and cold spots of the fractures based on a Geographic Information System (GIS). Results indicate that
the fractal dimensions and entropy of the fractures network in the rock mass increase and decrease
with the progression of mining, respectively, which can be examined in three stages. When the fractal
dimension of the fractures in rock mass rapidly increases, the conductive fracture zone has a saddle
shape. The fracture entropy of fracture has periodic characteristics in the advancing direction of the
panel, which reflects the characteristics of periodic weighting. The fractal dimension and fracture
entropy of fractures of the rock mass increase with time, and the rock mass system undergoes a
process of increasing entropy. When the fractal dimension and fracture entropy of the fractures
increase, the spatiotemporal state of fractures in rock mass caused by mining is initiated. When the
fractal dimension and fracture entropy of the fractures decrease, the spatiotemporal state of fractures
in rock mass is closed.

Keywords: fractal dimension; entropy; fractures due to mining; rock mass; spatial and temporal variation

1. Introduction

There are many micro and macro primary fractures in a rock mass, such as joints,
bedding and faults. Coal seams have significant impacts on the rock mass especially
when they are mined, because mining may cause fracturing of the rock mass, which can
cause water and gas leakage [1,2]. Fractures will destroy the stability of the rock mass
and even lead to water and sand inrushing, damage to groundwater resources, coal seam
gas disasters, mining damage and surface environmental damage [3,4]. When coal seams
are mined, bending, sinking and fracturing of the rock mass commonly take place as
shown in Figure 1. Fluid migration and infiltration primarily occur through the rock mass
fractures, especially in the conductive fracture zone, which includes the fractured and
caved zones [5]. The permeability in the vertical direction is obviously greater than that
in the bedding direction, and the aquifer as the porous medium is fractured [6–8]. The
main purpose of research of fractures of the rock mass due to mining is to determine
the location, development degree, state and change rule of fractures due to mining and
establish a quantitative prediction method for determining the degree of development of
such fractures. Therefore, the study of fractal changes of the rock fracture network is of
great significance to ensure safe mining under aquifers and to realize cleaner production
in mines.
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Figure 1. Fracture zones in a rock mass.

In 1967, a fractal geometric theory was proposed by Mandelbrot [9–11], which can be
used to define the fracture networks in rock mass. Another approach that can be used to
define the development of fractures is the use of fractal theories, employing the self-similar
properties of the rock mass [12], because fracture networks have scaling behaviors and
therefore rock mass, which can be used to scale up the network to larger scales. In the same
way, the fractures network formed by regenerated fractures also has fractal characteristics
for new or primary cracks of the rock mass due to mining and other reasons.

The OM, SEM and XCT two-dimensional images of rocks were analyzed by Alfonso
et al. [13] based on the box counting method. The fractal dimension was obtained using
the power-law distribution of the three types of images. Zhang et al. analyzed the fractal
characteristics of the scale and distribution of the fracture network caused by mining under
different stress conditions, and found that the fractal dimension of fracture network size
distribution varies with mining stress conditions, resulting in differences in coal seepage
capacity [14]. High speed camera and digital speckle methods are more effective for
image acquisition of coal and rock fractures in the mining process. The fractal method
can effectively and quantitatively describe the evolution process of coal and rock fractures
under dynamic load [15].

Due to the complexities and heterogeneity of fracture networks in a rock mass when
mining is carried out, it is difficult to define fractures using conventional fractal geometry
concepts. The fractures in the rock mass due to mining are crisscrossed and unevenly
distributed, and the fracture development direction is disorderly and random [16,17].
Therefore, new parameters need to be considered to quantitatively describe the distribution
characteristics of fracture development direction. Information entropy theory was proposed
by Shannon in 1948 [18,19].

S = −
n

∑
i=1

pi log pi (1)

where S is the information entropy and pi is the probability of the occurrence of cer-
tain information, where the information entropy reflects the degree of disorder of the
system information. The degree of disorder of the system decreases as the information
entropy increases.

The uncertainty of information sources can be described by information entropy.
Therefore, different entropy measures, including probabilistic, fuzzy and mixed entropies,
can be used to quantitatively describe the randomness, fuzziness and compound uncer-
tainty of uncertain information [20]. Ye et al. proposed a geological entropy method to
estimate the relationship between permeability and connectivity of a two-dimensional frac-
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ture network [21]. Therefore, entropy can be used to describe the directional distribution
characteristics of fracture development or the degree of disorder of the fracture system.

In this paper, the development and changes in rock mass fractures due to coal seam
mining are examined. Two geometric parameters, namely fractal dimension and fracture
entropy, are proposed to determine the spatial and temporal states of the rock mass fractures
due to mining. The relationship between the length of the fractures and fractal dimension is
established. A space–time cube is created to analyze the spatial and temporal characteristics
of the rock mass fractures due to mining with the use of GIS by investigating the time and
space dimensions.

2. Material and Methods

Hagerstrand [22] first proposed the concept of the space–time cube for spatiotem-
poral visualization analysis. The space–time cube is used to study behaviors by using
two-dimensional coordinate axes for the position of the planes (x–y coordinates), which
represent space in the real world, and a time axis for the changes in the position of a plane
with time [23,24]. A 3D space–time cube is therefore formed from the x–y coordinate axes
and the time axis. The spatiotemporal data used in this paper were temporal, spatial and
attribute information. Then, a visualization model for space and time based on a space–time
cube and GIS was developed to analyze the fractures due to rock mass failure caused by
coal seam mining, as shown in Figure 2, with the following steps:
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2.1. Scale Model Testing

Physical scale model testing is a widely used method in which the formation process
and distribution of fractures in the rock mass can be reproduced. The evolution of fracturing
of the rock mass in a deep mine due to the mining of a coal seam with a large dip was
examined by Ye et al. [25], who used a physical scale model in a laboratory to investigate
the stress on the rock mass and displacement of the rock mass. Scale model testing is
a technique that is based on the theory of similitude, which is used to study complex
problems based on similarities and analogies between objects or phenomena [26]. In scale
model testing, similar conditions are determined first, which include geometric, mechanical,
stress, deformation and failure similarities:


l1
l1 ′

= l2
l2 ′

= · · · = ln
ln ′

= Cl
σ1
σ1
′ =

σ2
σ2
′ = · · · = σn

σn ′
= Cσ

CσCl = Cσ

;


Cε = 1
Cu = 1

CE = Cσ

;



Cσ/Cl = C

CE = Cσ = Cc = Cp[
σc
στ

]
p
=

[
σc
στ

]
m

Cϕ = 1, Cu = 1, Cs = 1

(2)
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where Cl, Cσ, Cρ, Cε, Cµ, CE, Cc and Cϕ are similarity constants, including the geometry
size, stress, density, strain, Poisson’s ratio, modulus of elasticity, cohesion, and internal
friction angle, respectively; and P and m denote the prototype and model, respectively.
The similarity criteria and constants were determined based on the similarity principle. A
prototype of the coal seam panel was based on a similarity model. Coal seam mining was
simulated with the model, and spatiotemporal data were collected.

2.2. Establishing Fractal Dimension and Fracture Entropy

Mandelbrot [9] first proposed the fractal geometry theory, which has become a pow-
erful tool for examining complex systems and characterizing random structures. The
fractal theory and methods have been extensively applied in geotechnical engineering
as a topographic technique for geographic analysis of various applications [27,28]. The
complexities of the changes in fracture networks can be quantitatively explained using the
fractal dimension, which is a ratio that compares the changes in a pattern with changes in
scale. In recent years, the box counting method has been commonly used to find the fractal
dimensions of an object. The fractal dimension is calculated as follows:

Df =
lim

s→ 0
log N(s)
log(1/s)

(3)

where N(s) is the number of units that are needed to cover a box with a length of s.
Information entropy, which is one of the most popular methods in making decisions

based on GIS, measures the amount of uncertainty. The directional characteristics of the
development of rock mass fractures in a mine are not known, so entropy of the fracturing
is proposed to describe the directional distribution characteristics or the extent of the
distribution of fracture development in the rock mass based on probabilistic entropy.
Fracture entropy is defined as follows:

K f =

−
n
∑

j=1

pi
∑ m

i=1 pi
ln( pi

∑ m
i=1 pi

)

ln(n)
(4)

where pi is the density or area of the position, m is the total density or area, and n is the
number of azimuth intervals.

2.3. Use of Space–Time Cubes

Space–time cubes are created in GIS to produce models that visualize and analyze 2D
and 3D spatial and temporal data. A time series is used that integrates space and time in the
model-led analysis. The location of the elements does not change with time, and attributes
or measurements are collected with time. Time-stamped point features are structured into
a data cube with Network Common Data Form (netCDF) datasets that have columns of
space and time. All observations of the columns are calculated over the time of the defined
position of a cube within each column.

The Mann–Kendall trend test is a statistical method for trend analysis to determine
whether a trend is upward or downward for a variable over time or if there a trend in a
time series [29]. If a time series Y is defined with n samples, then Hypothesis A is defined
as follows: Every time series Y is independent of each other with random probability and
the same distribution of samples. The alternative Hypothesis B is defined as follows: For
any i, j ≤ n, i 6= j, and the distribution of Yi and Yj is different.
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The test statistics T are defined as follows:

Tn =
n−1
∑

i=1

n
∑

j=i+1
Sgn(Y j − Yi)

Sgn(Y j−Yi) = 1, Yj > Yi

Sgn(Y j − Yi) = 0, Yj = Yi

Sgn(Y j − Yi) = −1, Yj < Yi

(5)

The statistical approximation follows a normal distribution, and the average value is 0
when n ≥ 10. The variance is:

s2 =
n(n− 1)(2n + 5)

18
. (6)

The standardized test statistics Z are:

Z =


(T − 1)/|s|, T > 0

0, T = 0

(T + 1)/|s|, T < 0

. (7)

The saliency level is defined as a, and then the confidence level is p = 1 − a, |Z| > Zα/2.
In this study, there was a distinct trend of changes in the time series, and Hypothesis A was
excluded. Therefore, the Z score could be used to determine the characteristics of the trend
of the time series and is provided in Table 1.

Table 1. Characteristics of trend of time series.

Trend Library z p Trend

−3 <−2.58 99% Decline, confidence level 99%
−2 −2.58 to −1.96 95% Decline, confidence level 95%
−1 −1.96 to −1.65 90% Decline, confidence level 90%
0 −1.65 to 1.65 - Non-significant trend
1 1.65 to 1.96 90% Increase, confidence level 99%
2 1.96 to 2.58 95% Increase, confidence level 95%
3 >2.58 99% Increase, confidence level 90%

3. Spatiotemporal Data Sampling

In this study, a physical model was established based on geological conditions, in-
cluding the thickness of coal seams and the physical and mechanical properties of the rock
mass of panels in the Quandian coal mine in China. However, the interburden between
seams in the Quandian mine is less than 2.5 m, and combined mining is used in longwall
caving mining, as shown in Figure 3a. First, the fracture characteristics of the rock mass
due to combined mining were tested by us using a physical model, as shown in Figure 3b.
The coal seams were found to be under Cenozoic sediments with an average thickness of
220 m. The average thickness of all the coal seams was determined to be 8 m. The rock
mass, which is located above the coal seams, was found to have a thickness that ranges
from 0 to 150 m.

The simulation of similar materials required the scale model to have geometric and
kinematic similarities, similar boundary conditions, and similar physical proportions. The
pressure on the Cenozoic sediments above the rock mass is from external loading. A
similarity model was then created with different amounts of barite, sand, gypsum and
water. The compressive strength of this similarity model had to be tested before scale model
testing was carried out. The geometric dimensions of the models were 300 cm × 30 cm
× 200 cm (length × width × height), with a geometric similarity of Cl = 200, as shown
in Figure 3b.



Fractal Fract. 2022, 6, 96 6 of 15

Fractal Fract. 2021, 5, x FOR PEER REVIEW 6 of 16 
 

 

mass, which is located above the coal seams, was found to have a thickness that ranges 
from 0 to 150 m. 

The simulation of similar materials required the scale model to have geometric and 
kinematic similarities, similar boundary conditions, and similar physical proportions. The 
pressure on the Cenozoic sediments above the rock mass is from external loading. A sim-
ilarity model was then created with different amounts of barite, sand, gypsum and water. 
The compressive strength of this similarity model had to be tested before scale model test-
ing was carried out. The geometric dimensions of the models were 300 cm × 30 cm × 200 
cm (length × width × height), with a geometric similarity of Cl = 200, as shown in Figure 
3b. 

 
(a) 

 
(b) 

Figure 3. Plane-stress physical model of rock mass fractures: (a) Engineering geological model;(b) 
scale model. 

The coal seams in the mine were excavated by longwall caving. Then, images of the 
fractures were taken with a digital camera, and converted into binary images using a dig-
ital image processing program as shown in Figure 4. The RGB images were converted into 
greyscale images using the following formula: 

Greyscale=0.4R +0.4G+0.2B  (8)

where the Greyscale level is the greyscale value of the image to be processed; and red (R), 
green (G), and blue (B) are the corresponding color values of each layer in the matrix of 

Figure 3. Plane-stress physical model of rock mass fractures: (a) Engineering geological model;
(b) scale model.

The coal seams in the mine were excavated by longwall caving. Then, images of the
fractures were taken with a digital camera, and converted into binary images using a digital
image processing program as shown in Figure 4. The RGB images were converted into
greyscale images using the following formula:

Greyscale = 0.4R + 0.4G + 0.2B (8)

where the Greyscale level is the greyscale value of the image to be processed; and red (R),
green (G), and blue (B) are the corresponding color values of each layer in the matrix of
the original image. Then, the greyscale images were converted into binary images using
threshold segmentation, and the changes in the fracture networks due to mining were
obtained. In order to better illustrate the development of the fracture state due to mining,
an 8 × 10 m mesh was divided to study the fractal dimension and fracture entropy, in
addition to the relationship between the fractal dimension and fracture state in each mesh,
as shown in Figure 4.
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to mining.

4. Results
4.1. Fractal Characteristics of Fractures of the Rock Mass Due to Mining

The fracture network simultaneously expanded along the advancing and vertical
directions of the rock mass as the mined distance increased. The fractal dimension of the
fracture network was calculated using the box counting method, as shown in Table 2.

Table 2. Calculation of fractal dimension of fractures with mined distance.

Mined Distance (m) Linear Regression Equation Fractal Dimension Correlation Coefficient

60 y = 1.123x + 3.235 1.123 0.999
120 y = 1.373x + 4.397 1.373 0.998
180 y = 1.501x + 4.467 1.501 0.999
240 y = 1.508x + 4.117 1.508 0.999
300 y = 1.510x + 4.485 1.510 0.999
340 y = 1.561x + 4.506 1.561 0.999
400 y = 1.610x + 4.594 1.610 0.999
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The total length of the fractures was measured using digital image processing, as
shown in Figure 5. The relationship between the total length of the fracture and fractal
dimension of the rock mass due to mining was determined using nonlinear equation fitting:

L = 184.371 + 0.002(
1
e
)
( 1

0.106 )(−D f )

(9)

where L is the total length of the fracture, Df is the fractal dimension of the rock mass, and
the correlation coefficient is 0.958.
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Figure 5. Total length of fracture of rock mass versus fractal dimension.

The measured length of the fractures in the rock mass due to mining was 1/e. With
an increase in the mined distance, the changes in the fracture network of the rock mass
showed good self-similarity. Thus, the fractal dimension of the fracture network of the
rock mass could be used as an index to characterize the space occupied by the fracture
length, which could be applied to analyze and evaluate the fracture network by using a
fractal dimension.

Figure 6a shows the variations in the fractal dimension of the rock mass fractures, in
which the fractal dimension increased with fluctuations of the fractures. There are three
stages in the development of rock mass fractures due to mining.

Stage I is when the fractal dimension of the rock mass fractures quickly increases. The
caved and fractured zones form and expand to about 180 m before the mined panel.

Stage II is when the fractal dimension of the rock mass fracture slowly increases. The
fractures begin to develop, then penetrate into the rock mass and finally close, and the rate
of the fracture development is similar to that of fracture closure.

Stage III is when the fractal dimension of the rock mass fractures rapidly increases,
and the conductive fracture zone is a saddle shape after a depth of 340 m.

Figure 6b,c show that the area with a high fractal dimension of rock mass fractures
moved forward with the advancement of the goaf, while in the center of the goaf and
towards the top of the goaf, the fractal dimension decreased due to the closure of the
fractures in different areas, which is basically in agreement with the process of stress relief
in the goaf. Finally, when the fractal dimension of the rock mass fractures rapidly increased,
the conductive fracture zone was a saddle shape with a low trough in the middle and high
peaks at the end.

4.2. The Entropy of Fractures of Rock Mass Due to Mining

All of the fractures were in the same direction when the fracture entropy (Kf) was 0,
and all of the fractures were evenly distributed in all directions when Kf was 1 or when
fracture entropy ranged from 0 to 1, in accordance with Equation (4). The changes in the
fracture entropy indicate the state of the rock mass fracture system due to mining, and
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an increase in the fracture entropy indicates the development of the fracture system from
orderly to disorderly. There are three stages in the development of entropy of the rock mass
fractures, as shown in Figure 7a.
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Stage I: The fracture entropy of rock mass fractures increases with mining. In the early
stages of mining, the collapse of the rock mass and the first and subsequent collapses of the
main roof primarily cause fracturing of the rock mass, which contributes to the distribution
of fractures in the rock mass and an increase in the degree of randomness of the fractures.
The fractured zone is characterized by the development of longitudinal fractures, and the
caved zone mainly contributes to an increase in the fracture entropy.

Stage II: The fracture entropy of the rock mass fractures is reduced with mining. The
fracture entropy is reduced due to the compaction, penetration and closing of the fractures,
which indicate that the fractures in the caved and fractured zones are compacted and tend
to propagate in the same direction.

Stage III: The fracture entropy of the rock mass fractures is increased with mining.
This is mainly due to the generation of new fractures and the opening of fractures, which
lead to an increase in fracture entropy. However, due to the closure, penetration and
compaction of the fractures in the goaf, the degree of randomness of the fractures in the
missing information direction is reduced, which results in the slow increase in the entropy
of the rock mass fractures in general.
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Figures 7b and 8c show that the fracture entropy reflects the randomness characteristics
of the fractures and the trend in the direction of the development of rock mass fractures
due to mining. Fracture entropy has periodic characteristics in the advancing direction of
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the panel; that is, the entropy reflects the characteristics of periodic weighting. For each
weighting break, the fracture entropy increases. The fracture entropy is gradually reduced
with increases in distance from the coal seam floor, and the fracture entropy of the rock
mass in the upper goaf is lower, and the degree of randomness is lower, which is less
affected by mining.
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The generation of new fractures or the penetration of fractures may increase the fractal
dimension of the fractures to a certain degree and shows that the space occupied by the
fracture length changes. In this way, the directional distribution of the fractures will change
at the same time, and the fracture entropy may increase or not. The degree of reduction in
the fractal dimension can be attributed to the closure and the coalescence of the fractures,
which also account for the reduction in the fracture entropy of the fracture system. When
the fractures are open, the space occupied by the fracture length remains unchanged, which
indicates that the fractal dimension remains constant, but the fracture entropy increases,
and the fractures show random behavior. Differentiation calculations were carried out with
GIS on the incremental changes in the spatiotemporal parameters of the fractal dimension
and entropy of fractures in the rock mass. Then, the characteristics of the incremental
changes of discriminate spatiotemporal parameters were obtained, as shown in Figure 8.
During the mining process, the region where the fractal dimension and fracture entropy
of the fracture increased was mainly the region where new fractures were produced. In
the areas where the fractured state remained constant, the fractal dimension and entropy
remained unchanged. Therefore, the fracture entropy and fractal dimension could be
combined to evaluate the state of the fractures. Accordingly, the criteria for determining the
spatiotemporal state of the rock mass fractures were established and are listed in Table 3,
where “+” denotes an increase, “−” denotes a decrease, and “±” denotes constant.

Table 3. Criteria for determining the spatiotemporal state of rock mass fractures due to mining.

Number Change in Df Change in Kf State of Fractures

1 Df+ Kf+ Initiated
2 Df− Kf+ Penetrating
3 Df− Kf− Closed
4 Df± Kf± Constant
5 Df± Kf+ Opening
6 Df± Kf− Compacted

Notes: Df is fractal dimension, and Kf is fracture entropy.

5. Discussion

The fractal dimension and fracture entropy of the mesh in Figure 4 were calculated,
and two space–time cubes were created to describe the spatiotemporal changes in the rock
mass fractures due to mining, as shown in Figure 9a, Figure 9b, respectively. In order
to verify the universality of the criteria for determining the spatiotemporal state of rock
mass fractures due to mining, the Mann–Kendall test was used to determine the trend
in the spatiotemporal changes of the fractal dimension and fracture entropy of the rock
mass fractures due to mining; z was determined to be 3.94. This indicates that the fractal
dimension and fracture entropy of the rock mass strata increased with time, and the rock
mass system underwent a process of increasing entropy.

Analyses of emerging spatiotemporal hot spot patterns identified data trends and
found new, enhanced, reduced, and scattered hot and cold spots. Moreover, the Hot
Spot Analysis tool can be used to examine the spatiotemporal changes in mining-induced
fractures in the rock mass. Conceptually, a high fractal dimension and high entropy of
aggregated fractures in space and time are represented by hot spots, whereas a low fractal
dimension and low entropy of aggregated fractures are characterized by cold spots. The
hot and cold spots and their characteristics with changes in the rock mass fractures can
be detected by examining emerging spatiotemporal hot spot patterns, which can be used
to evaluate the trends of the hot and cold spots over time. The Hot Spot Analysis tool is
used to calculate the Getis–Ord Gi* statistics [30,31] for each dataset feature. The z-scores
and p-values are obtained, which indicate the spatial cluster location of features with high
and low values. Local Getis–Ord Gi* statistics can be used to show spatial differences and
analyze the degree of clustering in space. Then, the hot and cold spot areas of the attribute
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distribution of a spatiotemporal object can be determined. Local Getis–Ord Gi* statistics
are defined as follows:

Getis−Ord Gi∗ =

n
∑
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∑
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where xj is the attribute value of element j, wi,j is the spatial weight between elements i and
j, n is the sum of the elements, and
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High values do not necessarily imply hot spots in a statistical sense. By analyzing the
time series of the resultant Getis–Ord Gi* scores on each location or spatial grid, we can
determine the hot and cold spot characteristics of these locations and then evaluate their
trends. The results indicate that the newly added hot spots mainly aggregated on the upper
and front parts of the panel along the advancing direction, which reflects the occurrence
of new fractures, changes in the direction of fracturing, and rock mass deformation and
failure. In terms of the fractal dimension of the fractures, oscillating hot spots were mainly
distributed between the open cut and panel, which indicated the previous presence of
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cold spots. Therefore, mining caused the distribution of fractures behind the panel, on the
upper panel, and in the gob. The mining process includes cycles of the initiation, opening,
closing, compaction and penetration of the fractures, both in time and space. Regarding
fracture entropy, it was mainly distributed in the continuous hot spot areas and showed
a similar cycle, but with fewer oscillating hot spots. Therefore, the fractal dimension and
entropy of fractures can be used to represent the spatiotemporal state and changes in the
characteristics of mining-induced fractures in the rock mass.

6. Conclusions

A new method for spatiotemporal visualization is proposed in this study to assess
the spatial and temporal characteristics of fractures, in time and space dimensions simul-
taneously, in a rock mass caused by mining. Scale model testing is used to simulate the
changes in the rock mass fractures due to mining. A space–time cube is created to analyze
the rock mass fractures. Two geometric characteristic parameters, namely fractal dimension
and fracture entropy, are proposed to determine the spatial and temporal state of the rock
mass fractures.

There are three stages in the development of a fractal dimension and fracture entropy
of rock mass fractures. The fractal dimension of the rock mass fractures rapidly increases,
and the conductive fracture zone has a saddle shape with a low trough in the middle and
high peaks at the ends. The fracture entropy has periodic characteristics in the advancing
direction of the panel, and the entropy reflects the characteristics of periodic weighting in
the advancing direction of the panel. The spatiotemporal states of fractures experienced
are initiated, penetrating, constant, opening, compacted and closed. The Mann–Kendall
test is used to analyze the trend in the spatiotemporal changes of the fractal dimension
and fracture entropy of the rock mass fractures based on a space–time cube. The fractal
dimension and fracture entropy of the rock mass strata increase with time, and the rock
mass system undergoes a process of increasing entropy. Fractal analysis of seepage in the
fracture network due to mining will need to be carried out in future work.
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